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Feasibility of a simple method to detect step height, slope angle, and trench width using four infrared-light-source PSD range
sensors is examined, and the reproducibility and accuracy of characteristic parameter detection are also examined. Detection error
of upward slope angle is within 2.5 degrees, while it is shown that the detection error of downward slope angle exceeding 20 degrees
is very large. In order to reduce such errors, a method to improve range-voltage performance of a range sensor is proposed, and
its availability is demonstrated. We also show that increase in trial frequency is a better way, although so as not to increase the
detection delay. Step height is identified with an error of +1.5 mm. It is shown that trench width cannot be reliably measured at this

time. It is suggested that an additional method is needed if we have to advance the field of obstacle detection.

1. Introduction

In the last decade, autonomous mobile robots have been
attracting wide attention, and technical levels have dramat-
ically advanced (see, for instance, [1]). Many robots for enter-
tainment, room cleaning, and other services have already
been developed [2]. To be really practical, robots must be able
to acquire environmental events and/or spatial information
of their environment. Some robots for entertainment have
optical sensors, ultrasonic sensors, touch sensors, and other
configurations which have been implemented. To create more
autonomous robots that suit future applications, the 2D
infrared range sensor [3] and CMOS-imager camera [4] are
being studied extensively. In these studies, sensor downsizing
is an ongoing concern. However, the newly developed sensors
are still expensive, and computing overhead is apt to increase.
This is a fundamental problem with the present research
roadmap.

2D path planning for mobile robots has also been studied
extensively [5, 6]; it is considered that combining a path
planning method [7, 8] with a potential-field method [9,
10] or a mapping technique is a promising approach. These
techniques are also needed for future self-learning robots.

On the other hand, recently, a passive intelligent walker is
proposed using a servo breaks [11]; in that trial, some obsta-
cles (such as steep slope and steps) are detected. However,
a user must change his/her front direction when the sensor
has found an obstacle. In addition, the robot does not guide
a better direction for walking to the user. Therefore, at least
now, blind persons cannot use the walker.

In this paper, how to detect and classify obstacles in
front of a robot without a camera [12-14] is investigated. The
purpose of this paper is (1) to realize a sensor block that can
detect the differences between step, slope, and trench, (2) to
form arithmetic procedures to estimate characteristic values
(step height, slope angle, and trench width), and (3) to pro-
pose algorithms that yield reliable judgments. Four infrared-
light-source (IR) PSD range sensors are used. Experiments
on the sensor block challenge its sensor functions with steps,
slopes, and/or trenches.

The electrical or mechanical configuration of the test-
ing robot is described in Section 2. Section 3 describes
the measurement accuracy of the IR PSD range sensors
used. Section 4 proposes algorithms that allow the robot to
detect obstacles and estimate characteristic values. Section 5
describes the results of an obstacle-detection test and the



FIGURE 1: Photo of an assembled robot for testing.
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FIGURE 2: Schematic of sensors’ layout.

reliability of obstacle recognition. Finally, the remaining
issues are summarized.

2. Mechanical and Electrical Architecture of
Testing Robot

A picture of the prototype robot to test sensor functions
is shown in Figure 1. The testing robot has two nondriven
caster wheels at the front and two motor-driven wheels at the
back whose rotation speeds are controlled by a motor-drive
circuit. The motor-driven wheels have four rotation modes
(brake, stop, forward, and back). Since these four functions
are implemented on the wheels independently, the robot can
move in any direction. Four range sensors are placed on the
front of the testing robot (PSDIL, PSDIR, PSD2L, and PSD2R,
resp.) to detect obstacles in front of the testing robot (see
Figure 2). These four sensors detect distances from the sensor
to the floor, and the microcontroller calculates characteristic
values, for example, the slope angle 0 when the obstacle is a
slope.

The electronic architecture of the testing robot is shown
in Figure 3. The circuit-mounted board includes a micro-
controller (ADuC7026 [15] produced by Analog Devices
Corp.) to give the robot a data processing function. The
microcontroller has input terminals for up to 12 single-ended
A/D converters and other analog processing functions. The
microcontroller receives analog signals from sensors through
its built-in A/D converters, logically assigns the environment
to one of the obstacles or no obstacle, and finally outputs the
characteristic value of the obstacle (slope angle 0 for the slope,
step height k1 for the step, and so on). The microcontroller
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FIGURE 3: Electronic control system for the motor driver and others.

on the MPU board calculates the obstacle’s dimensions and
transfers the data to a PC via the RC-232 interface.

