
Research Article
The Trigonometric Polynomial Like Bernstein Polynomial

Xuli Han

School of Mathematics and Statistics, Central South University, Changsha 410083, China

Correspondence should be addressed to Xuli Han; xlhan@csu.edu.cn

Received 7 May 2014; Revised 6 August 2014; Accepted 6 August 2014; Published 27 August 2014

Academic Editor: Predrag S. Stanimirovic

Copyright © 2014 Xuli Han. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial
approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial
sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric
quasi-interpolants of reproducing one degree of trigonometric polynomials are constructed. Some interesting properties of the
trigonometric polynomials are given.

1. Introduction

A century ago Bernstein [1] introduced his famous polyno-
mials by defining

𝐵
𝑛
(𝑓; 𝑥) =

𝑛

∑

𝑖=0

(
𝑛

𝑖
) (1 − 𝑥)

𝑛−𝑖

𝑥
𝑖

𝑓(
𝑖

𝑛
) , (1)

where 𝑓 is a function defined on the interval [0, 1] and 𝑛 is
a positive integer. As Bernstein proved, if 𝑓 is continuous
on the interval [0, 1] then its sequence of Bernstein poly-
nomials converges uniformly to 𝑓 on [0, 1]. Thus Bernstein
polynomials are important because a constructive proof of
Weierstrass’ theorem is given. Later, because the Bernstein
polynomials are shape preserving, they were found to have
practical applications. Many generalizations of them have
been proposed. Very fine brief accounts of the Bernstein
polynomials are given in Davis [2] and Phillips [3].

However, there are few results on the constructive proof
of trigonometric polynomial sequence approximating con-
tinuous function. Some authors are interested in the problem
of constructing nonnegative trigonometric polynomials (see
[4–6]). Trigonometric interpolation has been considered
by Salzer [7] and Henrici [8]. Several other authors have
addressed Hermite problems, even for arbitrary points. They
were mostly interested in existence questions [9], conver-
gence results, and formulae other than Lagrange’s (see [10–
13]). Quasi-interpolant on trigonometric splines has been
discussed in [14]. In [15], authors approximate continuous

functions defined on a compact set 𝐸 ∈ [−𝜋, 𝜋] by trigono-
metric polynomials. Some problems of geometric modeling
are solved better by trigonometric splines. Some types of
trigonometric splines have been introduced having different
features (see [16–19]). One may use the cosine polynomial
sequence {cos 𝑘𝜃} (𝑘 = 0, 1, . . . , 𝑛) to approximate a con-
tinuous function, but this sequence is not a basis of the
trigonometric polynomial space of order 𝑛.

The purpose of this paper is to construct an explicit
sequence of trigonometric polynomials like Bernstein poly-
nomials. Thus, trigonometric polynomials may be used like
Bernstein polynomials. It is well known that Bernstein
polynomials have many applications and are appropriate
for numerical computation. New trigonometric polynomials
like Bernstein polynomials provide different expressions
for function approximation. We will present a symmetric
trigonometric polynomial basis of order 𝑛 and show how it
works. Although one can construct trigonometric polynomi-
als via simple ways, via trigonometric kernels, for example,
we will construct simpler and more evident trigonometric
polynomial which converges uniformly to a continuous
function 𝑓 defined on the interval [0, 𝜋/2]. The problem
of reproducing one degree of trigonometric polynomials by
trigonometric quasi-interpolants is also solved.

The remainder of this paper is organized as follows. In
Section 2, the basis functions of the trigonometric polyno-
mial space are presented and the properties of the basis func-
tions are shown. In Section 3, a sequence of trigonometric
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Table 1: The coefficients {𝑎
𝑖,𝑛
} of the trigonometric polynomials.

𝑛 = 1 1 1 1
𝑛 = 2 1 2 2 2 1

𝑛 = 3 1 3 9

2
4 9

2
3 1

𝑛 = 4 1 4 8 10 17

2
10 8 4 1

𝑛 = 5 1 5 25

2
20 45

2

37

2

45

2
20 25

2
5 1

𝑛 = 6 1 6 18 35 195

4
51 41 51 195

4
35 18 6 1

polynomials is described and its convergence is discussed.
Trigonometric quasi-interpolants of reproducing one degree
of trigonometric polynomials are given in Section 4.

2. Trigonometric Basis Functions

Definition 1. For 𝑢 ∈ [0, 𝜋/2], 𝑛 ∈ N, let 𝑠(𝑢) = 1 − sin 𝑢,
𝑐(𝑢) = 1 − cos 𝑢, 𝑤(𝑢) = sin 𝑢 + cos 𝑢 − 1; one defines
trigonometric polynomials of degree 𝑛 as follows:

𝑇
𝑖,𝑛
(𝑢) = {

𝑎
𝑖,𝑛
𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖

(𝑢) , 𝑖 = 0, 1, . . . , 𝑛,

𝑎
𝑖,𝑛
𝑤
2𝑛−𝑖

(𝑢) 𝑐
𝑖−𝑛

(𝑢) , 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(2)

where

𝑎
𝑖,1
= {

1, 𝑖 = 0, 1, 2,

0, 𝑖 ̸= 0, 1, 2,
(3)

𝑎
𝑖,𝑛+1

=

{{{

{{{

{

0.5𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 𝑎
𝑖,𝑛
, 𝑖 ≤ 𝑛,

0.5𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 0.5𝑎
𝑖,𝑛
, 𝑖 = 𝑛 + 1,

𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 0.5𝑎
𝑖,𝑛
, 𝑖 ≥ 𝑛 + 2.

(4)

We choose domain [0, 𝜋/2] in Definition 1 so that 𝑠(𝑢)
and 𝑐(𝑢) are monotone, and 𝑤(𝑢) is convex. From (3) and
(4), we can obtain the coefficients of the trigonometric
polynomials as Table 1.

Property 2. Linear independence property: the set of the
trigonometric polynomials {𝑇

0,𝑛
(𝑢), 𝑇
1,𝑛
(𝑢), . . . , 𝑇

2𝑛,𝑛
(𝑢)} is

linearly independent on [0, 𝜋/2].

Proof. Consider the trigonometric polynomial space

T
𝑛
:= span {1, sin (𝑢) , cos (𝑢) , sin (2𝑢) , cos (2𝑢) , . . . ,

sin (𝑛𝑢) , cos (𝑛𝑢)} ;
(5)

we know that

sin𝑖 (𝑢) cos𝑗 (𝑢) ∈ T
𝑛
, 𝑖 + 𝑗 ≤ 𝑛 (6)

and then

𝑇
𝑘,𝑛
(𝑢) ∈ T

𝑛
, 𝑘 ≤ 2𝑛. (7)

On the other hand,

cos (𝑖𝑢) ∈ span {1, cos (𝑢) , cos2 (𝑢) , . . . , cos𝑖 (𝑢)} ,

sin (𝑖𝑢)

∈ span {sin (𝑢) , sin (𝑢) cos (𝑢) , . . . , sin (𝑢) cos𝑖−1 (𝑢)} ,

sin𝑖 (𝑢) = [𝑐 (𝑢) + 𝑤 (𝑢)]𝑖, cos𝑖 (𝑢) = [𝑠 (𝑢) + 𝑤 (𝑢)]𝑖,
(8)

and 2𝑠(𝑢)𝑐(𝑢) = 𝑤2(𝑢); we have

cos (𝑖𝑢) , sin (𝑖𝑢) ∈ span {𝑇
0,𝑛
(𝑢) , 𝑇

1,𝑛
(𝑢) , . . . , 𝑇

2𝑛,𝑛
(𝑢)} ,

𝑖 ≤ 𝑛.

(9)

Hence,

T
𝑛
= span {𝑇

0,𝑛
(𝑢) , 𝑇

1,𝑛
(𝑢) , . . . , 𝑇

2𝑛,𝑛
(𝑢)} . (10)

Since the set of the trigonometric polynomials {1, sin(𝑢),
cos(𝑢), . . . , sin(𝑛𝑢), cos(𝑛𝑢)} is linearly independent, we
conclude that the set of the trigonometric polynomials
{𝑇
0,𝑛
(𝑢), 𝑇
1,𝑛
(𝑢), . . . , 𝑇

2𝑛,𝑛
(𝑢)} is linearly independent on

[0, 𝜋/2].

The set of the trigonometric polynomials {𝑇
0,𝑛
(𝑢),

𝑇
1,𝑛
(𝑢), . . . , 𝑇

2𝑛,𝑛
(𝑢)} forms a basis for the trigonometric poly-

nomial spaceT
𝑛
. We refer to the trigonometric functions as

trigonometric basis functions.
Figure 1 shows the graphs of trigonometric basis func-

tions with 𝑛 = 2 on the left and with 𝑛 = 3 on the right.
Now we show that trigonometric sequence {𝑇

0,𝑛
(𝑢),

𝑇
1,𝑛
(𝑢), ⋅ ⋅ ⋅ , 𝑇

2𝑛,𝑛
(𝑢)} has different properties than the seque-

nce {1, sin(𝑢), cos(𝑢), . . . , sin(𝑛𝑢), cos(𝑛𝑢)}. Some important
properties of the following are useful in the interest of
constructing trigonometric polynomial approximants.

Property 3. Positivity of the basis functions: if 𝑢 ∈ (0, 𝜋/2),
then 𝑇

𝑖,𝑛
(𝑢) > 0, 𝑖 = 0, 1, . . . , 2𝑛.

Proof. From (3) and (4), it is easy to see that 𝑎
𝑖,𝑛

> 0 for
all possible 𝑖. Since 0 < 𝑠(𝑢), 𝑤(𝑢), 𝑐(𝑢) < 1, it follows that
𝑇
𝑖,𝑛
(𝑢) > 0.

Property 4. Partition of unity for the basis functions: for all
𝑛 ∈ N, we have

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢) = 1. (11)

Proof. Obviously,

𝑇
0,1
(𝑢) + 𝑇

1,1
(𝑢) + 𝑇

2,1
(𝑢)

= 𝑠 (𝑢) + 𝑤 (𝑢) + 𝑐 (𝑢) = 1.

(12)
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Figure 1: Trigonometric basis functions with 𝑛 = 2 and 𝑛 = 3.

We assume that the formula is true for 𝑛. Since 𝑎
𝑖,𝑛

= 0 for
𝑖 < 0 or 𝑖 > 2𝑛, from (2), (4), and 𝑤2(𝑢) = 2𝑠(𝑢)𝑐(𝑢) we have
2𝑛+2

∑

𝑖=0

𝑇
𝑖,𝑛+1

(𝑢)

=

𝑛

∑

𝑖=0

(0.5𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 𝑎
𝑖,𝑛
) 𝑠
𝑛+1−𝑖

(𝑢) 𝑤
𝑖

(𝑢)

+ (0.5𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛
+ 0.5𝑎

𝑛+1,𝑛
) 𝑤
𝑛+1

(𝑢)

+

2𝑛+2

∑

𝑖=𝑛+2

(𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 0.5𝑎
𝑖,𝑛
) 𝑤
2𝑛+2−𝑖

(𝑢) 𝑐
𝑖−𝑛−1

(𝑢)

= 𝑐 (𝑢)

𝑛

∑

𝑖=0

𝑇
𝑖−2,𝑛

(𝑢) + 𝑤 (𝑢)

𝑛

∑

𝑖=0

𝑇
𝑖−1,𝑛

(𝑢) + 𝑠 (𝑢)

𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢)

+ 𝑐 (𝑢) 𝑇
𝑛−1,𝑛

(𝑢) + 𝑤 (𝑢) 𝑇
𝑛,𝑛
(𝑢) + 𝑠 (𝑢) 𝑇

𝑛+1,𝑛
(𝑢)

+ 𝑐 (𝑢)

2𝑛+2

∑

𝑖=𝑛+2

𝑇
𝑖−2,𝑛

(𝑢) + 𝑤 (𝑢)

2𝑛+2

∑

𝑖=𝑛+2

𝑇
𝑖−1,𝑛

(𝑢)

+ 𝑠 (𝑢)

2𝑛+2

∑

𝑖=𝑛+2

𝑇
𝑖,𝑛
(𝑢)

= 𝑐 (𝑢)

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢) + 𝑤 (𝑢)

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢) + 𝑠 (𝑢)

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢) = 1.

