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Received 25 June 2013; Accepted 17 August 2013

Academic Editor: Thabet Abdeljawad
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This paper deals with the boundedness of solutions to a nonlinear differential equation of fourth order. Using the Cauchy formula
for the particular solution of nonhomogeneous differential equations with constant coefficients, we prove that the solution and its
derivatives up to order three are bounded.

1. Introduction

In this paper, we study the boundedness of solutions to
fourth-order nonlinear differential equation:

𝑥


+ 𝑎𝑥


+ 𝑓 (𝑥, 𝑥

, 𝑥

) + 𝑔 (𝑥, 𝑥


) + ℎ (𝑥) = 𝑝 (𝑡) ,

(1)

where 𝑥 ∈ R, 𝑡 ∈ [0,∞), 𝑎 > 0, 𝑓, 𝑔, ℎ, 𝑝, and their
first derivatives are continuous functions depending on the
arguments shown. In addition, the functions ℎ and 𝑝 are
oscillatory in the following sense: for each argument 𝑢, there
exist numbers 𝛽

1
> 𝛼
1
> 𝑢 > 𝛼

−1
> 𝛽
−1

such that

𝜑 (𝛼
1
) < 0, 𝜑 (𝛽

1
) > 0, 𝜑 (𝛼

−1
) < 0, 𝜑 (𝛽

−1
) > 0, (2)

where 𝜑 is either ℎ(𝑥) or 𝑝(𝑡), 𝑢 is either 𝑥 or 𝑡, and all roots
of the restoring term ℎ(𝑥) are isolated.

It should be noted that there exist many papers dealing
with boundedness of solutions to certain nonlinear differen-
tial equations of third and fourth order in the literature [1–15].
For nonlinear differential equations of fourth order, Afuwape
and Adesina [1] used the frequency-domain approach to dis-
cuss the stability and periodicity of solutions, while Tunç and
Tiryaki [11, 12] used intrinsic method to study the bounded-
ness and stability of solutions. On the same time, Tunç [13–
15] used Lyapunov’s secondmethod to investigate the stability
and boundedness properties of solutions of certain fourth

order nonlinear differential equations. Further, other papers
in this connection include those of Andres [2], Ogundare [6],
and Omeike [7, 8], where the Cauchy formula was applied
to evaluate the boundedness of solutions to certain third and
fourth order nonlinear differential equations with oscillatory
restoring and forcing terms.

The aim of this work is to extend and improve the pre-
vious studies and make some contributions to the literature
since there are only a few papers on the boundedness of solu-
tions of fourth order differential equations with oscillatory
restoring and forcing terms (see [6–8]). It should be noted
that the equation considered here, (1), includes and extends
that of Ogundare [6] and Omeike [7, 8].

2. Preliminary Results

Weneed the following lemmas in the proof of ourmain result.

Lemma 1. One assumes that there exist positive constants 𝑎, 𝑏,
𝑐, 𝐻, and 𝑃, (𝑎2 > 4𝑏) such that the following conditions hold
for all 𝑥 ∈ 𝑅 and 𝑡 ≥ 0:

(i) |ℎ(𝑥)| ≤ 𝐻,
(ii) |𝑝(𝑡)| ≤ 𝑃,
(iii) 0 < 𝑓(𝑥, 𝑥


, 𝑥

)/𝑥


≤ 𝑏 < ∞, (𝑥 ̸= 0), 𝑓(𝑥, 𝑥

, 0) =

0,
(iv) 0 < 𝑔(𝑥, 𝑥


)/𝑥

≤ 𝑐 < ∞, (𝑥 ̸= 0), 𝑔(𝑥, 0) = 0.
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Then, each solution 𝑥(𝑡) of (1) satisfies

lim sup
𝑡→∞






𝑥


(𝑡)






≤

4 (𝐻 + 𝑃)

𝑎

:= 𝐷

, (3)

provided that

lim sup
𝑡→∞






𝑥


(𝑡)






≤

𝐻 + 𝑃

𝑐

:= 𝐷

, (4)

lim sup
𝑡→∞






𝑥


(𝑡)






≤

2 (𝐻 + 𝑃)

𝑏

:= 𝐷

. (5)

Note that the constants 𝑎, 𝑏, and 𝑐 satisfy the conditions ensur-
ing that the auxiliary equation

𝜆
3
+ 𝑎𝜆
2
+ 𝑏𝜆 + 𝑐 = 0 (6)

has negative real roots.