3. Accuracy and Reproducibility of Output
Signal of PSD Sensor

The first step is to evaluate the potential of the IR range sensor
(GP2D12 [16] produced by SHARP Corp.) used to detect
obstacles; we focus here on the sensor performance attributes
not described in the commercial data sheet. This sensor unit
has the following features.

(1) Distance detection range (sensor to object) is 10 to
80 cm in the present case. When GP2Y0A02YK is
used, however, the distance detection range is 20 to
150 cm. In this experiment, we employed GP2D12
because of easy verification of proposal.

(2) IR source signal of one sensor interferes very little
with the functioning of the other sensors.

(3) The sensor is basically insensitive to object color and
reflectivity.

(4) The sensor is basically insensitive to room light.

(5) Distance from the sensor to the floor can be detected
even when the object surface is tilted. However, the
variation in range is significant when the tilt angle is
large.

(6) Low cost and small size.

Asjust described, the IR PSD sensor has many advantages
over other sensors. In some cases, however, there is a signif-
icant amount of electrical noise in the output signal when
we consider some applications that demand the detection
of slope angle. This suggests that how accurately the sensor
detects distance (XI, X2) before an accurate sensor circuit
block is designed has to be examined.

As an example, range data created by transforming the
analog signals of the IR PSD sensors are shown in Figures 4
and 5; Figure 4 shows the output of the microcontroller when
challenged with an 18 mm high upward step, and Figure 5
shows that for a 20-degree downward slope. In both cases, the
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FIGURE 4: Range data evolution when the robot is approaching an
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FIGURE 5: Range data evolution when the robot is approaching a
downward slope.

testing robot had a constant velocity on the floor. In Figures
4 and 5, the thin lines are the unprocessed digital range data
transferred from the microcontroller, while the bold lines are
the range data after being passed through a median filter
(window number N1 = 5) (see the appendix).

Figure 4 shows that the median filter is effective in
removing the impulse noise. It also shows that the filter yields
a time delay, resulting in a 5 mm local position difference in
the case of N1 = 5. The noise can be further reduced by
increasing N1, but at the cost of simultaneously increasing
the time delay. Because of this tradeoff, it is preferable to
adjust N1 to suit the application.

In Figure 5, the impulse noise is sufficiently removed at
short distances as well as in Figure 4, but not at distances
beyond 50 cm. This is due to the sensor’s performance
limitation [16]; when X1 > 50 cm, even a small voltage shift

of output signal of sensor results in a large variation in
range data. When the angle between the IR-light beam from
the sensor and the object surface increases, the IR signal
returned attenuates, and the influence of room light becomes
significant. This means that a downward slope yields a large
variation in the detected signal.

4. Method of Extracting Spatial Values

In Section 4.1, how the sensing circuit block identifies steps,
slopes, and trenches using the upper and lower sensors (PSD1
and PSD?2) is described. Section 4.2 describes the mathemat-
ical model that the sensing unit applies to the calculation
of step height, slope angle, or trench width. Section 4.3
details the results of experiments on the determination of step
height, slope angle, and trench width.

In this chapter, it is assumed that the testing robot directly
faces the obstacle (the width of which is taken to be effectively
infinite). Note that all the range data (X1L, X1R, X2L,
and X2R) displayed in the figures are the result of median
filtering. Results obtained assuming more practical situations
are shown in Section 5.

4.1. How to Classify Slopes, Steps, and Trenches. First, the
notations used in this section are explained. X1 and X2 stand
for the distances given by PSD1and PSD2, respectively. When
the testing robot runs on a flat floor, it is assumed that PSD1
and PSD2 yield distance data X1o and X2o, respectively.
In a practical situation, various noises in the data yielded
by the sensors should be taken account of. Accordingly,
we introduce positive threshold values of X1T and X2T to
improve the detection reproducibility of distance data when
determining whether the event (i.e., slope, step, or trench) has
occurred. When PSD1 outputs data satisfying the condition of
|X1-X1o| < X1T, the testing robot “thinks” that it is on a flat
floor. In this case, we say that S(PSD1) = “Flat”. When PSD1
outputs data satisfying the condition of [ X1-X1o| > X1T, the
sensing circuit block “thinks” that it may be facing a slope, a
step, or a trench. In this case, we say that S(PSDI) = “NON-F”.
In the present experiment, we empirically set X1T = 0.8 [cm]
and X1T = 0.5[cm] by taking account of the noise level
shown in Figures 4 and 5, respectively. For example, the
testing robot is running on a flat floor, when the “states”
output by the 4 sensors are “flat”, and we use the following
descriptions:

S(PSDIL) = “Flat”,
S(PSDIR) = “Flat”,

(1)
S(PSD2L) = “Flat”,

S (PSD2R) = “Flat”.