(13)

This is (11) with 𝑛 replaced by 𝑛+1; the proof is complete.

Property 5. Symmetry of the basis functions: for 𝑢 ∈ [0, 𝜋/2],
we have

𝑇
𝑖,𝑛
(𝑢) = 𝑇

2𝑛−𝑖,𝑛
(
𝜋

2
− 𝑢) , 𝑖 = 0, 1, . . . , 𝑛. (14)

Proof. Obviously, 𝑎
𝑖,1

= 𝑎
2−𝑖,1

, 𝑖 = 0, 1. Assume 𝑎
𝑖,𝑛−1

=

𝑎
2(𝑛−1)−𝑖,𝑛−1

, 𝑖 = 0, 1, . . . , 𝑛 − 1; from (4) we have

𝑎
2𝑛−𝑖,𝑛

= 𝑎
2𝑛−𝑖−2,𝑛−1

+ 𝑎
2𝑛−𝑖−1,𝑛−1

+ 0.5𝑎
2𝑛−𝑖,𝑛−1

= 𝑎
𝑖,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖−2,𝑛−1

= 𝑎
𝑖,𝑛
,

(15)

for 𝑖 = 0, 1, . . . , 𝑛. These imply that the coefficients of 𝑇
𝑖,𝑛
(𝑢)

are symmetric. Thus, for 𝑖 = 0, 1, . . . , 𝑛, we have

𝑇
2𝑛−𝑖,𝑛

(
𝜋

2
− 𝑢) = 𝑎

2𝑛−𝑖,𝑛
𝑤
𝑖

(
𝜋

2
− 𝑢) 𝑐

𝑛−𝑖

(
𝜋

2
− 𝑢)

= 𝑎
𝑖,𝑛
𝑤
𝑖

(𝑢) 𝑠
𝑛−𝑖

(𝑢) = 𝑇
𝑖,𝑛
(𝑢) .

(16)

Based on Property 5, we refer to the basis functions as
symmetric trigonometric basis functions.

Property 6. Recurrence relation of the basis functions: for 𝑛 ≥
1 and 𝑖 = 0, 1, . . . , 2𝑛 + 2, we have

𝑇
𝑖,𝑛+1

(𝑢) = 𝑐 (𝑢) 𝑇
𝑖−2,𝑛

(𝑢) + 𝑤 (𝑢) 𝑇
𝑖−1,𝑛

(𝑢) + 𝑠 (𝑢) 𝑇
𝑖,𝑛
(𝑢) ,

(17)

where 𝑇
−2,𝑛

(𝑢) = 𝑇
−1,𝑛

(𝑢) = 𝑇
2𝑛+1,𝑛

(𝑢) = 𝑇
2𝑛+2,𝑛

(𝑢) = 0.

Proof. From (2) and (4), for 𝑖 = 0, 1, . . . , 𝑛, we have

𝑇
𝑖,𝑛+1

(𝑢) = 𝑎
𝑖,𝑛+1

𝑠
𝑛+1−𝑖

(𝑢) 𝑤
𝑖

(𝑢)

= (0.5𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 𝑎
𝑖,𝑛
) 𝑠
𝑛+1−𝑖

(𝑢) 𝑤
𝑖

(𝑢)

= [𝑐 (𝑢) 𝑎
𝑖−2,𝑛

𝑠
2

(𝑢) + 𝑤 (𝑢) 𝑎
𝑖−1,𝑛

𝑠 (𝑢) 𝑤 (𝑢)

+𝑠 (𝑢) 𝑎
𝑖,𝑛
𝑤
2

(𝑢)] 𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖−2

(𝑢)

= 𝑐 (𝑢) 𝑇
𝑖−2,𝑛

(𝑢)+ 𝑤 (𝑢) 𝑇
𝑖−1,𝑛

(𝑢) + 𝑠 (𝑢) 𝑇
𝑖,𝑛
(𝑢),

𝑇
𝑛+1,𝑛+1

(𝑢) = 𝑎
𝑛+1,𝑛+1

𝑤
𝑛+1

(𝑢)

= (0.5𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛
+ 0.5𝑎

𝑛+1,𝑛
) 𝑤
𝑛+1

(𝑢)

= [𝑐 (𝑢) 𝑎
𝑛−1,𝑛

𝑠 (𝑢) + 𝑤 (𝑢) 𝑎
𝑛,𝑛
𝑤 (𝑢)

+𝑠 (𝑢) 𝑎
𝑛+1,𝑛

𝑐 (𝑢)] 𝑤
𝑛−1

(𝑢)

= 𝑐 (𝑢) 𝑇
𝑛−1,𝑛

(𝑢)+ 𝑤 (𝑢) 𝑇
𝑛,𝑛
(𝑢) + 𝑠 (𝑢) 𝑇

𝑛+1,𝑛
(𝑢).

(18)
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For 𝑖 = 𝑛 + 2, 𝑛 + 3, . . . , 2𝑛 + 2, we have

𝑇
𝑖,𝑛+1

(𝑢) = 𝑎
𝑖,𝑛+1

𝑤
2𝑛+2−𝑖

(𝑢) 𝑐
𝑖−𝑛−1

(𝑢)

= (𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+ 0.5𝑎
𝑖,𝑛
) 𝑤
2𝑛+2−𝑖

(𝑢) 𝑐
𝑖−𝑛−1

(𝑢)

= [𝑐 (𝑢) 𝑎
𝑖−2,𝑛

𝑤
2

(𝑢) + 𝑤 (𝑢) 𝑎
𝑖−1,𝑛

𝑤 (𝑢) 𝑐 (𝑢)

+𝑠 (𝑢) 𝑎
𝑖,𝑛
𝑐
2()

(𝑢)] 𝑤
2𝑛−𝑖

(𝑢) 𝑐
𝑖−𝑛−2

(𝑢)

= 𝑐 (𝑢) 𝑇
𝑖−2,𝑛

(𝑢) + 𝑤 (𝑢) 𝑇
𝑖−1,𝑛

(𝑢) + 𝑠 (𝑢) 𝑇
𝑖,𝑛
(𝑢) .

(19)

Property 7. Degree elevation: for all 𝑛 ≥ 1, we have

𝑇
𝑖,𝑛
(𝑢) =

𝑎
𝑖,𝑛

𝑎
𝑖,𝑛+1

𝑇
𝑖,𝑛+1

(𝑢) +
𝑎
𝑖,𝑛

𝑎
𝑖+1,𝑛+1

𝑇
𝑖+1,𝑛+1

(𝑢)

+
𝑎
𝑖,𝑛

2𝑎
𝑖+2,𝑛+1

𝑇
𝑖+2,𝑛+1

(𝑢)

(20)

for 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝑇
𝑛,𝑛
(𝑢) =

𝑎
𝑛,𝑛

𝑎
𝑛,𝑛+1

𝑇
𝑛,𝑛+1

(𝑢) +
𝑎
𝑛,𝑛

𝑎
𝑛+1,𝑛+1

𝑇
𝑛+1,𝑛+1

(𝑢)

+
𝑎
𝑛,𝑛

𝑎
𝑛+2,𝑛+1

𝑇
𝑛+2,𝑛+1

(𝑢) ,

𝑇
𝑖,𝑛
(𝑢) =

𝑎
𝑖,𝑛

2𝑎
𝑖,𝑛+1

𝑇
𝑖,𝑛+1

(𝑢) +
𝑎
𝑖,𝑛

𝑎
𝑖+1,𝑛+1

𝑇
𝑖+1,𝑛+1

(𝑢)

+
𝑎
𝑖,𝑛

𝑎
𝑖+2,𝑛+1

𝑇
𝑖+2,𝑛+1

(𝑢)

(21)

for 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛.

Proof. For 𝑖 = 0, 1, . . . , 𝑛 − 1, by (2) we have

𝑇
𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖

(𝑢) (𝑠 (𝑢) + 𝑤 (𝑢) + 𝑐 (𝑢))

= 𝑎
𝑖,𝑛
𝑠
𝑛+1−𝑖

(𝑢) 𝑤
𝑖

(𝑢) + 𝑎
𝑖,𝑛
𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖+1

(𝑢)

+ 0.5𝑎
𝑖,𝑛
𝑠
𝑛−𝑖−1

(𝑢) 𝑤
𝑖+2

(𝑢) .

(22)

From this we obtain (20). In the same way, we have (21).

Property 8. Derivative of the basis functions: for 𝑖 =

0, 1, . . . , 𝑛 − 1, we have

𝑇


𝑖,𝑛
(𝑢) =

𝑖𝑎
𝑖,𝑛

𝑎
𝑖−1,𝑛

𝑇
𝑖−1,𝑛

(𝑢) − (𝑛 − 𝑖) 𝑇
𝑖,𝑛
(𝑢)

−
(2𝑛 − 𝑖) 𝑎

𝑖,𝑛

2𝑎
𝑖+1,𝑛

𝑇
𝑖+1,𝑛

(𝑢) ,

(23)

𝑇


𝑛,𝑛
(𝑢) =

𝑛𝑎
𝑛,𝑛

𝑎
𝑛−1,𝑛

[𝑇
𝑖−1,𝑛

(𝑢) − 𝑇
𝑖+1,𝑛

(𝑢)] . (24)

For 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛, we have

𝑇


𝑖,𝑛
(𝑢) =

𝑖𝑎
𝑖,𝑛

2𝑎
𝑖−1,𝑛

𝑇
𝑖−1,𝑛

(𝑢) + (𝑖 − 𝑛) 𝑇
𝑖,𝑛
(𝑢)

−
(2𝑛 − 𝑖) 𝑎

𝑖,𝑛

𝑎
𝑖+1,𝑛

𝑇
𝑖+1,𝑛

(𝑢) .

(25)

Proof. For 𝑖 = 0, we have

𝑇


0,𝑛
(𝑢) = −𝑛𝑠

𝑛−1

(𝑢) cos 𝑢

= −𝑛𝑠
𝑛−1

(𝑢) (𝑠 (𝑢) + 𝑤 (𝑢)) = −𝑛𝑇
0,𝑛
− 𝑇
1,𝑛
.

(26)

This implies the case 𝑖 = 0 of (23). For 𝑖 = 1, 2, . . . , 𝑛 − 1, we
have

𝑇


𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
[𝑖𝑠
𝑛−𝑖+1

(𝑢) 𝑤
𝑖−1

(𝑢) − (𝑛 − 𝑖) 𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖

(𝑢)

− (𝑛 −
𝑖

2
) 𝑠
𝑛−𝑖−1

(𝑢) 𝑤
𝑖+1

(𝑢)] .

(27)

This implies the cases 𝑖 ̸= 0 of (23). In the same way, we can
obtain the results on the other cases.

Property 9. Maximum values: for 𝑖 = 0, 1, . . . , 2𝑛, 𝑇
𝑖,𝑛
(𝑢)

obtains its maximum value at

𝑢 = arcsin 1

2𝑛
(√𝑛2 + 2𝑛𝑖 − 𝑖2 + 𝑖 − 𝑛) . (28)

Proof. Directly derivation computing to (2), we have

𝑇


𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
𝑠
𝑛−𝑖−1

(𝑢) 𝑤
𝑖−1

(𝑢)

× [𝑖𝑠
2

(𝑢) − (𝑛 − 𝑖) 𝑠 (𝑢) 𝑤 (𝑢) − (𝑛 −
𝑖

2
)𝑤
2

(𝑢)] ,

(29)

for 𝑖 = 0, 1, . . . , 𝑛, and

𝑇


𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
𝑤
2𝑛−𝑖−1

(𝑢) 𝑐
𝑖−𝑛−1

(𝑢)

× [0.5𝑖𝑤
2

(𝑢) − (𝑛 − 𝑖) 𝑤 (𝑢) 𝑐 (𝑢) − (2𝑛 − 𝑖) 𝑐
2

(𝑢)] ,

(30)

for 𝑖 = 𝑛+1, 𝑛+2, . . . , 2𝑛. Since𝑤2(𝑢) = 2𝑠(𝑢)𝑐(𝑢), we obtain

𝑇


𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
𝑠
𝑛−𝑖

(𝑢) 𝑤
𝑖−1

(𝑢)

× [𝑖𝑠 (𝑢) − (𝑛 − 𝑖) 𝑤 (𝑢) − (2𝑛 − 𝑖) 𝑐 (𝑢)] ,

(31)

for 𝑖 = 0, 1, . . . , 𝑛, and

𝑇


𝑖,𝑛
(𝑢) = 𝑎

𝑖,𝑛
𝑤
2𝑛−𝑖−1

(𝑢) 𝑐
𝑖−𝑛

(𝑢)

× [𝑖𝑠 (𝑢) − (𝑛 − 𝑖) 𝑤 (𝑢) − (2𝑛 − 𝑖) 𝑐 (𝑢)] ,

(32)

for 𝑖 = 𝑛+1, 𝑛+2, . . . , 2𝑛. Let 𝑖𝑠(𝑢)−(𝑛−𝑖)𝑤(𝑢)−(2𝑛−𝑖)𝑐(𝑢) = 0;
we have 𝑛[cos 𝑢 − sin 𝑢] = 𝑛 − 𝑖 and then

sin 𝑢 = 1

2
(√2 − (

𝑛 − 𝑖

𝑛
)

2

−
𝑛 − 𝑖

𝑛
) . (33)

From this we obtain (28).
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In the proof of Property 5, we have shown that the coef-
ficients of the trigonometric basis functions are symmetric.
Now we give further properties of the coefficients of the
trigonometric basis functions.