Proof. Substituting 𝑧 := 𝑥
, we get from (1) that

𝑧

+ 𝑎𝑧 = 𝑝 (𝑡) − 𝑓 (𝑥, 𝑥


, 𝑥

) − 𝑔 (𝑥, 𝑥


) − ℎ (𝑥) , (7)

with the solutions of the form
𝑥


(𝑡) = 𝑧 (𝑡)

= 𝐶𝑒
−𝑎𝑡

+ ∫

𝑡

𝑇
𝑥

𝑒
−𝑎(𝑡−𝜏)

[𝑝 (𝜏) − 𝑓 (𝑥 (𝜏) , 𝑥


(𝜏) , 𝑥


(𝜏))

− 𝑔 (𝑥 (𝜏) , 𝑥


(𝜏))

−ℎ (𝑥 (𝜏)) ] 𝑑𝜏,

(8)
where 𝐶 is an arbitrary constant and 𝑇

𝑥
is a great enough

number. Let us assume that the assumptions (4) and (5) hold.
Thus, by the conditions of Lemma 1, for 𝑡 ≥ 𝑇

𝑥
, we have not

only










∫

𝑡

𝑇
𝑥

𝑒
−𝑎(𝑡−𝜏)

[𝑝 (𝜏) − 𝑓 (𝑥 (𝜏) , 𝑥


(𝜏) , 𝑥


(𝜏))

−𝑔 (𝑥 (𝜏) , 𝑥


(𝜏)) − ℎ (𝑥 (𝜏))] 𝑑𝜏











≤ ∫

𝑡

𝑇
𝑥

(




𝑝 (𝜏)





+













𝑓 (𝑥 (𝜏) , 𝑥

(𝜏) , 𝑥


(𝜏))

𝑥

(𝜏)













×






𝑥


(𝜏)






) 𝑒
−𝑎(𝑡−𝜏)

𝑑𝜏

+ ∫

𝑡

𝑇
𝑥

(













𝑔 (𝑥 (𝜏) , 𝑥

(𝜏))

𝑥

(𝜏)


















𝑥


(𝜏)







+ |ℎ (𝑥 (𝜏))| ) 𝑒
−𝑎(𝑡−𝜏)

𝑑𝜏

≤ ∫

𝑡

𝑇
𝑥

(𝑃 + 𝑏






𝑥


(𝜏)






+ 𝑐






𝑥


(𝜏)






+ 𝐻) 𝑒

−𝑎(𝑡−𝜏)
𝑑𝜏

≤

4 (𝐻 + 𝑃)

𝑎

(1 − 𝑒
−𝑎(𝑡−𝑇

𝑥
)
) ,

(9)

but also

lim sup
𝑡→∞






𝑥


(𝑡)






≤

4 (𝐻 + 𝑃)

𝑎

. (10)

This completes the proof of Lemma 1.

Lemma 2. In addition to the assumptions of Lemma 1, one
assumes that the following conditions hold:

(i) |ℎ

(𝑥)| ≤ 𝐻

,
(ii) | ∫

∞

0
𝑝(𝑡)𝑑𝑡| < ∞,

where 𝐻
 is a suitable constant. Then, every bounded solution

𝑥(𝑡) of (1) either satisfies the relation

lim
𝑡→∞

𝑥 (𝑡) = 𝑥,

lim
𝑡→∞

𝑥


(𝑡) = lim
𝑡→∞

𝑥


(𝑡) = lim
𝑡→∞

𝑥


(𝑡) = 0, (ℎ (𝑥) = 0)

(11)

or there exists a root 𝑥 of ℎ(𝑥) such that (𝑥(𝑡) − 𝑥) oscillates.