Next, how the sensing circuit block uses the trigonomet-
ric method shown in Figure 6 in order to extract geometrical
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FIGURE 6: How to classify slopes, steps, and trenches. Mathematical algorithms are shown.

parameters of different slopes, steps, and trenches from data
obtained is described.

(a) Flat Floor. When the sensing circuit block compares
the range data to the threshold value given in the previous
section, and PSDI1 and PSD2 output data satisfying the
condition of S(PSD1) = “FLAT” & S(PSD2) = “FLAT’, the
sensing circuit block “thinks” that it is on a flat floor (see
Figure 6(a)). The equivalent mathematical relationship can be
expressed as

IX1-Xlo| < X1T,  |X2-X20|<X2T.  (2)

(b) Downward Step. When PSD1 and PSD2 output data
satistying the following condition, the sensing circuit block
“thinks” that it is facing a downward step (see Figure 6(b)):

X1-Xlo>XI1T,  X2-X20>X2T,
(3)

|X1 - X1o| - XIT < |X2 — X20| + X2T.

(c) Upward Step. When PSD1 and PSD2 output data satisfying

the following condition, the sensing circuit block “thinks”
that it is facing an upward step (see Figure 6(c)):

IX1-Xlo| < XI1T,  X2-X20<-X2T.  (4)
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FIGURE 7: How to classify slopes, steps, and trenches. Characteristic parameter extraction method is shown.

(d) Trench. When PSD1 and PSD2 output data satisfying the
following condition, the sensing circuit block “thinks” that
it is facing a trench (see Figure 6(d)). In this case, the PSD
sensor receives the IR signal reflected from the “side wall of
the trench” or the IR signal reflected from the “bottom of
the trench” as shown in Figure 7(c). The algorithm in the
following form cannot distinguish these two cases:

|X1 - X1o| < X1T, X2 - X20 > X2T. (5)

Details are discussed later.

(e) Downward Slope. When PSD1 and PSD2 output data
satistying the following condition, the sensing circuit block
“thinks” that it is facing a down slope (see Figure 6(e)):

IX1-Xlo| > X1T,  |X2 - X20| > X2T,

(6)
X1-Xlo-XIT > X2 - X20 + X2T.

(f) Upward Slope. When PSDI1 and PSD2 output data satisfy-
ing the following condition, the sensing circuit block “thinks”
that it is facing an upward slope (see Figure 6(f)):

IX1-Xlo| > X1T,  |X2 - X20| > X2T,

7)
X1-Xlo-XIT < X2 - X20 + X2T.

4.2. Equations to Calculate Slope Angle, Step Height, and
Trench Width. Slope angle, step height, and trench width can
be calculated from range data (X1, X2). Figure 7 visualizes
the trigonometric techniques used.

(a) Step Height. Step height hl is calculated using (8). A
schematic is shown in Figure 7(a):

hl = (X20 - X2)sina, (8)

where « is the angle of sensor signal against a flat floor (here,
a = 45°). When hl < 0, a downward step is suggested, and
when Al > 0, an upward step is suggested.

(b) Slope Angle. Slope angle 0 is calculated using (9). A
schematic is shown in Figure 7(b):

(Xl—X2)>'

7 )

i
9=E—(x—arctan<



When 0 < 0, a downward slope is suggested, and when 6 > 0,
an upward slope is suggested.

(¢) Trench Width. When the robot faces a trench, the sensor
output differs between two cases: (i) the sensor signal is
reflected from the bottom of the trench and (ii) the sensor
signal is reflected from a side wall of the trench. Initially, the
sensing circuit block cannot judge which is correct. A possible
solution is to force the sensing circuit block to calculate two
dimensions, trench depth and trench width. Trench depth k1
is calculated using the following equation:

hl = (X20 - X2)sina. (10)
Trench width h2 is calculated by the next equation:
h2 = max {(X20 — X2) cos«}, 1)

where max{X} returns the maximal value of X.