Property 10. Explicit formula: for the coefficients of the
trigonometric basis functions given by (4), we have

𝑎
𝑖,𝑛
=

[𝑖/2]

∑

𝑘=0

𝑛!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!
, 𝑖 = 0, 1, . . . , 𝑛. (34)

Proof. Since 𝑎
0,1

= 𝑎
1,1

= 1, 𝑎
0,2

= 1, 𝑎
1,2

= 𝑎
2,2

= 2, (34)
holds for 𝑛 = 1 and 𝑛 = 2 obviously. We assume that the
formula (34) is true for 𝑎

𝑖,𝑛−1
, 𝑖 = 0, 1, . . . , 𝑛 − 1; then

1

2
𝑎
𝑖−2,𝑛−1

=

[(𝑖−2)/2]

∑

𝑘=0

(𝑛 − 1)!

2𝑘+1𝑘! (𝑛 − 𝑖 + 𝑘 + 1)! (𝑖 − 2𝑘 − 2)!

=

[𝑖/2]

∑

𝑘=1

(𝑛 − 1)!

2𝑘 (𝑘 − 1)! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!
,

𝑎
𝑖−1,𝑛−1

=
(𝑛 − 1)!

(𝑛 − 𝑖)! (𝑖 − 1)!

+

[(𝑖−1)/2]

∑

𝑘=1

(𝑛 − 1)!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘 − 1)!
,

𝑎
𝑖,𝑛−1

=
(𝑛 − 1)!

(𝑛 − 𝑖 − 1)!𝑖!
+

[𝑖/2]

∑

𝑘=1

(𝑛 − 1)!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘 − 1)! (𝑖 − 2𝑘)!
.

(35)

By (4), for even numbers 0 ≤ 𝑖 ≤ 𝑛 − 1, we have

𝑎
𝑖,𝑛
=
1

2
𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

=

[(𝑖−1)/2]

∑

𝑘=1

(𝑛 − 1)!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!

× [𝑘 + (𝑖 − 2𝑘) + (𝑛 − 𝑖 + 𝑘)]

+
(𝑛 − 1)!

(𝑛 − 𝑖)! (𝑖 − 1)!
+

(𝑛 − 1)!

(𝑛 − 𝑖 − 1)!𝑖!

+
(𝑛 − 1)!

2𝑖/2 (𝑖/2 − 1)! (𝑛 − 𝑖/2)!
+

(𝑛 − 1)!

2𝑖/2 (𝑖/2)! (𝑛 − 𝑖/2 − 1)!

=

[(𝑖−1)/2]

∑

𝑘=1

𝑛!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!
+

𝑛!

(𝑛 − 𝑖)!𝑖!

+
𝑛!

2𝑖/2 (𝑖/2)! (𝑛 − 𝑖/2)!

=

[𝑖/2]

∑

𝑘=0

𝑛!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!
.

(36)

For odd numbers 1 ≤ 𝑖 ≤ 𝑛 − 1, we have

𝑎
𝑖,𝑛
=

(𝑛 − 1)!

(𝑛 − 𝑖)! (𝑖 − 1)!
+

(𝑛 − 1)!

(𝑛 − 𝑖 − 1)!𝑖!

+

[𝑖/2]

∑

𝑘=1

(𝑛 − 1)!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!

× [𝑘 + (𝑖 − 2𝑘) + (𝑛 − 𝑖 + 𝑘)]

=
𝑛!

(𝑛 − 𝑖)!𝑖!
+

[𝑖/2]

∑

𝑘=1

𝑛!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!

=

[𝑖/2]

∑

𝑘=0

𝑛!

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!
.

(37)

By induction, the proof is complete.

Property 11. Recurrence relation of the coefficients: for the
coefficients of the trigonometric basis functions given by (4),
we have

(𝑖 + 1) 𝑎
𝑖+1,𝑛

= (𝑛 − 𝑖) 𝑎
𝑖,𝑛
+
1

2
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛
,

𝑖 = 1, 2, . . . , 𝑛 − 1

(38)

(2𝑛 − 𝑖 + 1) 𝑎
𝑖−1,𝑛

= (𝑖 − 𝑛) 𝑎
𝑖,𝑛
+
1

2
(𝑖 + 1) 𝑎

𝑖+1,𝑛
,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛 − 1.

(39)

Proof. For 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛 − 1, by the symmetry
of the coefficients shown in the proof of Property 4, we can
obtain (39) from (38). Therefore, we consider only the cases
𝑖 = 1, 2, . . . , 𝑛 − 1. By (4), we have 𝑎

0,𝑛
= 1, 𝑎

1,𝑛
= 𝑛. When 𝑖 is

an odd number, we have

(𝑛 − 𝑖) 𝑎
𝑖,𝑛
+
1

2
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

=
𝑛!

(𝑛 − 𝑖 − 1)!𝑖!
+

[𝑖/2]

∑

𝑘=1

𝑛! (𝑛 − 𝑖)

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!

+

[(𝑖−1)/2]−1

∑

𝑘=0

𝑛! (2𝑛 − 𝑖 + 1)

2𝑘+1𝑘! (𝑛 − 𝑖 + 𝑘 + 1)! (𝑖 − 2𝑘 − 1)!

+
𝑛! (2𝑛 − 𝑖 + 1)

2(𝑖+1)/2 ((𝑖 − 1) /2)! ((2𝑛 − 𝑖 + 1) /2)!

=
𝑛!

(𝑛 − 𝑖 − 1)!𝑖!
+

[(𝑖−1)/2]

∑

𝑘=1

𝑛! (𝑖 + 1)

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘 − 1)! (𝑖 − 2𝑘 + 1)!

+
𝑛! (𝑖 + 1)

2(𝑖+1)/2 ((𝑖 + 1) /2)! (𝑛 − (𝑖 + 1) /2)!

=

[(𝑖+1)/2]

∑

𝑘=0

𝑛! (𝑖 + 1)

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘 − 1)! (𝑖 − 2𝑘 + 1)!

= (𝑖 + 1) 𝑎
𝑖+1,𝑛

.

(40)
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When 𝑖 is an even number, analogously, we have

(𝑛 − 𝑖) 𝑎
𝑖,𝑛
+
1

2
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

=
𝑛!

(𝑛 − 𝑖 − 1)!𝑖!
+

[𝑖/2]

∑

𝑘=1

𝑛! (𝑛 − 𝑖)

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘)! (𝑖 − 2𝑘)!

+

[(𝑖−1)/2]

∑

𝑘=0

𝑛! (2𝑛 − 𝑖 + 1)

2𝑘+1𝑘! (𝑛 − 𝑖 + 𝑘 + 1)! (𝑖 − 2𝑘 − 1)!

=
𝑛!

(𝑛 − 𝑖 − 1)!𝑖!
+

[𝑖/2]

∑

𝑘=1

𝑛! (𝑖 + 1)

2𝑘𝑘! (𝑛 − 𝑖 + 𝑘 − 1)! (𝑖 − 2𝑘 + 1)!

= (𝑖 + 1) 𝑎
𝑖+1,𝑛

.

(41)

By Property 10 or Property 11, we have

𝑎
0,𝑛

= 1,

𝑎
1,𝑛

= 𝑛 for 𝑛 ≥ 1,

𝑎
2,𝑛

=
1

2!
𝑛
2 for 𝑛 ≥ 2,

𝑎
3,𝑛

=
1

3!
𝑛 (𝑛 − 1) (𝑛 + 1) for 𝑛 ≥ 3,

𝑎
4,𝑛

=
1

4!
𝑛 (𝑛 − 1) (𝑛

2

+ 𝑛 − 3) for 𝑛 ≥ 4,

𝑎
5,𝑛

=
1

5!
𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛

2

+ 3𝑛 − 3)

for 𝑛 ≥ 5,

𝑎
6,𝑛

=
1

6!
𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛

3

+ 3𝑛
2

− 13𝑛)

for 𝑛 ≥ 6,

.

.

.

(42)

and so on.

Property 12. Positivity of the coefficients: for 𝑖 = 1, 2, . . . , 𝑛 −

1, 𝑛 + 1, . . . , 2𝑛 − 1,

𝑎
2

𝑖,𝑛
− 𝑎
𝑖−1,𝑛

𝑎
𝑖+1,𝑛

> 0. (43)

Proof. Obviously, (43) holds when 𝑛 = 1, 2. For 𝑖 =

0, 1, . . . , 𝑛, 𝑛 ≥ 3, by (38) we have

𝑎
𝑖,𝑛+1

=
1

2
𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

+
1

𝑖
[(𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛
+
1

2
(2𝑛 − 𝑖 + 2) 𝑎

𝑖−2,𝑛
]

=
𝑛 + 1

𝑖
(𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

) .

(44)

Then, for 4 ≤ 𝑖 ≤ 𝑛,

1

(𝑛 + 1)
2
(𝑎
2

𝑖,𝑛+1
− 𝑎
𝑖−1,𝑛+1

𝑎
𝑖+1,𝑛+1

)

=
1

𝑖2
(𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

)
2

−
1

𝑖2 − 1
(𝑎
𝑖−3,𝑛

+ 𝑎
𝑖−2,𝑛

) (𝑎
𝑖−1,𝑛

+ 𝑎
𝑖,𝑛
)

=
1

𝑖2
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

)

+
1

𝑖2
(𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
) +

𝑖
2

− 2

𝑖2 (𝑖2 − 1)
𝑎
𝑖−2,𝑛

𝑎
𝑖−1,𝑛

−
1

𝑖2 (𝑖2 − 1)
(𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

+ 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
)

−
1

𝑖2 − 1
𝑎
𝑖−3,𝑛

𝑎
𝑖,𝑛

=
1

𝑖2
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

) +
1

𝑖2
(𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
)

+
𝑖
2

− 2

𝑖2 (𝑖2 − 1)
𝑎
𝑖−2,𝑛

𝑎
𝑖−1,𝑛

−
1

𝑖2 (𝑖2 − 1)
𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

−
1

𝑖2 (𝑖2 − 1)
[

𝑖 − 2

𝑛 − 𝑖 + 3
𝑎
𝑖−2,𝑛

−
2𝑛 − 𝑖 + 4

2 (𝑛 − 𝑖 + 3)
𝑎
𝑖−4,𝑛

]

× 𝑎
𝑖−1,𝑛

−
1

𝑖2 − 1
[
2 (𝑖 − 1)

2𝑛 − 𝑖 + 3
𝑎
𝑖−1,𝑛

−
2 (𝑛 − 𝑖 + 2)

2𝑛 − 𝑖 + 3
𝑎
𝑖−2,𝑛

] 𝑎
𝑖,𝑛

=
1

𝑖2
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

) +
1

𝑖2
(𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
)

+ [
(𝑖 − 2) (𝑛 − 𝑖 + 2)

𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
+

1

𝑖 (𝑖 + 1)
] 𝑎
𝑖−2,𝑛

𝑎
𝑖−1,𝑛

+ [
2 (𝑛 − 𝑖 + 2)

(𝑖2 − 1) (2𝑛 − 𝑖 + 3)
−

1

𝑖2 (𝑖2 − 1)
] 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

+
2𝑛 − 𝑖 + 4

2𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
𝑎
𝑖−4,𝑛

𝑎
𝑖−1,𝑛

−
2 (𝑖 − 1)

(𝑖2 − 1) (2𝑛 − 𝑖 + 3)
𝑎
𝑖−1,𝑛

𝑎
𝑖,𝑛

=
1

𝑖2
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

) +
1

𝑖2
(𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
)

+ [
(𝑖 − 2) (𝑛 − 𝑖 + 2)

𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
+

1

𝑖 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
]

× 𝑎
𝑖−2,𝑛

𝑎
𝑖−1,𝑛

+
2 (𝑖 + 1) (𝑛 − 𝑖 + 1) + 2𝑖 + 1

𝑖2 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛



The Scientific World Journal 7

+
2𝑛 − 𝑖 + 4

2𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
𝑎
𝑖−4,𝑛

𝑎
𝑖−1,𝑛

−
2 (𝑛 − 𝑖 + 1)

𝑖 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
𝑎
2

𝑖−1,𝑛

=
1

𝑖2
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

)

+
2𝑛 + 𝑖

2

+ 3

𝑖2 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
(𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
)

+ [
(𝑖 − 2) (𝑛 − 𝑖 + 2)

𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
+

1

𝑖 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
]

× 𝑎
𝑖−2,𝑛

𝑎
𝑖−1,𝑛

+
2𝑛 + 3

𝑖2 (𝑖 + 1) (2𝑛 − 𝑖 + 3)
𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

+
2𝑛 − 𝑖 + 4

2𝑖2 (𝑖2 − 1) (𝑛 − 𝑖 + 3)
𝑎
𝑖−4,𝑛

𝑎
𝑖−1,𝑛

.

(45)

These equalities also hold for 𝑖 = 2, 3. When 𝑖 = 1,

𝑎
2

1,𝑛+1
− 𝑎
0,𝑛+1

𝑎
2,𝑛+1

=
1

2
(𝑛 + 1)

2

. (46)

By induction and symmetry, (43) holds.

3. Symmetric Trigonometric Polynomials

3.1. The Construction of the Trigonometric Polynomials. We
will discuss trigonometric polynomial approximation on the
special interval [0, 𝜋/2] because the change of variable 𝑥 =

𝑎 + 2𝑡(𝑏 − 𝑎)/𝜋 can be used to go back and forth between
[𝑎, 𝑏] and [0, 1].

Definition 13. Given nodes 𝑥
𝑖,𝑛

∈ [0, 𝜋/2], 𝑖 = 0, 1, . . . , 2𝑛

and function values 𝑓(𝑥
𝑖,𝑛
) ∈ R, we define trigonometric

polynomials as follows:

𝑇
𝑛
(𝑓, 𝑥) =

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) 𝑓 (𝑥

𝑖,𝑛
) , 𝑥 ∈ [0,

𝜋

2
] . (47)

Since the symmetry of the Trigonometric basis functions,
we call (47) as symmetric trigonometric polynomials.

Obviously, 𝑇
𝑛
is a linear operator. Based on Property 3,

another property of these operator is that they are positive.
This implies that if 𝑓 ≥ 0, then 𝑇

𝑛
(𝑓, 𝑥) ≥ 0.

For computing conveniently, we can choose nodes 𝑥
𝑖,𝑛
=

𝑖/(2𝑛). On the convergence of𝑇
𝑛
(𝑓, 𝑥), two kinds of the nodes

will be discussed. One kind of the nodes is 𝑥
0,1

= 0, 𝑥
1,1

=

𝜋/4, 𝑥
2,1

= 𝜋/2, and

𝑥
𝑖,𝑛
=

{{{{{{{{{{{

{{{{{{{{{{{

{

arcsin(
0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

) ,

𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜋

4
, 𝑖 = 𝑛,

𝜋

2
− 𝑥
2𝑛−𝑖,𝑛

,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(48)

for 𝑛 > 1. Another kind of the nodes is 𝑥
0,1

= 0, 𝑥
1,1

= 𝜋/4,
𝑥
2,1

= 𝜋/2, and

𝑥
𝑖,𝑛
=

{{{{{{{{{{{

{{{{{{{{{{{

{

arcsin(
0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝐴
𝑖,𝑛

) ,

𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜋

4
, 𝑖 = 𝑛,

𝜋

2
− 𝑥
2𝑛−𝑖,𝑛

,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛,

(49)

for 𝑛 > 1, where

𝐴
𝑖,𝑛
= √(0.5𝑎

𝑖−2,𝑛−1
+ 𝑎
𝑖−1,𝑛−1

)
2

+ (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

)
2

.

(50)

We can also rewrite

1

2
𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

=
2𝑛 − 𝑖 + 1

2𝑛
𝑎
𝑖−1,𝑛

,

𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

=
𝑖 + 1

𝑛
𝑎
𝑖+1,𝑛

.

(51)

By Property 11, expression (48) can be changed to

sin𝑥
𝑖,𝑛
=
0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

=
𝑛𝑎
𝑖−1,𝑛−1

+ 𝑖𝑎
𝑖,𝑛−1

𝑛 (𝑎
𝑖−1,𝑛−1

+ 2𝑎
𝑖,𝑛−1

)
,

(52)

and (49) can be changed to

tan𝑥
𝑖,𝑛
=
0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

(53)

for 𝑖 = 0, 1, . . . , 𝑛 − 1. By Property 12, we have

𝑎
𝑛−1,𝑛

𝑎
𝑛,𝑛

>
𝑎
𝑛−2,𝑛

𝑎
𝑛−1,𝑛

> ⋅ ⋅ ⋅ >
𝑎
0,𝑛

𝑎
1,𝑛

=
1

𝑛
. (54)

Therefore, for 𝑖 = 0, 1, . . . , 𝑛−1, it is easy to show that the node
sequences (48) and (49) are monotonely increasing, respec-
tively. In the following section, we can see that sin𝑥

𝑛−1,𝑛
<

sin𝑥
𝑛,𝑛

= √2/2 for (48) or (49).
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Figure 2: Approximation curves for the function 𝑓
1
.
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Figure 3: Approximation curves for the function 𝑓
2
.

Example 14. Let us consider the function as follows:

𝑓
1
(𝑥) = cos (3𝑥) exp (𝑥) , 𝑥 ∈ [0,

𝜋

2
] . (55)

Figure 2 shows the approximation curves of this function.
On the left of Figure 2, the functional curve (dotted line),
the quadratic trigonometric curve (solid line), the quartic
Bernstein polynomial curve (dashed line), and the quartic
trigonometric curve (dashdot line) are shown with equidis-
tant nodes, respectively. On the right of Figure 2, the func-
tional curve (dotted line), the quadratic trigonometric curve
(solid line), the cubic trigonometric curve (dashed line), and
the quartic trigonometric curve (dashdot line) are shown
with node expression (48), respectively.

Example 15. Let us consider the function as follows:

𝑓
2
(𝑥) = exp (−(𝑥 − 0.2)2) + exp (−(𝑥 − 2)2) , 𝑥 ∈ [0,

𝜋

2
] .

(56)
Figure 3 shows the approximation curves of this function.
On the left of Figure 3, the functional curve (dotted line),

the quadratic trigonometric curve (solid line), the quartic
Bernstein polynomial curve (dashed line), and the quartic
trigonometric curve (dashdot line) are shown with equidis-
tant nodes, respectively. On the right of Figure 3, the func-
tional curve (dotted line), the quadratic trigonometric curve
(solid line), the cubic trigonometric curve (dashed line), and
the quartic trigonometric curve (dashdot line) are shown
with node expression (48), respectively.

3.2. The Convergence of the Trigonometric Polynomials. The
following theoremwill be used repeatedly for the proof of the
convergence of the trigonometric polynomials.

Theorem 16. For the coefficients of trigonometric basis func-
tions, one has

lim
𝑛→∞

𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

𝑎
2

𝑖,𝑛+1

= 0, 𝑖 = 1, 2, . . . , 𝑛, (57)

lim
𝑛→∞

𝑎
𝑛−1,𝑛

𝑎
𝑛,𝑛

= √2, lim
𝑛→∞

0.5𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

𝑎
𝑛+1,𝑛+1

=
√2

2
. (58)
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Proof. Obviously, (57) holds for 𝑖 = 1. For 𝑖 = 2, 3, . . . , 𝑛, by
(38),

𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

= 𝑎
𝑖−1,𝑛

[
𝑛 − 𝑖 + 2

𝑖 − 1
𝑎
𝑖−2,𝑛

+
2𝑛 − 𝑖 + 3

2 (𝑖 − 1)
𝑎
𝑖−3,𝑛

]

− 𝑎
𝑖−2,𝑛

[
𝑛 − 𝑖 + 1

𝑖
𝑎
𝑖−1,𝑛

+
2𝑛 − 𝑖 + 2

2𝑖
𝑎
𝑖−2,𝑛

]

= −
2𝑛 − 𝑖 + 3

2 (𝑖 − 1)
(𝑎
2

𝑖−2,𝑛
− 𝑎
𝑖−3,𝑛

𝑎
𝑖−1,𝑛

)

+
𝑛 + 1

(𝑖 − 1) 𝑖
𝑎
𝑖−2,𝑛

(𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

) ,

(59)

we obtain

0 < 𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛
<

𝑛 + 1

(𝑖 − 1) 𝑖
𝑎
𝑖−2,𝑛

(𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

) . (60)

Then, by (44),

𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

𝑎
2

𝑖,𝑛+1

<
𝑖𝑎
𝑖−2,𝑛

(𝑛 + 1) (𝑖 − 1) (𝑎
𝑖−2,𝑛

+ 𝑎
𝑖−1,𝑛

)
. (61)

Since

(𝑖 − 1) 𝑎
𝑖−1,𝑛

= (𝑛 − 𝑖 + 2) 𝑎
𝑖−2,𝑛

+ 0.5 (2𝑛 − 𝑖 + 3) 𝑎
𝑖−3,𝑛

≥ (𝑛 − 𝑖 + 2) 𝑎
𝑖−2,𝑛

,

(62)

we have

𝑎
2

𝑖−1,𝑛
− 𝑎
𝑖−2,𝑛

𝑎
𝑖,𝑛

𝑎
2

𝑖,𝑛+1

<
𝑖

(𝑛 + 1)
2
. (63)

From this we obtain (57).
Let 𝑎
𝑛
= 𝑎
𝑛−1,𝑛

/𝑎
𝑛,𝑛
; we have

𝑎
𝑛+1

=
𝑎
𝑛,𝑛+1

𝑎
𝑛+1,𝑛+1

=
0.5𝑎
𝑛−2,𝑛

+ 𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

=
(𝑛 + 1) (𝑎

𝑛−1,𝑛
+ 2𝑎
𝑛,𝑛
)

(𝑛 + 2) (𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛
)
=
(𝑛 + 1) (2 + 𝑎

𝑛
)

(𝑛 + 2) (1 + 𝑎
𝑛
)

(64)

and then, by recursion,

𝑎
𝑛+1

− 𝑎
𝑛

=
(𝑛 + 1) (𝑎

𝑛−1
− 𝑎
𝑛
)

(𝑛 + 2) (1 + 𝑎
𝑛−1

) (1 + 𝑎
𝑛
)
+

𝑎
𝑛

𝑛 (𝑛 + 2)

=
𝑛 (𝑎
𝑛−1

− 𝑎
𝑛−2

)

(𝑛 + 2) (1 + 𝑎
𝑛−2

) (1 + 𝑎
𝑛−1

)
2

(1 + 𝑎
𝑛
)

−
𝑎
𝑛−1

(𝑛 − 1) (𝑛 + 2) (1 + 𝑎
𝑛−1

) (1 + 𝑎
𝑛
)
+

𝑎
𝑛

𝑛 (𝑛 + 2)

=
𝑛 (𝑎
𝑛−1

− 𝑎
𝑛−2

)

(𝑛 + 2) (1 + 𝑎
𝑛−2

) (1 + 𝑎
𝑛−1

)
2

(1 + 𝑎
𝑛
)

+
𝑎
𝑛
− 𝑎
𝑛−1

(𝑛 − 1) (𝑛 + 2) (1 + 𝑎
𝑛−1

) (1 + 𝑎
𝑛
)

+
1

𝑛 + 2
[
1

𝑛
−

1

(𝑛 − 1) (1 + 𝑎
𝑛−1

) (1 + 𝑎
𝑛
)
] 𝑎
𝑛
.