Proof. Let𝑥(𝑡)be a fixed bounded solution of (1). Substituting
this solution into (1) and integrating the result from 𝑇

𝑥
to 𝑡

(𝑇
𝑥
—a great enough number), we obtain the following:

∫

𝑡

𝑇
𝑥

ℎ (𝑥 (𝜏)) 𝑑𝜏

= −∫

𝑡

𝑇
𝑥

𝑓 (𝑥 (𝜏) , 𝑥


(𝜏) , 𝑥


(𝜏)) 𝑑𝜏

− ∫

𝑡

𝑇
𝑥

𝑔 (𝑥 (𝜏) , 𝑥


(𝜏)) 𝑑𝜏

− 𝑥


(𝑡) + 𝑥


(𝑇
𝑥
) + 𝑎 [−𝑥



(𝑡) + 𝑥

(𝑇
𝑥
)]

+ ∫

𝑡

𝑇
𝑥

𝑝 (𝜏) 𝑑𝜏 (:= 𝐼 (𝑡)) .

(12)

By noting the assumption (ii) of Lemma 1 and the bound-
edness of solution 𝑥(𝑡), it follows that there exists a constant
𝑀
𝑥
for 𝑡 ≥ 𝑇

𝑥
such that

|𝐼 (𝑡)| ≤ 𝑀
𝑥
, that is,











∫

𝑡

𝑇
𝑥

ℎ (𝑥 (𝜏)) 𝑑𝜏











≤ 𝑀
𝑥
. (13)

Now let us assume that 𝑥(𝑡) does not converge to any root 𝑥
of ℎ(𝑥), that is,

lim sup
𝑡→∞

|𝑥 (𝑡) − 𝑥| > 0 (14)

and simultaneously,

ℎ (𝑥 (𝑡)) ≥ 0 or ℎ (𝑥 (𝑡)) ≤ 0 for 𝑡 ≥ 𝑇
𝑥
. (15)

Then,

𝐻(𝑡) := ∫

𝑡

𝑇
𝑥

ℎ (𝑥 (𝜏)) 𝑑𝜏, (𝑡 ≥ 𝑇
𝑥
) (16)
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evidently is a composed monotone function with a finite or
infinite limit for 𝑡 → ∞.

Since (13) implies that the “divergent case” can be disre-
garded, then it follows from (15) that not only

lim
𝑡→∞

∫

𝑡

𝑇
𝑥

|ℎ (𝑥 (𝜏))| 𝑑𝜏 = lim
𝑡→∞











∫

𝑡

𝑇
𝑥

ℎ (𝑥 (𝜏)) 𝑑𝜏











≤ 𝑀
𝑥

(17)

but also

lim inf
𝑡→∞

|𝑥 (𝑡) − 𝑥| = 0 (18)

holds, because otherwise if (i.e., lim inf
𝑡→∞

|𝑥(𝑡) − 𝑥| > 0)
(15) together with the fact that the roots of ℎ(𝑥) are isolated
would yield

lim inf
𝑡→∞

|ℎ (𝑥 (𝑡))| = lim inf
𝑡→∞

|ℎ (𝑥 (𝑡)) − ℎ (𝑥)| > 0, (19)

which is a contradiction to (17).
Thus, the estimates (14) and (18) imply that

lim sup
𝑡→∞

|ℎ (𝑥 (𝑡))| = lim sup
𝑡→∞

|ℎ (𝑥 (𝑡)) − ℎ (𝑥)| > 0, (20)

and consequently, there exist such a sequence {𝑡
𝑖
} ≥ 𝑇

𝑥
and

a constant �̃� > 0 such that (in what follows, 𝑑(𝑥, 𝑦) denotes
the distance between 𝑥 and 𝑦)

(𝛼) lim inf
𝑡→∞⇒𝑡

𝑖
→∞

𝑑(𝑡
𝑖
, 𝑡
𝑖−1

) > 0,

(𝛽) |ℎ(𝑥(𝑡
𝑖
))| ≥ �̃�

hold. Hence, the estimate

𝑀
𝑥
≥ lim
𝑡→∞

∫

𝑡

𝑡
1

|ℎ (𝑥 (𝜏))| 𝑑𝜏 =

∞

∑

𝑖=2











∫

𝑡
𝑖

𝑡
𝑖−1

ℎ (𝑥 (𝜏))