Since all sensors are positioned so that their surfaces are
angled at 45° against a flat floor, calculated values of h1 and
h2 are identical. When the robot approaches the trench, the
judgment of whether it can cross the trench depends on the
diameter (D,,) of wheels of testing robot. Consider case (i).
When D, is much larger than the trench depth, the robot may
be able to cross the trench. Consider case (ii). When D,, is
much larger than the trench width, the robot can go over the
trench. Therefore, the robot can pass through the trench for
both cases, (i) and (ii), when hl or h2 is much smaller than
D,,. In other words, it is not necessary for us to distinguish
cases (i) and (ii); we can apply (10) to decide whether the
testing robot can go forward or not when the robot detects
a trench.

In practical applications, the sensors do not always yield
precise characteristic values to use the above equations
because of various noises (including external disturbance)
or spatial dispersion of the emitted IR signal. This suggests
the need for some additional method to guarantee the
accuracy or the reproducibility of the characteristic values
and judgment reliability; detail is given in Section 5.

4.3. Measurement Results: Step Height, Slope Angle, and Trench
Width. Measurement results of a step height for which the
testing robot should stop in front of a step are summarized
in Table 1; 1000 sensing trials were averaged in each event of
obstacle discovery, and the medial filter number (N1) was 5.
As is evident in Table 1, the variation of evaluated step height
h1 is very small; the difference between the maximal value
and the minimal value is about 3mm for the upward step
and about 6 mm for the downward step. We can see that the
present evaluation technique does not always yield accurate
data.

Measurement results of upward slope angle (6) are shown
in Table 2; 1000 sensing trials were averaged in each event of
obstacles, and the medial filter number was 5 or 21. In the
experiment, we assumed 3 cases for the horizontal distance
(d1) between the front edge of the testing robot and the
boundary of the flat floor and the slope, that is, 0 cm, 4 cm,
and 7 cm. The slope angles were 20°, 15°, and 10°. It can be
seen in Table 2 that the averaged value of 0 basically increases
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TABLE I: Step height evaluation results in units of cm. 1000 sensing
trials are averaged. The medial filter number (N1) is 5. The real step
height (A1) is 1.30 cm.

Upward step height Downward step
(cm) height (cm)
Mean value 1.30 -1.33
Max. value 1.45 -1.00
Min. value 118 -1.56
Variance 0.0057 0.0019

with d1. In this study, the slope angle evaluation algorithm
does not estimate distance d1, and so the robot estimates
characteristic values without stopping as it approaches the
obstacle, resulting in a slight drop in accuracy. It is also
seen in Table 2 that a large N1 value reduces the variation
in estimated values,although many trials of measurement
waste time before judgment. In addition, for N1 = 21, the
difference between the maximal value and the minimal value
is not always reduced.

Table 3 shows measurement results of downward slope
angle. As is evident in Table 3, the variation of measurement
results is very large in contrast to the upward slope values.
This suggests the need to improve judgment reliability for
practical applications.

5. Dynamic Detection of Obstacles in a
Test Road

In Sections 5.1 to 5.4, we describe an algorithm to be used in
practical situations. Section 5.5 details the accuracy of several
evaluations.

5.1 Logical Flow. A schematic flow showing how the testing
robot avoids obstacles is shown in Figure 8. First, when the left
or the right sensor state is “NON-F”, the testing robot changes
its position so that the front line of the testing robot keeps
being parallel to the border line of the obstacle and the flat
floor. Next, the testing robot approaches the border line, again
detects signals from the obstacle, and subsequently concludes
whether the obstacle facing it is a slope, step, or trench.
Finally, when the testing robot recognizes that the obstacle
is a step, it calculates the tentative step height, compares the
calculated value to the threshold value, and then concludes
whether it has to avoid the obstacle or not. When the testing
robot detects a slope or a trench, the testing robot traces the
same logical flow. As just described, in order to successfully
classify the obstacle and to get reliable characteristic values,
causes of the errors in detecting the signals from the obstacle
must be analyzed.

5.2. Aligning the Testing Robot to the Obstacle. In this section,
we describe how the testing robot positions itself in the
vicinity of the obstacle. For all obstacles, the testing robot
should directly face the obstacle to maximize the detection
accuracy; this is the most important point in detecting the
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TaBLE 2: Upward slope angle evaluation results in units of cm. 1000 sensing trials are averaged. The medial filter number (N1) is 5 or 21.

