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The complete moment convergence of weighted sums for arrays of rowwise negatively associated
random variables is investigated. Some sufficient conditions for complete moment convergence
of weighted sums for arrays of rowwise negatively associated random variables are established.
Moreover, the results of Baek et al. (2008), are complemented. As an application, the complete
moment convergence of moving average processes based on a negatively associated random
sequences is obtained, which improves the result of Li et al. (2004).

1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables and, as usual, set Sn =
∑n

i=1 Xi, n ≥ 1. When
{Xn, n ≥ 1} are independent and identically distributed (i.i.d.), Baum and Katz [1] proved the
following remarkable result concerning the convergence rate of the tail probabilities P(|Sn| >
εn1/p) for any ε > 0.

Theorem A (see [1]). Let 0 < p < 2 and r ≥ p. Then

∞∑

n=1

n(r/p)−2P
(
|Sn| > εn1/p

)
< ∞ ∀ε > 0, (1.1)

if and only if E|X|r < ∞, where EX1 = 0 whenever 1 ≤ p < 2.

There is an interesting and substantial literature of investigation apropos of extending
the Baum-Katz theorems along a variety of different paths. One of these extensions is due

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208514672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Journal of Probability and Statistics

to Chow [2] who established the following refinement which is a complete moment conver-
gence result for sums of i.i.d. random variables.

TheoremB (see [2]). LetEX1 = 0, 1 ≤ p < 2, and r ≥ p. Suppose thatE[|X1|r+|X1| log(1+|X1|)] <
∞. Then

∞∑

n=1

n(r/p)−2−(1/p)E
(
|Sn| − εn1/p

)+
< ∞ ∀ε > 0. (1.2)

Recently, Baum-Katz theorem is extended to the case of dependence random variables.
Liang [3] obtained some general results on the complete convergence of weighted sums
of negatively associated random variables. Li and Zhang [4] showed complete moment
convergence for moving average processes under negative association as follows.

Theorem C (see [4]). Suppose that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a
sequence of real numbers with

∑∞
−∞ |ai| < ∞ and {Yi,−∞ < i < ∞} is a sequence of identically dis-

tributed and negatively associated random variables with EY1 = 0, EY 2
1 < ∞. Let l(x) > 0 be a slowly

varying function and 1 ≤ p < 2, r > 1 + (p/2). Then E|Y1|r l(|Y1|p) < ∞ implies that

∞∑

n=1

n(r/p)−2−(1/p)l(n)E
(
|Sn| − εn1/p

)+
< ∞, where Sn =

n∑

i=1

Xi, n ≥ 1. (1.3)

Kuczmaszewska [5] proposed a very general result for complete convergence of
rowwise negatively associated arrays of random variables which is stated in Theorem D.

Theorem D (see [5]). Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated random
variables and let {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Let {bn, n ≥ 1} be an increasing
sequence of positive integers and let {cn, n ≥ 1} be a sequence of positive real numbers. If for some
q > 2, 0 < t < 2 and any ε > 0 the following conditions are fulfilled:

(a)
∑∞

n=1 cn
∑bn

i=1 P{|aniXni| ≥ εb1/tn } < ∞,

(b)
∑∞

n=1 cnb
−q/t
n

∑bn
i=1 |ani|qE|Xni|qI(|aniXni| < εb1/tn ) < ∞,

(c)
∑∞

n=1 cnb
−q/t
n (

∑bn
i=1 |ani|2E|Xni|2I(|aniXni| < εb1/tn ))

q/2
< ∞,

then

∞∑

n=1

cnP

{

max
1≤k≤bn

∣
∣
∣
∣
∣

k∑

i=1

(
aniXni − aniEXniI

(
|aniXni| < εb1/tn

))
∣
∣
∣
∣
∣
> εb1/tn

}

< ∞. (1.4)

Baek et al. [6] discussed complete convergence of weighted sums for arrays of rowwise
negatively associated random variables and obtained the following results.
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Theorem E (see [6]). Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated random
variables with EXni = 0 and P{|Xni| > x} ≤ CP{|X| > x} for all n, i and x ≥ 0. Suppose that β ≥ −1,
and that {ani, i ≥ 1, n ≥ 1} is an array of constants such that

sup
i≥1

|ani| = O
(
n−r) for some r > 0, (1.5)

∞∑

i=1

|ani| = O(nα) for some α ∈ [0, r). (1.6)

(a) If α + β + 1 > 0 and there exists some δ > 0 such that α/r + 1 < δ ≤ 2, and s =
max(1 + ((α + β + 1)/r), δ), then, under E|X|s < ∞, one has

∞∑

n=1

nβP

{∣
∣
∣
∣
∣

∞∑

i=1

aniXni

∣
∣
∣
∣
∣
> ε

}

< ∞ ∀ε > 0. (1.7)

(b) If α + β + 1 = 0, then, under E|X| log(1 + |X|) < ∞, (1.7) remain true.