𝑑𝜏 (21)

implies that

lim sup
𝑡→∞⇒𝑡

𝑖
→∞

∫

𝑡
𝑖

𝑡
𝑖−1

|ℎ (𝑥 (𝑡))| 𝑑𝑡 = 0 (22)

or

𝐻
lim sup
𝑡→∞






𝑥


(𝑡)






≥ lim sup
𝑡→∞










𝑑ℎ (𝑥 (𝑡))

𝑑𝑥 (𝑡)

𝑥


(𝑡)










= lim sup
𝑡→∞










𝑑ℎ (𝑥 (𝑡))

𝑑𝑡










= ∞.

(23)

However, according to the assertion of Lemma 1, this case
is impossible, and that is why (𝑥(𝑡) − 𝑥) necessarily oscillates.
The remaining part of Lemma 2 is followed from the assertion

𝑥 (𝑡) ∈ 𝐶
(𝑛)

[0,∞) , lim
𝑡→∞






𝑥
(𝑛)

(𝑡)






< ∞,

lim
𝑡→∞

|𝑥 (𝑡)| < ∞ ⇒ lim
𝑡→∞

𝑥
(𝑘)

(𝑡) = 0,

(24)

where 𝑛 ≥ 2 is a natural number and 𝑘 = 1, . . . , (𝑛 − 1). This
completes the proof.

Lemma 3. In addition to the assumptions of Lemma 2, one
assumes that the following conditions hold:

(i) |𝑝

(𝑡)| ≤ 𝑃

,

(ii) lim sup
𝑡→∞

|𝑝(𝑡)| > 0,

(iii) max{|𝑓
𝑥
(𝑥, 𝑥

, 𝑥

)|, |𝑓
𝑥
(𝑥, 𝑥

, 𝑥

)|, |𝑓
𝑥
(𝑥, 𝑥


, 𝑥

)|} ≤

𝑏
0
,

(iv) max{|𝑔
𝑥
(𝑥, 𝑥

)|, |𝑔
𝑥
(𝑥, 𝑥

)|} ≤ 𝑐

0
,

where 𝑏
0
, 𝑐
0
, and 𝑃

 are suitable constants. Then, for every
bounded solution 𝑥(𝑡) of (1), there exists a root 𝑥 of ℎ(𝑥) such
that (𝑥(𝑡) − 𝑥) oscillates.

Proof. If Lemma 3 does not hold, then according to Lemma 2,
(11) holds and the fifth derivative of 𝑥(𝑡) satisfies

𝑥
(V)

(𝑡) = 𝑝


(𝑡) − 𝑎𝑥


(𝑡) − 𝑓
𝑥
(𝑥, 𝑥

, 𝑥

) 𝑥


(𝑡)

− 𝑓
𝑥
 (𝑥, 𝑥


, 𝑥

) 𝑥


(𝑡) − 𝑓
𝑥
 (𝑥, 𝑥


, 𝑥

) 𝑥


(𝑡)

− 𝑔
𝑥
(𝑥, 𝑥

) 𝑥


(𝑡) − 𝑔
𝑥
 (𝑥, 𝑥


) 𝑥


(𝑡)

− ℎ


(𝑥 (𝑡)) 𝑥


(𝑡) .

(25)

Thus, by the assumptions of Lemmas 2 and 3, we have






𝑥
(V)

(𝑡)






≤ 𝑃

+ 𝑎






𝑥


(𝑡)






+ 𝑏
0






𝑥


(𝑡)







+ (𝑏
0
+ 𝑐
0
)






𝑥


(𝑡)






+ (𝐻

+ 𝑏
0
+ 𝑐
0
)






𝑥


(𝑡)






.