ﬁiiﬁirﬁ(lg\e]rl) Real slope angle (deg.)  dl1(cm)  Mean value (deg.)  Max. value (deg.)  Min. value (deg.)  Variance (deg.)
0.00 17.0 19.4 15.9 0.465
20.0 4.00 18.9 21.0 17.5 0.561
7.00 20.5 22.2 17.4 1.01
5 0.00 14.7 16.5 13.0 0.218
15.0 4.00 15.3 16.2 14.2 0.121
7.00 16.1 18.7 12.8 1.89
0.00 9.68 12.1 7.74 0.243
10.0 4.00 10.3 13.4 7.84 1.36
7.00 10.8 13.2 9.26 0.162
0.00 16.9 18.1 16.5 0.0951
20.0 4.00 19.7 20.5 18.9 0.110
7.00 19.3 22.2 18.4 0.284
21 0.00 14.6 15.3 13.0 0.104
15.0 4.00 14.8 17.6 13.5 0.873
7.00 15.5 16.3 14.8 0.129
0.00 9.80 10.5 9.11 0.0630
10.0 4.00 9.89 10.7 8.21 0.114
7.00 9.40 11.5 8.59 0.255

TaBLE 3: Downward slope angle evaluation results in units of cm. 1000 sensing trials are averaged. The medial filter number (N1) is 21.

Real slope angle (deg.) dl (cm) Mean value (deg.) Max. value (deg.) Min. value (deg.) Variance (deg.)

10.0 -19.9 -13.7 -23.2 2.06
-20.0 5.00 -18.9 -10.4 -25.4 7.69

2.00 -18.4 -10.4 -27.2 10.3

10.0 -14.6 -10.1 -18.0 1.41
-15.0 5.00 -14.2 -10.0 -21.7 3.76

2.00 -14.5 —-10.0 -19.8 4.35

10.0 -10.6 -7.55 -13.7 1.45
—-10.0 5.00 NA NA NA NA

2.00 NA NA NA NA

parameters of an obstacle. This process is detailed below (see
Figure 9).

(1) First, the testing robot approaches the obstacle,
receives range data, and examines whether the data
satisfies the condition S(PSD2L) = “NON-F” A
S(PSD2R) = “FLAT” (see Figure 9(a)).

(2) The testing robot moves forward slightly, again
receives range data, and examines whether the data
satisfies the condition S(PSD2L) = “NON-F” A
S(PSD2R) = “NON-F” (see Figure 9(b)).

(3) When both PSD2L and PSD2R detect the “NON-EF”

signals, the testing robot moves as follows (see Fig-
ure 9(¢)).

(i) When S(PSD2L) = “NON-F, for example, the
left motor reverses.

(ii) When S(PSD2L) = “FLAT”, the left motor idles.

(iii) When S(PSD2R) = “NON-F’;, the right motor
reverses.

(iv) When S(PSD2R) = “FLAT”, the right motor
idles.

The above algorithm ensures that the testing robot directly
faces the obstacle.

(4) When both motors stop, the algorithm has success-
tully terminated, and the testing robot approaches the
obstacle again.

In the detecting process from (1) to (2), when the time
interval of “‘NON-F” events of two sensors is longer than a
certain value, the testing robot turns around before reaching
the expected obstacle. In other words, the testing robot does
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TABLE 4: Successful trials in detecting slopes. In the detection of the slope angle, detected data are averaged with 100 trials.

Real slope angle (deg.) destléi'fieosrslf;l:te Mean value (deg.) Max. value (deg.) Min. value (deg.) Variance (deg.)

-20.0 100/100 -20.0 -18.3 -24.1 0.926

-10.0 100/100 -12.7 -11.4 -14.0 0.261

10.0 100/100 10.3 10.9 9.52 0.0748

20.0 100/100 21.4 22.3 20.1 0.168

not estimate the vertical offset when the incident angle is very
small.

The present algorithm yields a small degree of uncertainty
on the testing robot’s alignment due to the use of the threshold
values X1T and X2T. In this experiment, we found an
alignment error of up to 10°. Later, we evaluate the influence
of this alignment error on the determination of characteristic
parameters.