(65)

From (54) we have

1

𝑛
−

1

(𝑛 − 1) (1 + 𝑎
𝑛−1

) (1 + 𝑎
𝑛
)
>
1

𝑛
−

1

𝑛 + 1
> 0,

𝑎
𝑛+1

<
(𝑛 + 1) (2 + 1/𝑛)

(𝑛 + 2) (1 + 1/𝑛)
=
2𝑛 + 1

𝑛 + 2
< 2.

(66)

Obviously, 𝑎
2
− 𝑎
1
= 0, 𝑎

3
− 𝑎
2
> 0; thus we can deduce

that 𝑎
𝑛+1

> 𝑎
𝑛
(𝑛 > 1) and then {𝑎

𝑛
} is a monotone bounded

sequence. Therefore, lim
𝑛→∞

𝑎
𝑛
exists. From (64) we obtain

lim
𝑛→∞

𝑎
𝑛
= √2 (67)

and then

0.5𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

𝑎
𝑛+1,𝑛+1

=
0.5𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

𝑎
𝑛−1,𝑛

+ 𝑎
𝑛,𝑛

=
0.5𝑎
𝑛
+ 1

𝑎
𝑛
+ 1

→
√2

2
, 𝑛 → ∞.

(68)

From the proof ofTheorem 16, we can see 𝑎
𝑛
< √2. From

this and (54), it is easy to show sin𝑥
𝑛−1,𝑛

< sin𝑥
𝑛,𝑛

= √2/2

for (48) or (49).
Property 4 implies that 𝑇

𝑛
(1, 𝑥) = 1. In order to show the

convergence of trigonometric polynomials 𝑇
𝑛
(𝑓, 𝑥), we need

to discuss 𝑇
𝑛
(sin, 𝑥) and 𝑇

𝑛
(cos, 𝑥).

By 𝑤(𝑥)2 = 2𝑐(𝑥)𝑠(𝑥), we have

sin𝑥

= (𝑐 (𝑥) + 𝑤 (𝑥))

2𝑛−2

∑

𝑖=0

𝑇
𝑖,𝑛−1

(𝑥)

=

𝑛

∑

𝑖=0

(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) 𝑠
𝑛−𝑖

(𝑥)𝑤
𝑖

(𝑥)

+

2𝑛

∑

𝑖=𝑛+1

(𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) 𝑤
2𝑛−𝑖

(𝑥) 𝑐
𝑖−𝑛

(𝑥) ,

cos𝑥

= (𝑠 (𝑥) + 𝑤 (𝑥))

2𝑛−2

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑢)
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=

𝑛−1

∑

𝑖=0

(𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) 𝑠
𝑛−𝑖

(𝑥) 𝑤
𝑖

(𝑥)

+

2𝑛

∑

𝑖=𝑛

(𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖,𝑛−1

) 𝑤
2𝑛−𝑖

(𝑥) 𝑐
𝑖−𝑛

(𝑥) .

(69)

The node expression (48) is set in the light of (69).

Theorem 17. For the node expression (48), 𝑇
𝑛
(sin, 𝑥) and

𝑇
𝑛
(cos, 𝑥) converge uniformly to sin𝑥 and cos𝑥, respectively,

for 𝑥 ∈ [0, 𝜋/2].

Proof. By (54) we have 𝑎
𝑖−2,𝑛−1

/𝑎
𝑖−1,𝑛−1

< 𝑎
𝑖−1,𝑛−1

/𝑎
𝑖,𝑛−1

< √2

and then 4𝑎2
𝑖,𝑛−1

> 𝑎
2

𝑖−2,𝑛−1
. From this we have

𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

+ √2𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛
− 𝑎
2

𝑖,𝑛−1
≥ 𝑎
𝑖,𝑛
,

𝑖 = 1, 2, . . . , 𝑛 − 1.

(70)

Therefore,

𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛

− cos𝑥
𝑖,𝑛

=
1

𝑎
𝑖,𝑛

𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛

𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

+ √2𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛
− 𝑎
2

𝑖,𝑛−1

<
𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛

𝑎
2

𝑖,𝑛

,

𝑖 = 1, 2, . . . , 𝑛 − 1,

cos𝑥
𝑖,𝑛
= sin𝑥

2𝑛−𝑖,𝑛

=
0.5𝑎
2𝑛−𝑖−2,𝑛−1

+ 𝑎
2𝑛−𝑖−1,𝑛−1

𝑎
2𝑛−𝑖,𝑛

=
0.5𝑎
𝑖,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛

(71)

and then

cos𝑥 − 𝑇
𝑛
(cos, 𝑥)

=

𝑛−1

∑

𝑖=0

(
𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛

− cos𝑥
𝑖,𝑛
)𝑇
𝑖,𝑛
(𝑥)

+ (
𝑎
𝑛−1,𝑛−1

+ 0.5𝑎
𝑛,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥)

<

𝑛−1

∑

𝑖=0

𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
2

𝑖,𝑛

𝑇
𝑖,𝑛
(𝑥)

+ (
𝑎
𝑛−1,𝑛−1

+ 0.5𝑎
𝑛,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥) .

(72)

In the same way, we have

sin𝑥 − 𝑇
𝑛
(sin, 𝑥)

= (
0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥)

+

2𝑛

∑

𝑖=𝑛+1

(
𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

− sin𝑥
𝑖,𝑛
)𝑇
𝑖,𝑛
(𝑥)

< (
0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥)

+

2𝑛

∑

𝑖=𝑛+1

𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
2

𝑖,𝑛

𝑇
𝑖,𝑛
(𝑥) .

(73)

From (57) and (58), it is easy to see that 𝑇
𝑛
(sin, 𝑥) and

𝑇
𝑛
(cos, 𝑥) converge uniformly to sin𝑥 and cos𝑥, respectively,

for 𝑥 ∈ [0, 𝜋/2].

From the monotonicity of {𝑎
𝑛
}, we can know that

0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

𝑎
𝑛,𝑛

=
𝑎
𝑛−1,𝑛−1

+ 0.5𝑎
𝑛,𝑛−1

𝑎
𝑛,𝑛

>
√2

2
. (74)

Hence, with nodes (48), sin𝑥 > 𝑇
𝑛
(sin, 𝑥) and cos𝑥 >

𝑇
𝑛
(cos, 𝑥) for 𝑥 ∈ (0, 𝜋/2).
Based on (69), if we minimize

(sin𝑥
𝑖,𝑛
−
0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

)

2

+ (cos𝑥
𝑖,𝑛
−
𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛

)

2

(75)

for 𝑖 = 0, 1, . . . , 𝑛 − 1, then the results are (53). If we minimize

(sin𝑥
𝑖,𝑛
−
𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛

)

2

+ (cos𝑥
𝑖,𝑛
−
𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛

)

2

(76)

for 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛, then

tan𝑥
𝑖,𝑛
=

𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖,𝑛−1

. (77)

For (53) and (77), it is easy to validate that

𝑥
𝑖,𝑛
=
𝜋

2
− 𝑥
2𝑛−𝑖,𝑛

, 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛. (78)

The node expression (49) is set in the light of the results
of the minimality.

Theorem 18. For nodes (49), 𝑇
𝑛
(sin, 𝑥) and 𝑇

𝑛
(cos, 𝑥) con-

verge uniformly to sin𝑥 and cos𝑥, respectively, for 𝑥 ∈

[0, 𝜋/2].
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Proof. From (69), we have

sin𝑥 − 𝑇
𝑛
(sin, 𝑥)

= ∑

𝑖 ̸=𝑛

𝛿
𝑖,𝑛
sin𝑥
𝑖,𝑛
𝑇
𝑖,𝑛
(𝑥)

+ (
0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥) ,

cos𝑥 − 𝑇
𝑛
(cos, 𝑥)

= ∑

𝑖 ̸=𝑛

𝛿
𝑖,𝑛
cos𝑥
𝑖,𝑛
𝑇
𝑖,𝑛
(𝑥)

+ (
0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

𝑎
𝑛,𝑛

−
√2

2
)𝑇
𝑛,𝑛
(𝑥) ,

(79)

where

𝛿
𝑖,𝑛
=
𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
𝑖,𝑛
(𝑎
𝑖,𝑛
+ 𝐴
𝑖,𝑛
)

,

𝐴
𝑖,𝑛
= √(𝑎

𝑖−2,𝑛−1
+ 𝑎
𝑖−1,𝑛−1

)
2

+ (𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖,𝑛−1

)
2

,

𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛.

(80)

Obviously,

0 ≤ 𝛿
𝑖,𝑛
<
𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
2

𝑖,𝑛

. (81)

Therefore, by (57) and (58), 𝑇
𝑛
(sin𝑥, 𝑥) and 𝑇

𝑛
(cos𝑥, 𝑥)

converge uniformly to sin𝑥 and cos𝑥, respectively, for 𝑥 ∈

[0, 𝜋/2].

Obviously, with nodes (49), sin𝑥 > 𝑇
𝑛
(sin, 𝑥) and cos𝑥 >

𝑇
𝑛
(cos, 𝑥) for 𝑥 ∈ (0, 𝜋/2).
In the following, for the sake of simplicity, we set 𝑥

𝑖
= 𝑥
𝑖,𝑛

if it does not make a confusion.

Theorem 19. With nodes (48) or (49), the sequence of trigono-
metric polynomials 𝑇

𝑛
(𝑓, 𝑥) converges uniformly to 𝑓 for all

𝑓 ∈ 𝐶[0, 𝜋/2].

Proof. The proof is similar to the one used in proving
Korovkin theorem; see [3, 20]. Let 𝜀 > 0; we want to prove
that an integer𝑚 exists such that

𝑛 ≥ 𝑚 ⇒
𝑓 − 𝑇𝑛𝑓

 < 2𝜀, (82)

where
𝑓 − 𝑇𝑛𝑓

 = max
0≤𝑥≤𝜋/2

𝑓 (𝑥) − 𝑇𝑛 (𝑓, 𝑥)
 . (83)

Since 𝑓 is continuous on a compact interval, it is uni-
formly continuous. Consequently, a positive 𝛿 exists such that
for all 𝑥

𝑖
and 𝑥 in [0, 𝜋/2],

𝑥 − 𝑥𝑖
 < 𝛿 ⇒

𝑓 (𝑥) − 𝑓 (𝑥𝑖)
 < 𝜀. (84)

Let 𝜑(𝑡) = sin2(𝑡 − 𝑥)/2; we have

𝑥 − 𝑥𝑖
 ≥ 𝛿 ⇒

𝑓 (𝑥) − 𝑓 (𝑥𝑖)
 ≤ 2

𝑓
 ≤

2
𝑓


sin2𝛿/2
𝜑 (𝑥
𝑖
) .

(85)

Thus, for all 𝑥
𝑖
and 𝑥 in [0, 𝜋/2], we have

𝑓 (𝑥) − 𝑓 (𝑥𝑖)
 ≤ 𝜀 +

2
𝑓


sin2𝛿/2
𝜑 (𝑥
𝑖
) (86)

and then

𝑓 (𝑥) − 𝑇𝑛 (𝑓, 𝑥)
 ≤ 𝜀 +

2
𝑓


sin2𝛿/2
𝑇
𝑛
(𝜑, 𝑥) . (87)

Since 𝜑(𝑡) = (1 − cos𝑥 cos 𝑡 − sin𝑥 sin 𝑡)/2, then

𝑇
𝑛
(𝜑, 𝑥) =

1 − cos𝑥𝑇
𝑛
(cos, 𝑥) − sin𝑥𝑇

𝑛
(sin, 𝑥)

2
; (88)

thus the sequence 𝑇
𝑛
(𝜑, 𝑥) converges uniformly to 0. There-

fore, we can select𝑚 so that

2
𝑓


sin2𝛿/2
𝑇
𝑛
(𝜑, 𝑥) ≤ 𝜀 (89)

whenever 𝑛 ≥ 𝑚. Then ‖𝑓 − 𝑇
𝑛
𝑓‖ < 2𝜀.