(26)

Hence, by the boundedness of 𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡), and 𝑥


(𝑡),
it follows that there exists a constant𝐾 such that

lim sup
𝑡→∞






𝑥
(V)

(𝑡)






≤ 𝐾, (27)

which according to (24), gives the following estimates:

lim
𝑡→∞

𝑥 (𝑡) = 𝑥 ⇒ lim
𝑡→∞

ℎ (𝑥 (𝑡)) = ℎ (𝑥) = 0,

lim
𝑡→∞

𝑥
(𝑗)

(𝑡) = 0, 𝑗 = 1, 2, 3

(28)

or

lim sup
𝑡→∞





𝑝 (𝑡)






= lim sup
𝑡→∞






𝑥


+ 𝑎𝑥


+ 𝑓 (𝑥, 𝑥

, 𝑥

)

+ 𝑔 (𝑥, 𝑥

) + ℎ (𝑥)






= 0,

(29)

which is a contradiction to lim sup
𝑡→∞

|𝑝(𝑡)| > 0.This com-
pletes the proof of Lemma 3.

We now give the main result of this paper.
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3. Main Result

Theorem 4. One supposes that there exist positive constants
𝐻,𝐻, 𝑃, 𝑃, 𝑃

0
, and 𝑅 such that for |𝑥| > 𝑅 and 𝑡 ≥ 0 the fol-

lowing conditions hold:

(i) |ℎ(𝑥)| ≤ 𝐻, |ℎ(𝑥)| ≤ 𝐻
,

(ii) 0 < 𝑓(𝑥, 𝑥

, 𝑥

)/𝑥


≤ 𝑏 < ∞, (𝑥 ̸= 0), 𝑓 (𝑥, 𝑥

, 0) =

0,

(iii) 0 < 𝑔(𝑥, 𝑥

)/𝑥

≤ 𝑐 < ∞, (𝑥 ̸= 0), 𝑔(𝑥, 0) = 0

(iv) |𝑝(𝑡)| ≤ 𝑃, |𝑝

(𝑡)| ≤ 𝑃

, | ∫

𝑡

0
𝑝(𝜏)𝑑𝜏| ≤ 𝑃

0
,

lim supt→∞|𝑝(𝑡)| > 0,

(v) min[𝑑(𝑥
𝑘
, 𝑥
𝑘+1

), 𝑑(𝑥
𝑘
, 𝑥
𝑘−1

)] > ((𝐻 + 𝑃)/𝑐)(4/𝑎 +

2𝑎/𝑏 + 𝑏/𝑐) + 𝑃
0
/𝑐,

where 𝑥
𝑘
are roots of ℎ(𝑥) with ℎ


(𝑥
𝑘
) > 0 and 𝑥

𝑘−1
, 𝑥
𝑘+1

denote the couple of adjacent roots of 𝑥
𝑘
(𝑘 = 0, ±2, ±4, . . .).

Then, all solutions 𝑥(𝑡) of (1) are bounded, and for each of
them, there exists a root 𝑥 of ℎ(𝑥) such that (𝑥(𝑡)−𝑥) oscillates.

Proof. Let us assume, on the contrary, that 𝑥(𝑡) is an
unbounded solution of (1), that is,lim sup

𝑡→∞
𝑥(𝑡) = ∞.

Then, Lemma 1 implies the existence of a number𝑇
0
≥ 0 such

that 𝑡 ≥ 𝑇
0
,






𝑥


(𝑡)






≤ 𝐷

+ 𝜀
1
,






𝑥


(𝑡)






≤ 𝐷

+ 𝜀
2
,






𝑥


(𝑡)






≤ 𝐷


+ 𝜀
3
,

(30)

with 𝜀i > 0, (𝑖 = 1, 2, 3), small enough constants.
Let 𝑇
1

≥ 𝑇
0
be the last point with 𝑥(𝑇

1
) = 𝑥

𝑘
(𝑘-even)

and 𝑇
2
> 𝑇
1
the first point with 𝑥(𝑇

2
) = 𝑥
𝑘+1

. If we integrate
(1) from 𝑇

1
to 𝑡, 𝑇

1
≤ 𝑡 ≤ 𝑇

2
, we come to

𝑥


(𝑡) − 𝑥


(𝑇
1
) + 𝑎 [𝑥



(𝑡) − 𝑥

(𝑇
1
)]

+ ∫

𝑡

𝑇
1

𝑓 (𝑥 (𝜏) , 𝑥


(𝜏) , 𝑥


(𝜏)) 𝑑𝜏 + ∫

𝑡

𝑇
1

𝑔 (𝑥 (𝜏) , 𝑥


(𝜏)) 𝑑𝜏

+ ∫

𝑡

𝑇
1

ℎ (𝑥 (𝜏)) 𝑑𝜏 = ∫

𝑡

𝑇
1

𝑝 (𝜏) 𝑑𝜏.