5.3. How to Classify Obstacles Using Sensor Pairs. First,
we explain how to classify slopes, steps, and trenches (see
Figure 8). Using the simple method described in Section 4,
the testing robot may, for example, incorrectly classify a
real slope as a step or a flat floor. This erroneous judgment
comes from sensor noise and relatively large threshold values
(X2T and X1T). When these threshold values are large, the
erroneous judgment becomes more common. To avoid this
difficulty, we force the testing robot to calculate characteristic
values repeatedly and to get the mean or median value. This
flow is described below.

(1) When the robot detects an object, it calculates the
characteristic values 20 times and stores these data in
memory.

(2) The robot classifies the obstacle according to the
highest frequency of classification after the 20 trials.

(3) When the frequency of “trench” exceeds 5 in the 20
trials, the testing robot classifies the obstacle as a
trench.

We have confirmed that this majority-decision process
reduces the frequency of erroneous judgment.

5.4. How to Calculate the Characteristic Values of a Specific
Obstacle. Here we describe a method for calculating the
characteristic values.

(1) When upward (or downward) step height k1 is calcu-
lated, the testing robot calculates the mean of 20 trials.

(2) When upward (or downward) slope angle 6 is calcu-
lated, the testing robot calculates the mean of 20 trials.

Next, when the testing robot stops, the testing robot gets
the data set of X1L, X1R, X2L, and X2R 200 times. After
determining the mean values of X1L, X1R, X2L, and X2R,
they are labeled X1L', X1R', X2L', and X2R’, respectively.
Finally, using values of X1L', X1R', X2L', and X2R’ and (9),
the testing robot calculates the downward slope angle 0. This
technique is very powerful in suppressing noise (as described

S(PSD2L) = “NON-F”
or

S(PSD2R) = “NON-F”

Alignment of robot

l

Recognition of obstacles

Calculation of a characteristic value

Judgment whether the robot should avoid

the obstacle or not

FIGURE 8: Algorithm for the robot to detect an obstacle and to avoid
it.

in Sections 3 and 4). This benefit incurs the cost a 5 sec. delay
in determining the downward slope angle. This limitation
stems from the delay time of the PSD range sensor used in this
study. We must employ a fast-processing PSD range sensor in
the future.

5.5. Evaluation Results of Characteristic Values. Tables 4 to 6
show the characteristic values yielded by the logical process
described in the previous section. Table 4 shows slope angle
values extracted from signals given by sensors mounted
on the testing robot; the offset value of sensor signals is
considered in calculating the characteristic values, and the
testing robot logically determines which obstacle has been
encountered. As a result, the testing robot showed a very few
errors in the classification of obstacles. Erroneous judgment,
however, sometimes takes place in case of a gentle slope,
which depends on threshold values of X1T and X2T. The
gentle slope sometimes gives the sensor a noisy signal that
cannot be easily detected as meaningful data; in this case,
the testing robot fails to correctly determine the slope angle.
Raising the values of X1T and X2T yields more conclusive
data by sacrificing the detectable range of slope angle.
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S(PSD2L) = “NON-F”
and and
S(PSD2R) = “FLAT”

(a)

S(PSD2L) = “NON-F”

S(PSD2R) = “NON-F”

S(PSD2L) = “FLAT”
and
S(PSD2L) = “FLAT”

(b) (c)

FIGURE 9: Front line alignment of the robot facing the obstacle.

Next, we discuss the accuracy of extracted slope angle
0. In the present experiment, the detectable range of slope
angle 0 is 20° to —10°, and the deviation of extracted slope
angle is at most 2.5°. At 6 = —20°, however, the uncertainty in
detected angle rises to 4°. When the angle of the sensor-light
incident on the object’s surface becomes small, the intensity
of reflected-light signal becomes very weak; this results in
a lower dynamic range in the sensor’s output signal. This is
basically the same phenomenon described in Section 3.

Since the sensor emits an infrared light signal, the
reflection rate of the light depends on the color of the
object’s surface. In addition, the sensor’s output attenuates as
the distance of the sensor from the object increases. When
the color of the object is dark, the sensor’s output falls as
does its dynamic range. As a result, it is usually difficult to
accurately detect the angle of a steep slope. One possible
way to remove this difficulty is to use a PSD sensor whose
distance-output-voltage characteristic is almost linear or to
widen the window of the median filter, although this would
increase the detection time.

Table 5 shows step height values that are recalculated by
the sensor module with some offset angle when the testing
robot approaches the step. Erroneous detection did not
occur. The detected step height was more accurate than that
described in Section 4, where the signal-filtering technique
was applied to the step-height detection. When the maximal
step height that forces the robot to back away is 13 mm, the
maximal value of calculated step height should be 11 mm
because the maximal variation in the output voltage signal of
the sensor is equivalent to the step height of 2 mm.