Theorem 20. Let 𝑅
𝑛
(𝑓, 𝑥) = 𝑓(𝑥) − 𝑇

𝑛
(𝑓, 𝑥). If 𝑓 ∈

𝐶
2

[0, 𝜋/2], then
𝑅𝑛 (𝑓, 𝑥)

 ≤
√2 (2

𝑓
 +


𝑓


+

𝑓


) 𝑅
∗

𝑛
, (90)

where

𝑅
∗

𝑛
= max {𝑅𝑛 (sin, 𝑥)

 ,
𝑅𝑛 (cos, 𝑥)

} . (91)

Proof. It is easy to validate that

𝑓 (𝑥
𝑖
) = 𝑓 (𝑥) cos (𝑥

𝑖
− 𝑥) + 𝑓



(𝑥) sin (𝑥
𝑖
− 𝑥)

+ ∫

𝑥𝑖

𝑥

sin (𝑥
𝑖
− 𝑡) [𝑓



(𝑡) + 𝑓 (𝑡)] 𝑑𝑡.

(92)

Let 𝑥 ∈ [𝑥
𝑘
, 𝑥
𝑘+1

]; then

𝑇
𝑛
(𝑓, 𝑥) = [𝑓 (𝑥) cos𝑥 − 𝑓 (𝑥) sin𝑥]𝑇

𝑛
(cos, 𝑥)

+ [𝑓 (𝑥) sin𝑥 + 𝑓 (𝑥) cos𝑥]𝑇
𝑛
(sin, 𝑥)

+

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) ∫

𝑥𝑖

𝑥

sin (𝑥
𝑖
− 𝑡) [𝑓



(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

= 𝑓 (𝑥) − [𝑓 (𝑥) cos𝑥 − 𝑓 (𝑥) sin𝑥]𝑅
𝑛
(cos, 𝑥)

− [𝑓 (𝑥) sin𝑥 + 𝑓 (𝑥) cos𝑥] 𝑅
𝑛
(sin, 𝑥)

+

𝑘

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) ∫

𝑥

𝑥0

sin (𝑡 − 𝑥
𝑖
)
+
[𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

+

2𝑛

∑

𝑖=𝑘+1

𝑇
𝑖,𝑛
(𝑥) ∫

𝑥2𝑛

𝑥

sin (𝑥
𝑖
− 𝑡)
+
[𝑓


(𝑡) + 𝑓 (𝑡)]𝑑𝑡,

(93)
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where (𝑡 − 𝑥
𝑖
)
+

is the truncated power function. Since
∑
𝑘

𝑖=0
𝑇
𝑖,𝑛
(𝑥) sin(𝑡 − 𝑥

𝑖
)
+
is of one sign for 𝑡 ∈ [𝑥

0
, 𝑥], and

∑
2𝑛

𝑖=𝑘+1
𝑇
𝑖,𝑛
(𝑥) sin(𝑥

𝑖
− 𝑡)
+
is of one sign for 𝑡 ∈ [𝑥, 𝑥

2𝑛
], we

have

𝑅
𝑛
(𝑓, 𝑥) = [𝑓 (𝑥) cos𝑥 − 𝑓 (𝑥) sin𝑥] 𝑅

𝑛
(cos, 𝑥)

+ [𝑓 (𝑥) sin𝑥 + 𝑓 (𝑥) cos𝑥]𝑅
𝑛
(sin, 𝑥)

− [𝑓


(𝜂) + 𝑓 (𝜂)]

𝑘

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) ∫

𝑥

𝑥0

sin (𝑡 − 𝑥
𝑖
)
+
𝑑𝑡

− [𝑓


(𝜉) + 𝑓 (𝜉)]

2𝑛

∑

𝑖=𝑘+1

𝑇
𝑖,𝑛
(𝑥) ∫

𝑥2𝑛

𝑥

sin (𝑥
𝑖
− 𝑡)
+
𝑑𝑡

(94)

for some 𝜂 ∈ [𝑥
0
, 𝑥] and 𝜉 ∈ [𝑥, 𝑥

2𝑛
]. Therefore

𝑅𝑛 (𝑓, 𝑥)
 ≤

√2 (
𝑓
 +


𝑓


) 𝑅
∗

𝑛
+ (

𝑓
 +


𝑓


)

×

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) [1 − cos (𝑥 − 𝑥

𝑖
)]

= √2 (
𝑓
 +


𝑓


) 𝑅
∗

𝑛
+ (

𝑓
 +


𝑓


)

× [cos𝑥𝑅
𝑛
(cos, 𝑥) + sin𝑥𝑅

𝑛
(sin, 𝑥)]

≤ √2 (2
𝑓
 +


𝑓


+

𝑓


) 𝑅
∗

𝑛
.

(95)

3.3. The Convergence of the Derivative Functions. For the
trigonometric polynomial (47), obviously,

𝑇


𝑛
(𝑓, 𝑥) =

2𝑛

∑

𝑖=0

𝑇


𝑖,𝑛
(𝑥) 𝑓 (𝑥

𝑖
) . (96)

By Property 8, we obtain

𝑇


𝑛
(𝑓, 𝑥) =

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) 𝑓
[1]

(𝑥
𝑖
) , (97)

where

𝑓
[1]

(𝑥
𝑖
) =

(𝑖 + 1) 𝑎
𝑖+1,𝑛

𝑎
𝑖,𝑛

𝑓 (𝑥
𝑖+1
) − (𝑛 − 𝑖) 𝑓 (𝑥

𝑖
)

−
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

2𝑎
𝑖,𝑛

𝑓 (𝑥
𝑖−1
)

(98)

for 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝑓
[1]

(𝑥
𝑛
) =

(𝑛 + 1) 𝑎
𝑛−1,𝑛

2𝑎
𝑛,𝑛

[𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛−1

)] ,

𝑓
[1]

(𝑥
𝑖
) =

(𝑖 + 1) 𝑎
𝑖+1,𝑛

2𝑎
𝑖,𝑛

𝑓 (𝑥
𝑖+1
) + (𝑖 − 𝑛) 𝑓 (𝑥

𝑖
)

−
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

𝑎
𝑖,𝑛

𝑓 (𝑥
𝑖−1
)

(99)

for 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛. By Property 11, we have

𝑓
[1]

(𝑥
𝑖
) =

(𝑖 + 1) 𝑎
𝑖+1,𝑛

𝑎
𝑖,𝑛

[𝑓 (𝑥
𝑖+1
) − 𝑓 (𝑥

𝑖
)]

+
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

2𝑎
𝑖,𝑛

[𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖−1
)]

(100)

for 𝑖 = 0, 1, . . . , 𝑛 − 1, and

𝑓
[1]

(𝑥
𝑖
) =

(𝑖 + 1) 𝑎
𝑖+1,𝑛

2𝑎
𝑖,𝑛

[𝑓 (𝑥
𝑖+1
) − 𝑓 (𝑥

𝑖
)]

+
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

𝑎
𝑖,𝑛

[𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖−1
)]

(101)

for 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛.

Theorem 21. With node expression (49), if 𝑓 ∈ 𝐶
2

[0, 𝜋/2],
then the sequence of trigonometric polynomials 𝑇

𝑛
(𝑓, 𝑥) con-

verges uniformly to 𝑓(𝑥) for all 𝑥 ∈ [0, 𝜋/2].

Proof. Let

𝑓
[1]

(𝑥
𝑖
) = 𝑏
𝑖,𝑛
𝑓


(𝑥
𝑖
) + 𝑐
𝑖,𝑛

= 𝑓


(𝑥
𝑖
) + (𝑏
𝑖,𝑛
− 1) 𝑓



(𝑥
𝑖
) + 𝑐
𝑖,𝑛

(102)

for 𝑖 = 0, 1, . . . , 2𝑛, we have

𝑇


𝑛
(𝑓, 𝑥) =

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) 𝑓


(𝑥
𝑖
)

+

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) [(𝑏

𝑖,𝑛
− 1) 𝑓



(𝑥
𝑖
) + 𝑐
𝑖,𝑛
] ,



2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) [(𝑏

𝑖,𝑛
− 1) 𝑓



(𝑥
𝑖
) + 𝑐
𝑖,𝑛
]



≤ max
0≤𝑖≤2𝑛

{

(𝑏
𝑖,𝑛
− 1) 𝑓



(𝑥
𝑖
) + 𝑐
𝑖,𝑛


} .

(103)

Therefore, based on Theorem 19 and symmetry, we need
only to show that 𝑏

𝑖,𝑛
→ 1 and 𝑐

𝑖,𝑛
→ 0 when 𝑛 → ∞ for

𝑖 = 0, 1, . . . , 𝑛.
It is easy to show

𝑓 (𝑥
𝑖+1
) = 𝑓 (𝑥

𝑖
) cos (𝑥

𝑖+1
− 𝑥
𝑖
) + 𝑓


(𝑥
𝑖
) sin (𝑥

𝑖+1
− 𝑥
𝑖
)

+ ∫

𝑥𝑖+1

𝑥𝑖

sin (𝑥
𝑖+1

− 𝑡) [𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

(104)

for 𝑖 = 0, 1, . . . , 𝑛 − 1, and

𝑓 (𝑥
𝑖−1
) = 𝑓 (𝑥

𝑖
) cos (𝑥

𝑖
− 𝑥
𝑖−1
) − 𝑓


(𝑥
𝑖
) sin (𝑥

𝑖
− 𝑥
𝑖−1
)

+ ∫

𝑥𝑖

𝑥𝑖−1

sin (𝑡 − 𝑥
𝑖−1
) [𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

(105)



The Scientific World Journal 13

for 𝑖 = 1, 2, . . . , 𝑛. Thus, we have

𝑏
0,𝑛

= 𝑛 sin (𝑥
1
− 𝑥
0
) ,

𝑐
0,𝑛

= 𝑛 [𝑓


(𝜂
0
) + 𝑓 (𝜂

0
) − 𝑓 (𝑥

0
)] [1 − cos (𝑥

1
− 𝑥
0
)] ,

(106)

for some 𝜂
0
∈ [𝑥
0
, 𝑥
1
],

𝑏
𝑖,𝑛
=
(𝑖 + 1) 𝑎

𝑖+1,𝑛

𝑎
𝑖,𝑛

sin (𝑥
𝑖+1

− 𝑥
𝑖
)

+
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

2𝑎
𝑖,𝑛

sin (𝑥
𝑖
− 𝑥
𝑖−1
) ,

𝑐
𝑖,𝑛
=
(𝑖 + 1) 𝑎

𝑖+1,𝑛

𝑎
𝑖,𝑛

[𝑓


(𝜂
𝑖
) + 𝑓 (𝜂

𝑖
) − 𝑓 (𝑥

𝑖
)]

× [1 − cos (𝑥
𝑖+1

− 𝑥
𝑖
)]

+
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

2𝑎
𝑖,𝑛

[𝑓 (𝑥
𝑖
) − 𝑓


(𝜉
𝑖
) − 𝑓 (𝜉

𝑖
)]

× [1 − cos (𝑥
𝑖
− 𝑥
𝑖−1
)] ,

(107)

for some 𝜂
𝑖
∈ [𝑥
𝑖
, 𝑥
𝑖+1
], 𝜉
𝑖
∈ [𝑥
𝑖−1
, 𝑥
𝑖
], 𝑖 = 1, 2, . . . , 𝑛 − 1, and

𝑏
𝑛,𝑛

=
(𝑛 + 1) 𝑎

𝑛−1,𝑛

𝑎
𝑛,𝑛

sin (𝑥
𝑛
− 𝑥
𝑛−1

) ,

𝑐
𝑛,𝑛

=
(𝑛 + 1) 𝑎

𝑛−1,𝑛

2𝑎
𝑛,𝑛

× {[𝑓


(𝜂
𝑛
) + 𝑓 (𝜂

𝑛
)]

× [1 − cos (𝑥
𝑛+1

− 𝑥
𝑛
)]

− [𝑓


(𝜉
𝑛
) + 𝑓 (𝜉

𝑛
)] [1 − cos (𝑥

𝑛
− 𝑥
𝑛−1

)]} ,

(108)

for some 𝜂
𝑛
∈ [𝑥
𝑛
, 𝑥
𝑛+1

], 𝜉
𝑛
∈ [𝑥
𝑛−1

, 𝑥
𝑛
].