(31)

Therefore, on replacing ∫

𝑡

𝑇
1

𝑓(𝑥(𝜏), 𝑥

(𝜏), 𝑥

(𝜏))𝑑𝜏 and

∫

𝑡

𝑇
1

𝑔(𝑥(𝜏), 𝑥

(𝜏))𝑑𝜏with 𝑏[𝑥


(𝑡)−𝑥


(𝑇
1
)] and 𝑐[𝑥(𝑡)−𝑥(𝑇

1
)],

respectively, for 𝑇
1

≤ 𝑡 ≤ 𝑇
2
, we have ℎ(𝑥(𝑡)) sgn𝑥(𝑡) ≥ 0.

Multiplying (31) by sgn𝑥(𝑡), we obtain

|𝑥 (𝑡)| ≤




𝑥 (𝑇
1
)




+

2

𝑐

[𝐷


+ 𝑎𝐷

+ 𝑏𝐷

+

𝑃
0

2

] + 𝜀, (32)

where 𝜀 > 0 is an arbitrary small constant, a contradiction
to 𝑥(𝑇

2
) = 𝑥

𝑘+1
. The remaining part of the theorem follows

fromLemma 3; therefore, we omit the details of the proof.The
proof is complete.

Example 5. Consider the differential equation

𝑥


(𝑡) + 2𝑥


(𝑡) +

5𝑥

(𝑡)

4 [1 + 𝑥
2
(𝑡) + 𝑥

2

(𝑡)]

+

𝑥

(𝑡)

4 + 𝑥
2
(𝑡)

+

1

100

sin𝑥 (𝑡) =

1

100

cos 𝑡,
(33)

where 𝑎 = 2, 𝑏 = 5/4, 𝑐 = 1/4, ℎ(𝑥(𝑡)) = (1/100) sin𝑥(𝑡),
𝑝(𝑡) = (1/100) cos 𝑡 with sin𝑥(𝑡) and cos 𝑡, for 𝑡 ≥ 0, being
oscillatory, and the equation

𝜆
3
+ 2𝜆
2
+

5

4

𝜆 +

1

4

= 0 (34)

has negative real roots. A simple calculation (with the earlier
notation) gives that𝐻 = 0.01,𝐻 = 0.01, 𝑃 = 0.01, 𝑃 = 0.01,
and 𝑃

0
= 0.01. From the condition (V) of the theorem, since

ℎ(𝑥(𝑡)) = (1/100) sin𝑥(𝑡), then the roots of ℎ(𝑥(𝑡)) are 𝑥
𝑘−1

=

(𝑘 − 1)𝜋, 𝑥
𝑘
= 𝑘𝜋, and 𝑥

𝑘+1
= (𝑘 + 1)𝜋, (𝑘 = 0, ±2, ±4, . . .),

where 𝑥
𝑘−1

and 𝑥
𝑘+1

are the couple of adjacent roots of 𝑥
𝑘
.

Thus,

min [𝑑 (𝑥
𝑘
, 𝑥
𝑘+1

) , 𝑑 (𝑥
𝑘
, 𝑥
𝑘−1

)] = 𝜋,

𝐻 + 𝑃

𝑐

(

4

𝑎

+

2𝑎

𝑏

+

𝑏

𝑐

) +

𝑃
0

𝑐

= 4 [(0.01 + 0.01) (2 +

16

5

+ 5) + 0.01] = 0.856 < 1.

(35)

Since 𝜋 > 1, then all the conditions of the theorem are
satisfied; thus, all solutions 𝑥(𝑡) of the above differential
equation and their derivatives up to order three are bounded,
and for each of them, there exists a root 𝑥 of ℎ(𝑥(𝑡)) such that
(𝑥(𝑡) − 𝑥) oscillates.
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