In this paper, the authors take the inspiration in [5, 6] and discuss the complete
moment convergence of weighted sums for arrays of rowwise negatively associated random
variables by applying truncation methods, which extend the results of [5, 6]. As an applica-
tion, the complete moment convergence of moving average processes based on a negatively
associated random sequences is obtained, which extend the result of Li and Zhang [4].

For the proof of the main results, we need to restate a few definitions and lemmas for
easy reference. Throughout this paper, C will represent positive constants whom their value
may change from one place to another. The symbol I(A) denotes the indicator function of A,
[x] indicate the maximum integer not larger than x. For a finite set B, the symbol #B denotes
the number of elements in the set B.

Definition 1.1. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
associated (abbreviated to NA in the following), if for every pair disjoint subsets A and B of
{1, 2, . . . , n} and any real nondecreasing coordinate-wise functions f1 on R

A and f2 on R
B

Cov
(
f1(Xi, i ∈ A), f2(Xi, i ∈ B)

) ≤ 0 (1.8)

whenever the covariance exists.
An infinite family of random variables {Xi,−∞ < i < ∞} is NA if every finite subfamily

is NA.

The definition of negatively associated was introduced by Alam and Saxena [7]
and was studied by Joag-Dev and Proschan [8] and Block et al. [9]. As pointed out and
proved by Joag-Dev and Proschan, a number of well-known multivariate distributions pos-
sess the NA property. Negative association has found important and wide applications in
multivariate statistical analysis and reliability. Many investigators discuss applications of
negative association to probability, stochastic processes, and statistics.
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Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically domi-
nated by a random variableX (write {Xi} ≺ X) if there exists a constant C, such that P{|Xn| >
x} ≤ CP{|X| > x} for all x ≥ 0 and n ≥ 1.

The following lemma is a well-known result.

Lemma 1.3. Let the sequence {Xn, n ≥ 1} of random variables be stochastically dominated by a
random variable X. Then for any p > 0, x > 0

E|Xn|pI(|Xn| ≤ x) ≤ C
[
E|X|pI(|X| ≤ x) + xpP{|X| > x}],

E|Xn|pI(|Xn| > x) ≤ CE|X|pI(|X| > x).
(1.9)

Definition 1.4. A real-valued function l(x), positive andmeasurable on [A,∞) for someA > 0,
is said to be slowly varying if limx→∞(l(xλ)/l(x)) = 1 for each λ > 0.

By the properties of slowly varying function, we can easily prove the following two
lemmas. Here we omit the details of the proof.

Lemma 1.5. Let l(x) > 0 be a slowly varying function as x → ∞.

(i) Ckr+1l(k) ≤∑k
n=1 n

rl(n) ≤ Ckr+1l(k) for any r > −1 and positive integer k.

(ii) Ckr+1l(k) ≤∑∞
n=k n

rl(n) ≤ Ckr+1l(k) for any r < −1 and positive integer k.

Lemma 1.6. Let X be a random variable and let l(x) > 0 be a slowly varying function as x → ∞.

(i) If α > 0, r > 0, β > −1, then E|X|α+((β+1)/r)l(|X|1/r) < ∞ if and only if
∑∞

n=1 n
βl(n)E|X|αI(|X| > nr) < ∞.

(ii) If α > 0, r > 0, β < −1, then E|X|α+((β+1)/r)l(|X|1/r) < ∞ if and only if
∑∞

n=1 n
βl(n)E|X|αI(|X| ≤ nr) < ∞.

The following lemma will play an important role in the proof of our main results. The
proof is according to Shao [10].

Lemma 1.7. Let {Xi, 1 ≤ i ≤ n} be a sequence of NA random variables with mean zero and E|Xi|q <
∞ for every 1 ≤ i ≤ n, q ≥ 2. Then

Emax
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

q

≤ C

⎛

⎝
n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎞

⎠. (1.10)

By monotone convergence and (1.10), we have the following lemma.