Obviously, when 𝑛 → ∞,

𝑏
0,𝑛

=
𝑛

√𝑛2 + 1

→ 1,

𝑐
0,𝑛

= 𝑛(1 −
𝑛

√𝑛2 + 1

) [𝑓


(𝜂
0
) + 𝑓 (𝜂

0
) − 𝑓 (𝑥

0
)]

=
𝑛

𝑛2 + 𝑛√𝑛2 + 1 + 1

[𝑓


(𝜂
0
) + 𝑓 (𝜂

0
) − 𝑓 (𝑥

0
)] → 0.

(109)

For 𝑖 = 1, 2, . . . , 𝑛 − 2, let

𝑏
𝑖,𝑛
=

𝑎
𝑖,𝑛
𝑎
𝑖+1,𝑛

𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

𝑑
𝑖,𝑛
+

𝑎
𝑖−1,𝑛

𝑎
𝑖,𝑛

𝐴
𝑖−1,𝑛

𝐴
𝑖,𝑛

𝑒
𝑖,𝑛
, (110)

where

0 < 𝑑
𝑖,𝑛
=
𝑖 + 1

𝑎
2

𝑖,𝑛

𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

sin (𝑥
𝑖+1

− 𝑥
𝑖
) ,

0 < 𝑒
𝑖,𝑛
=
2𝑛 − 𝑖 + 1

2𝑎
2

𝑖,𝑛

𝐴
𝑖−1,𝑛

𝐴
𝑖,𝑛
sin (𝑥

𝑖
− 𝑥
𝑖−1
) .

(111)

Since

𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛−1

− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖+1,𝑛−1

=
𝑎
𝑖−1,𝑛−1

𝑖
[(𝑛 − 𝑖) 𝑎

𝑖−1,𝑛−1
+ 0.5 (2𝑛 − 𝑖) 𝑎

𝑖−2,𝑛−1
]

−
𝑎
𝑖−2,𝑛−1

𝑖 + 1
[(𝑛 − 𝑖 − 1) 𝑎

𝑖,𝑛−1
+ 0.5 (2𝑛 − 𝑖 − 1) 𝑎

𝑖−1,𝑛−1
]

=
𝑛 − 𝑖

𝑖
(𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

)

+
𝑛

𝑖 (𝑖 + 1)
𝑎
𝑖−2,𝑛−1

(𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) ,

(112)

using (59), we have

𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

sin (𝑥
𝑖+1

− 𝑥
𝑖
)

= (0.5𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

)

− (0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) (𝑎
𝑖,𝑛−1

+ 𝑎
𝑖+1,𝑛−1

)

= 0.5 (𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

) + 𝑎
2

𝑖,𝑛−1
− 𝑎
𝑖−1,𝑛−1

𝑎
𝑖+1,𝑛−1

+ 0.5 (𝑎
𝑖−1,𝑛−1

𝑎
𝑖,𝑛−1

− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖+1,𝑛−1

)

=
𝑛

𝑖 (𝑖 + 1)
(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

)

−
𝑛 − 𝑖

2𝑖
(𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

) ,

=
𝑛

2𝑖 (𝑖 + 1)
(𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) (𝑎
𝑖−1,𝑛−1

+ 2𝑎
𝑖,𝑛−1

)

−
𝑛 − 𝑖 − 1

2 (𝑖 + 1)
(𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

)

(113)

and then, using (59),

𝐴
𝑖−1,𝑛

𝐴
𝑖,𝑛
sin (𝑥

𝑖
− 𝑥
𝑖−1
)

=
𝑛

𝑖 (𝑖 − 1)
(0.5𝑎
𝑖−3,𝑛−1

+ 𝑎
𝑖−2,𝑛−1

) (𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

)

−
𝑛 − 𝑖 + 1

2 (𝑖 − 1)
(𝑎
2

𝑖−2,𝑛−1
− 𝑎
𝑖−3,𝑛−1

𝑎
𝑖−1,𝑛−1

)

=
𝑛

𝑖 (𝑖 − 1)
(
1

2
𝑎
𝑖−3,𝑛−1

+
𝑛

2𝑛 − 𝑖 + 1
𝑎
𝑖−2,𝑛−1

)

× (𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

)

+
𝑛 − 𝑖 + 1

2𝑛 − 𝑖 + 1
(𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

)
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=
𝑛

𝑖 (2𝑛 − 𝑖 + 1)
(𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

)
2

+
𝑛 − 𝑖 + 1

2𝑛 − 𝑖 + 1
(𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

) .

(114)

From these we obtain

𝑑
𝑖,𝑛
+ 𝑒
𝑖,𝑛
= 1 +

𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
2

𝑖,𝑛

→ 1, 𝑛 → ∞.

(115)

Since 𝑑
𝑖,𝑛
and 𝑒
𝑖,𝑛
are bounded and

𝐴
𝑖,𝑛

𝑎
𝑖,𝑛

= √1 +
𝑎
2

𝑖−1,𝑛−1
− 𝑎
𝑖−2,𝑛−1

𝑎
𝑖,𝑛−1

𝑎
2

𝑖,𝑛

→ 1, 𝑛 → ∞,

𝑏
𝑖,𝑛
= (

𝑎
𝑖,𝑛
𝑎
𝑖+1,𝑛

𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

− 1)𝑑
𝑖,𝑛
+ (

𝑎
𝑖−1,𝑛

𝑎
𝑖,𝑛

𝐴
𝑖−1,𝑛

𝐴
𝑖,𝑛

− 1) 𝑒
𝑖,𝑛

+ 𝑑
𝑖,𝑛
+ 𝑒
𝑖,𝑛

(116)

we can conclude that 𝑏
𝑖,𝑛

→ 1 when 𝑛 → ∞.
By (44), we have

sin (𝑥
𝑖+1

− 𝑥
𝑖
) <

𝑛 (0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

)

𝑖 (𝑖 + 1) 𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

=
𝑎
𝑖,𝑛
𝑎
𝑖+1,𝑛

(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

)

𝑛𝐴
𝑖,𝑛
𝐴
𝑖+1,𝑛

(𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

)
<
1

𝑛

(117)

and then
𝑐𝑖,𝑛

 ≤ (2
𝑓
 +


𝑓


)

× [
(𝑖 + 1) 𝑎

𝑖+1,𝑛

𝑎
𝑖,𝑛

sin2 (𝑥
𝑖+1

− 𝑥
𝑖
)

+
(2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛

2𝑎
𝑖,𝑛

sin2 (𝑥
𝑖
− 𝑥
𝑖−1
)]

≤
1

𝑛2𝑎
𝑖,𝑛

(2
𝑓
 +


𝑓


)

× [(𝑖 + 1) 𝑎
𝑖+1,𝑛

+ 0.5 (2𝑛 − 𝑖 + 1) 𝑎
𝑖−1,𝑛

]

=
1

𝑛2𝑎
𝑖,𝑛

(2
𝑓
 +


𝑓


)

× [(𝑛 − 𝑖) 𝑎
𝑖,𝑛
+ (2𝑛 − 𝑖 + 1) 𝑎

𝑖−1,𝑛
]

<
𝑛 − 𝑖 + √2 (2𝑛 − 𝑖 + 1)

𝑛2
(2
𝑓
 +


𝑓


) .

(118)

This implies that 𝑐
𝑖,𝑛

→ 0 when 𝑛 → ∞.

Using (44) repeatedly, we have

sin (𝑥
𝑛−1

− 𝑥
𝑛−2

)

=
1

(𝑛 + 2)𝐴
𝑛−2,𝑛

𝐴
𝑛−1,𝑛

× [
𝑛

𝑛 − 1
(𝑎
𝑛−3,𝑛−1

+ 𝑎
𝑛−2,𝑛−1

)
2

+2 (𝑎
2

𝑛−2,𝑛−1
− 𝑎
𝑛−3,𝑛−1

𝑎
𝑛−1,𝑛−1

) ]

=
1

(𝑛 + 2)𝐴
𝑛−2,𝑛

𝐴
𝑛−1,𝑛

× [
𝑛 − 1

𝑛
𝑎
2

𝑛−1,𝑛
+ 2 (𝑎

2

𝑛−2,𝑛−1
− 𝑎
𝑛−3,𝑛−1

𝑎
𝑛−1,𝑛−1

)] ,

sin (𝑥
𝑛
− 𝑥
𝑛−1

)

=
√2

2𝐴
𝑛−1,𝑛

(𝑎
𝑛−1,𝑛−1

− 0.5𝑎
𝑛−3,𝑛−1

)

=
√2

2𝐴
𝑛−1,𝑛

(𝑎
𝑛−1,𝑛

− 𝑎
𝑛−3,𝑛−1

− 𝑎
𝑛−2,𝑛−1

) =

√2𝑎
𝑛−1,𝑛

2𝑛𝐴
𝑛−1,𝑛

.

(119)

Thus we have

𝑏
𝑛−1,𝑛

=
𝑛𝑎
𝑛,𝑛

𝑎
𝑛−1,𝑛

sin (𝑥
𝑛
− 𝑥
𝑛−1

)

+
(𝑛 + 2) 𝑎

𝑛−2,𝑛

2𝑎
𝑛−1,𝑛

sin (𝑥
𝑛−1

− 𝑥
𝑛−2

)

=

√2𝑎
𝑛,𝑛

2𝑎
𝑛−1,𝑛

𝑎
𝑛−1,𝑛

𝐴
𝑛−1,𝑛

+
(𝑛 − 1) 𝑎

𝑛−2,𝑛
𝑎
𝑛−1,𝑛

2𝑛𝐴
𝑛−2,𝑛

𝐴
𝑛−1,𝑛

+

𝑎
𝑛−2,𝑛

(𝑎
2

𝑛−2,𝑛−1
− 𝑎
𝑛−3,𝑛−1

𝑎
𝑛−1,𝑛−1

)

𝐴
𝑛−2,𝑛

𝑎
𝑛−1,𝑛

𝐴
𝑛−1,𝑛

,

𝑏
𝑛,𝑛

=
(𝑛 + 1) 𝑎

𝑛−1,𝑛

𝑎
𝑛,𝑛

sin (𝑥
𝑛
− 𝑥
𝑛−1

)

=

√2𝑎
𝑛−1,𝑛

2𝑎
𝑛,𝑛

(𝑛 + 1) 𝑎
𝑛−1,𝑛

𝑛𝐴
𝑛−1,𝑛

,

𝑐𝑛−1,𝑛
 ≤ (2

𝑓
 +


𝑓


)

× [
𝑛𝑎
𝑛,𝑛

𝑎
𝑛−1,𝑛

sin2 (𝑥
𝑛
− 𝑥
𝑛−1

)

+
(𝑛 + 2) 𝑎

𝑛−2,𝑛

2𝑎
𝑛−1,𝑛

sin2 (𝑥
𝑛−1

− 𝑥
𝑛−2

)]

<
1

𝑛2𝑎
𝑛−1,𝑛

(2
𝑓
 +


𝑓


) [𝑛𝑎
𝑛,𝑛
+ 0.5 (𝑛 + 2) 𝑎

𝑛−2,𝑛
]
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=
1

𝑛2
[𝑛 − 1 + (𝑛 + 2)

𝑎
𝑛−2,𝑛

𝑎
𝑛−1,𝑛

] (2
𝑓
 +


𝑓


) ,

𝑐𝑛,𝑛
 ≤

(𝑛 + 1) 𝑎
𝑛−1,𝑛

𝑎
𝑛,𝑛

(
𝑓
 +


𝑓


) sin2 (𝑥

𝑛
− 𝑥
𝑛−1

)

=
(𝑛 + 1) 𝑎

3

𝑛−1,𝑛

2𝑛2𝑎
𝑛,𝑛
𝐴
2

𝑛−1,𝑛

(
𝑓
 +


𝑓


) .