Table 6 shows trench-width values determined by the
testing robot; the offset value of sensor signals was considered
in calculating the characteristic values.

The basic algorithm used to detect a trench was described
in Section 3. When the testing robot approaches the trench

Trench

S(PSD2L) = “FLAT”
and
S(PSD2R) = “NON-F”

FI1GURE 10: How to detect a trench.

at an oblique angle (see Figure 10), the correction of trench
depth, used in the algorithm described in Section 5.1, can-
not be employed because the algorithm assumes a direct
approach to the trench. In this experiment, the testing robot
was limited to approaching the trench at nearly 90°. This
experiment was made on two trenches with different sizes.

As is seen in Table 6, when the trench width is reduced,
the frequency of erroneous judgment rises. One cause is
the incompleteness of the detection algorithm; the testing
robot incorrectly judges the trench as a flat floor. One way of
overcoming this difficulty is to reduce the values of X1T and
X2T. However, it raises the remaining electrical noise in the
output signal. Another approach is to increase the diameter
of the wheels of testing robot.

5.6. Advantage of the Method Proposed. Recently many
mathematical techniques are proposed for the purpose of
monitoring the changing environment [17], multirobot nav-
igation [18], motion tracking [19], self-collision avoidance
[20], blind juggler control [21], precise positioning [22],
distant control [23], and motion grammar description [24].
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TABLE 5: Successful trials in detecting steps. In the detection of the step height, detected data are averaged with 100 trials.
Real step height (cm) Succgssful Mean value (cm) Max. value (cm) Min. value (cm) Variance (cm)
detection rate
1.30 100/100 1.37 1.47 117 0.0017
-1.30 100/100 -1.21 -1.11 -1.33 0.0022

TABLE 6: Successful trials in detecting trenches. In the detection of the trench width, detected data are averaged with 100 trials.

Real trench dimension Succ.essful Mean value (cm) Max. value (cm) Min. value (cm) Variance (cm)
detection rate

1.30 (cm) x 1.30 (cm) 55/100 -0.94 -0.85 -1.26 0.0098

2.00 (cm) x 2.00 (cm) 90/100 ~1.67 ~1.24 -2.32 0.0310

In most proposals, the algorithm is complex [17-20], and/or
the time derivatives are applied to the parameter analysis
[20, 21]. The time derivative frequently yields extra noise in
the signal analysis [21]. On the other hand, the use of many
controllable degrees of freedom (DOF) [19, 20, 22] leads us to
alarge RMS of errors. Polynomial formalism for the position
control [23] requests many topological definitions to realize
reliable forward kinematics. Application of motion grammar
to robots [24] also requests many possible logical patterns to
avoid undesirable actions.

As is suggested in the previous articles, complex mechan-
ics and complex actions request complex algorithms, result-
ing in a high cost and much difficulty. We think that the
technique applied to some robots (cleaning robot, visitor-
guide robot, and so on) requests simplicity of electronics and
software from the cost of product. Therefore, the method
proposed here has an advantage from the point of view of
system volume and its cost.

6. Concluding Remarks

We have proposed a simple method for detecting the step
height, slope angle, and trench width using four PSD range
sensors (GP2D12) and have examined the reproducibility
and accuracy of characteristic parameter detection. Detection
error of upward slope angle is about 2.5°, while the detection
error for downward slope angles exceeding 20° is very large.
To reduce these errors, we have to use a range sensor
that offers better range-voltage performance, or we have to
increase the trial frequency so as not to increase the detection
delay. Step height is extracted with an error of +1.5 mm. The
current algorithm for trench width is not so accurate. It is
suggested that an additional method must be introduced
to advance the obstacle detection technique. However, this
study has demonstrated that obstacle detection is basically
possible without image processing.

Appendix
Median Filter Algorithm

In this paper, we used the following algorithm in order to
reduce the electrical noise in the original signal. First, we get

N datum points from the microcontroller. After sorting the
N data (D[1] to D[N]), we extract the maximal value, D
and the minimal value, D, ;,, from all data and order the data
set (n = 1 to N); thatis, D[1] = D, ,, and D[N] = D_;,.
Finally, we get D[N/2] as the medial value. Sets of D[N/2]
are plotted in Figures 4 and 5.

max?>
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