Lemma 1.8. Let {Xi, i ≥ 1} be a sequence of NA random variables with mean zero and E|Xi|q < ∞
for every i ≥ 1, q ≥ 2. Then

Emax
k≥1

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

q

≤ C

⎛

⎝
∞∑

i=1

E|Xi|q +
( ∞∑

i=1

EX2
i

)q/2
⎞

⎠. (1.11)
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Using Lemma 1.4, Lemma 1.5, and Theorem 2.11 in Sung [11], we obtain the following
lemmas.

Lemma 1.9. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NA random variables with E|Xni| <
∞ for 1 ≤ i ≤ n, n ≥ 1. Let {bn, n ≥ 1} be a sequence of real numbers. If for some q ≥ 2, the following
conditions are fulfilled:

(a)
∑∞

n=1 bn
∑n

i=1 E|Xni|I(|Xni| > 1) < ∞;

(b)
∑∞

n=1 bn
∑n

i=1 E|Xni|qI(|Xni| ≤ 1) < ∞;

(c)
∑∞

n=1 bn(
∑n

i=1 E|Xni|2I(|Xni| ≤ 1))q/2 < ∞.

Then

∞∑

n=1

bnE

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (1.12)

Lemma 1.10. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NA random variables with E|Xni| < ∞
for i ≥ 1, n ≥ 1. Let {bn, n ≥ 1} be a sequence of real numbers. If for some q > 2, the following
conditions are fulfilled:

(a)
∑∞

n=1 bn
∑∞

i=1 E|Xni|I(|Xni| > 1) < ∞;

(b)
∑∞

n=1 bn
∑∞

i=1 E|Xni|qI(|Xni| ≤ 1) < ∞;

(c)
∑∞

n=1 bn(
∑∞

i=1 E|Xni|2I(|Xni| ≤ 1))q/2 < ∞.

Then

∞∑

n=1

bnE

(

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (1.13)

2. Main Results

Now we state our main results. The proofs will be given in Section 3.

Theorem 2.1. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NA random variables with
EXni = 0 and stochastically dominated by a random variable X. Suppose that l(x) > 0 is a slowing
varying function and that {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of constants such that

sup
1≤i≤n

|ani| = O
(
n−r) for some r > 0, (2.1)

n∑

i=1

|ani| = O(nα) for some α ∈ [0, r). (2.2)
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(i) If α + β + 1 > 0 and there exists some δ > 0 such that (α/r) + 1 < δ ≤ 2, and s =
max(1 + ((α + β + 1)/r), δ), then E|X|sl(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (2.3)

(ii) If α + β + 1 = 0, assume also l(x) ≤ Cl(y) for all 0 < x < y. Then E|X| log(1 +
|X|)l(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (2.4)

Theorem 2.2. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NA random variables with EXni = 0
and stochastically dominated by a random variable X. Suppose that l(x) > 0 is a slowing varying
function and that {ani, i ≥ 1, n ≥ 1} is an array of constants such that

sup
i≥1

|ani| = O
(
n−r) for some r > 0, (2.5)

∞∑

i=1

|ani| = O(nα) for some α ∈ [0, r). (2.6)

(i) If α + β + 1 > 0 and there exists some δ > 0 such that (α/r) + 1 < δ ≤ 2, and s =
max(1 + (α + β + 1/r), δ). Then E|X|sl(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

(

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (2.7)

(ii) If α + β + 1 = 0, assume also l(x) ≤ Cl(y) for all 0 < x < y. Then E|X| log(1 +
|X|)l(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

(

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

)+

< ∞ ∀ε > 0. (2.8)

Remark 2.3. If (2.7) and (2.8) hold, then for all ε > 0, we have

∞∑

n=1

nβl(n)P

{

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
> ε

}

< ∞, (2.9)

∞∑

n=1

n−1l(n)P

{

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
> ε

}

< ∞. (2.10)

Thus, we improve the results of Baek et al. [6] to supreme value of partial sums.
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Remark 2.4. If α + β + 1 < 0, then E|X| < ∞ implies that (2.10) holds. In fact,

∞∑

n=1

nβl(n)E

[

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

]+

≤
∞∑

n=1

nβl(n)
∞∑

i=1

|ani|E|Xni| + ε
∞∑

n=1

nβl(n)

≤ C
∞∑

n=1

nβ+αl(n)E|X| + ε
∞∑

n=1

nβl(n) < ∞.