(120)

Therefore,

lim
𝑛→∞

𝑏
𝑛−1,𝑛

= 1, lim
𝑛→∞

𝑏
𝑛,𝑛

= 1,

lim
𝑛→∞

𝑐
𝑛−1,𝑛

= 0, lim
𝑛→∞

𝑐
𝑛,𝑛

= 0.

(121)

4. Quasi-Interpolation by
the Trigonometric Polynomials

Like Bernstein polynomials, the convergence of the given
trigonometric polynomials is slow. For reproducing one
degree of trigonometric polynomials, we consider the follow-
ing quasi-interpolant:

𝑄 (𝑓, 𝑥) =

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥) [𝛼

𝑖
𝑓 (𝑥
𝑖−1
) + (1 − 𝛼

𝑖
− 𝛽
𝑖
)

× 𝑓 (𝑥
𝑖
) + 𝛽
𝑖
𝑓 (𝑥
𝑖+1
)] ,

(122)

where 𝛼
0
= 𝛼
2𝑛
= 𝛽
0
= 𝛽
2𝑛
= 0.

Based on (69), in order to reproduce one degree of
trigonometric polynomials by (122), we need to choose𝛼

𝑖
and

𝛽
𝑖
to satisfy the following equalities:

𝛼
𝑖
sin𝑥
𝑖−1

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
) sin𝑥

𝑖
+ 𝛽
𝑖
sin𝑥
𝑖+1

=
1

𝑎
𝑖,𝑛

(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) ,

𝛼
𝑖
cos𝑥
𝑖−1

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
) cos𝑥

𝑖
+ 𝛽
𝑖
cos𝑥
𝑖+1

=
1

𝑎
𝑖,𝑛

(𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) ,

(123)

for 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝛼
𝑛
sin𝑥
𝑛−1

+ (1 − 𝛼
𝑛
− 𝛽
𝑛
) sin𝑥

𝑛
+ 𝛽
𝑛
sin𝑥
𝑛+1

=
1

𝑎
𝑛,𝑛

(0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

) ,

𝛼
𝑛
cos𝑥
𝑛−1

+ (1 − 𝛼
𝑛
− 𝛽
𝑛
) cos𝑥

𝑛
+ 𝛽
𝑛
cos𝑥
𝑛+1

=
1

𝑎
𝑛,𝑛

(𝑎
𝑛−1,𝑛−1

+ 0.5𝑎
𝑛,𝑛−1

) ,

𝛼
𝑖
sin𝑥
𝑖−1

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
) sin𝑥

𝑖
+ 𝛽
𝑖
sin𝑥
𝑖+1

=
1

𝑎
𝑖,𝑛

(𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) ,

𝛼
𝑖
cos𝑥
𝑖−1

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
) cos𝑥

𝑖
+ 𝛽
𝑖
cos𝑥
𝑖+1

=
1

𝑎
𝑖,𝑛

(𝑎
𝑖−1,𝑛−1

+ 0.5𝑎
𝑖,𝑛−1

) ,

(124)

for 𝑖 = 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛 − 1.
Solving the above equations, for 𝑖 = 1, 2, . . . , 𝑛−1, we have

2𝛼
𝑖
sin

𝑥
𝑖
− 𝑥
𝑖−1

2
sin

𝑥
𝑖+1

− 𝑥
𝑖−1

2
− cos

𝑥
𝑖+1

− 𝑥
𝑖

2

= −
1

𝑎
𝑖,𝑛

[(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) sin
𝑥
𝑖
+ 𝑥
𝑖+1

2

+ (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) cos
𝑥
𝑖
+ 𝑥
𝑖+1

2
] ,

2𝛽
𝑖
sin

𝑥
𝑖+1

− 𝑥
𝑖

2
sin

𝑥
𝑖+1

− 𝑥
𝑖−1

2
− cos

𝑥
𝑖
− 𝑥
𝑖−1

2

= −
1

𝑎
𝑖,𝑛

[(0.5𝑎
𝑖−2,𝑛−1

+ 𝑎
𝑖−1,𝑛−1

) sin
𝑥
𝑖−1

+ 𝑥
𝑖

2

+ (𝑎
𝑖−1,𝑛−1

+ 𝑎
𝑖,𝑛−1

) cos
𝑥
𝑖−1

+ 𝑥
𝑖

2
] .

(125)

Using the node expression (49), we obtain 𝛼
1
= 𝛽
1
=

−√2/2 for 𝑛 = 1, and

𝛼
𝑖
= −𝛿
𝑖,𝑛

cos ((𝑥
𝑖+1

− 𝑥
𝑖
) /2)

2 sin ((𝑥
𝑖
− 𝑥
𝑖−1
) /2) sin ((𝑥

𝑖+1
− 𝑥
𝑖−1
) /2)

,

𝛽
𝑖
= −𝛿
𝑖,𝑛

cos ((𝑥
𝑖
− 𝑥
𝑖−1
) /2)

2 sin ((𝑥
𝑖+1

− 𝑥
𝑖
) /2) sin ((𝑥

𝑖+1
− 𝑥
𝑖−1
) /2)

,

(126)

for 𝑛 > 1, 𝑖 = 1, 2, . . . , 𝑛 − 1.
In the same way, let

𝐴
𝑛,𝑛

= √2 (0.5𝑎
𝑛−2,𝑛−1

+ 𝑎
𝑛−1,𝑛−1

) ,

𝛿
𝑛,𝑛

=
𝑎
2

𝑛−1,𝑛−1
− 0.5𝑎

2

𝑛−2,𝑛−1

𝑎
𝑛,𝑛
(𝑎
𝑛,𝑛
+ 𝐴
𝑛,𝑛
)

;

(127)

then (126) also holds for 𝑛 > 1, 𝑖 = 𝑛, 𝑛 + 1, . . . , 2𝑛. Thus,
with all the coefficients 𝛼

𝑖
and 𝛽

𝑖
, the quasi-interpolant (122)

reproduces one degree of trigonometric polynomials.

Example 22. Let us consider the quasi-interpolant (122) for
the functions 𝑓

1
and 𝑓

2
. For 𝑛 = 2, we have

𝛼
1
= 𝛽
3
= −

1

4
(√2 + √5 − 1) ,

𝛼
2
= 𝛽
2
= −

1

4
(15√2 + 9√5 − 6√10 − 20) ,

𝛼
3
= 𝛽
1
= √2𝛼

1
.

(128)
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Figure 4: Quasi-interpolation for the functions 𝑓
1
and 𝑓

2
.

On the left of Figure 4, for the function 𝑓
1
, the functional

curve (dotted line), the quadratic trigonometric curve with
node expression (49) (solid line ), and the quasi-interpolation
curve of quadratic trigonometric polynomial (dashed line)
are shown, respectively. On the right of Figure 4, for the
function 𝑓

2
, the functional curve (dotted line), the quadratic

trigonometric curve with node expression (49) (solid line ),
and the quasi-interpolation curve of quadratic trigonometric
polynomial (dashed line) are shown, respectively. Obviously,
the quasi-interpolation of trigonometric polynomial approxi-
mates the functions better than the trigonometric polynomial
does.

Theorem 23. With node expression (49) and the coefficients
(126) for 𝑖 = 1, 2, . . . , 2𝑛 − 1, if 𝑓 ∈ 𝐶

2

[0, 𝜋/2], then the
sequence of the quasi-interpolation trigonometric polynomials
𝑄
𝑛
(𝑓, 𝑥) converges uniformly to 𝑓(𝑥) for all 𝑥 ∈ [0, 𝜋/2].

Proof. Obviously,

𝛼
𝑖
sin (𝑥

𝑖
− 𝑥
𝑖−1
) = 𝛽
𝑖
sin (𝑥

𝑖+1
− 𝑥
𝑖
) ,

𝛼
𝑖
[1 − cos (𝑥

𝑖
− 𝑥
𝑖−1
)] + 𝛽

𝑖
[1 − cos (𝑥

𝑖+1
− 𝑥
𝑖
)] = −𝛿

𝑖,𝑛
.

(129)

By (104) and (105), we have

𝛼
𝑖
𝑓 (𝑥
𝑖−1
) + (1 − 𝛼

𝑖
− 𝛽
𝑖
) 𝑓 (𝑥

𝑖
) + 𝛽
𝑖
𝑓 (𝑥
𝑖+1
)

= 𝑓 (𝑥
𝑖
) + 𝛿
𝑖,𝑛
[𝑓 (𝑥
𝑖
) − 𝑓 (𝜉

𝑖
) − 𝑓


(𝜉
𝑖
)]

(130)

for some 𝜉
𝑖
∈ [𝑥
𝑖−1
, 𝑥
𝑖+1
]. From this we get

𝑄
𝑛
(𝑓, 𝑥) = 𝑇

𝑛
(𝑓, 𝑥)

+

2𝑛−1

∑

𝑖=1

𝑇
𝑖,𝑛
(𝑥) 𝛿
𝑖,𝑛
[𝑓 (𝑥
𝑖
) − 𝑓 (𝜉

𝑖
) − 𝑓


(𝜉
𝑖
)] .

(131)

Since

lim
𝑛→∞

𝛿
𝑖,𝑛
= 0, (132)

we have

lim
𝑛→∞

𝑄
𝑛
(𝑓, 𝑥) = lim

𝑛→∞

𝑇
𝑛
(𝑓, 𝑥) = 𝑓 (𝑥) . (133)

Based on the reproducing property of 𝑄
𝑛
(𝑓, 𝑥), we can

give an error expression. By

𝑓 (𝑥) = 𝑓 (0) cos𝑥 + 𝑓 (0) sin𝑥

+ ∫

𝑥

0

sin (𝑥 − 𝑡) [𝑓 (𝑡) + 𝑓 (𝑡)] 𝑑𝑡,
(134)

we have

𝑓 (𝑥) − 𝑄
𝑛
(𝑓, 𝑥)

= ∫

𝑥

0

sin (𝑥 − 𝑡) [𝑓 (𝑡) + 𝑓 (𝑡)] 𝑑𝑡

−

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥)

× {𝛼
𝑖
∫

𝑥𝑖−1

0

sin (𝑥
𝑖−1

− 𝑡) [𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
)

× ∫

𝑥𝑖

0

sin (𝑥
𝑖
− 𝑡) [𝑓



(𝑡) + 𝑓 (𝑡)] 𝑑𝑡

+𝛽
𝑖
∫

𝑥𝑖+1

0

sin (𝑥
𝑖+1

− 𝑡) [𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡}

= ∫

𝜋/2

0

𝐾 (𝑥, 𝑡) [𝑓


(𝑡) + 𝑓 (𝑡)] 𝑑𝑡,

(135)
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where

𝐾 (𝑥, 𝑡) = sin (𝑥 − 𝑡)
+
−

2𝑛

∑

𝑖=0

𝑇
𝑖,𝑛
(𝑥)

× [𝛼
𝑖
sin (𝑥

𝑖−1
− 𝑡)
+

+ (1 − 𝛼
𝑖
− 𝛽
𝑖
) sin (𝑥

𝑖
− 𝑡)
+

+𝛽
𝑖
sin (𝑥

𝑖+1
− 𝑡)
+
] .

(136)

5. Conclusion

A symmetric basis of trigonometric polynomial space and its
some interesting properties are presented. Using the positive
trigonometric basis, symmetric trigonometric polynomial
approximants are constructed.The trigonometric polynomial
is simple and evident and easy for numerical computing. We
are also interested in the particular basis and the trigonomet-
ric polynomial approximants because a constructive proof
of trigonometric polynomial sequence approximating con-
tinuous function is given. The trigonometric polynomials
have similar properties to Bernstein polynomials. Two kinds
of node sequences are chosen particularly to show the
convergence. We show that if a function is continuous on
the interval [0, 𝜋/2] then the sequence of the trigonometric
polynomials converges uniformly to the function on [0, 𝜋/2].
The derivative sequence of the trigonometric polynomials
is also convergent if the function is twice differentiable.
The trigonometric quasi-interpolants of reproducing one
degree of trigonometric polynomials are constructed and the
sequence is uniform convergent.
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