(2.11)

Corollary 2.5. Under the conditions of Theorem 2.2,

∞∑

n=1

nβl(n)E

[∣
∣
∣
∣
∣

∞∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

]+

< ∞ ∀ε > 0. (2.12)

Corollary 2.6. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NA random variables with
EXni = 0 and stochastically dominated by a random variable X. Suppose that l(x) > 0 is a slowing
varying function.

(1) Let p > 1 and 1 ≤ t < 2. If E|X|ptl(|X|t) < ∞, then

∞∑

n=1

np−2−(1/t)l(n)E

[

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xni

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞ ∀ε > 0. (2.13)

(2) Let 1 < t < 2. If E|X|tl(|X|t) < ∞, then

∞∑

n=1

n−1−(1/t)l(n)E

[

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xni

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞ ∀ε > 0. (2.14)

Theorem 2.7. Suppose that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a sequence of
real numbers with

∑∞
−∞ |ai| < ∞, and {Yi,−∞ < i < ∞} is a NA random sequence with EYi = 0 and

is stochastically dominated by a random variable Y . Let l(x) be a slowly varying function.

(1) Let 1 ≤ t < 2, r ≥ 1 + (t/2). If E|Y |r l(|Y |t) < ∞, then

∞∑

n=1

n(r/t)−2−(1/t)l(n)E

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞ ∀ε > 0. (2.15)

(2) Let 1 < t < 2. If E|Y |tl(|Y |t) < ∞, then

∞∑

n=1

n−1−(1/t)l(n)E

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞ ∀ε > 0. (2.16)
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Remark 2.8. Theorem 2.7 obtains the result about the complete moment convergence of
moving average processes based on an NA random sequence with different distributions.
The result of Li and Zhang [4] is a special case of Theorem 2.7 (1). Moreover, our result covers
the case of r = t, which was not considered by Li and Zhang.

3. Proofs of the Main Results

Proof of Theorem 2.1. Since ani = a+
ni − a−

ni, where a+
ni = max(ani, 0) and a−

ni = max(−ani, 0), we
have

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

)+

≤ E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

a+
niXni

∣
∣
∣
∣
∣
− ε

2

)+

+ E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

a−
niXni

∣
∣
∣
∣
∣
− ε

2

)+

. (3.1)

So, without loss of generality, we can assume ani > 0. From (2.1) and (2.2), without loss of
generality, we assume

sup
1≤i≤n

ani ≤ n−r ,
n∑

i=1

ani ≤ nα. (3.2)

Put bn = nβl(n), n = 1, 2, . . . in Lemma 1.9. Noting that α + β + 1 > 0, by Lemma 1.3 and
Lemma 1.7, we have

∞∑

n=1

nβl(n)
n∑

i=1

E|aniXni|I(|aniXni| > 1) ≤ C
∞∑

n=1

nβl(n)
n∑

i=1

Eani|X|I(ani|X| > 1)

≤ C
∞∑

n=1

nβl(n)
n∑

i=1

aniE|X|I(|X| > nr)

≤ C
∞∑

n=1

nβl(n)
n∑

i=1

aniE|X|I(|X| > nr)

≤ C
∞∑

n=1

nα+βl(n)E|X|I(|X| > nr)

≤ CE|X|1+((α+β+1)/r)l
(
|X|1/r

)
< ∞.

(3.3)

Since α < r, we can take some t such that 1 + (α/r) < t ≤ min(s, 2). Observe that

n∑

i=1

E(aniXni)2I(|aniXni| ≤ 1) ≤
n∑

i=1

E|aniXni|tI(|aniXni| ≤ 1)

≤ C
n∑

i=1

at
ni

= C
n∑

i=1

ania
t−1
ni ≤ Cnα−r(t−1).

(3.4)
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Hence, choosing q large enough such that β + (q/2)(α − r(t − 1)) < −1, we have

∞∑

n=1

nβl(n)

(
n∑

i=1

E|aniXni|2I(|aniXni| ≤ 1)

)q/2

≤ C
∞∑

n=1

nβ+(q/2)(α−r(t−1))l(n) < ∞. (3.5)

By (3.3) and Lemma 1.3, we have

∞∑

n=1

nβl(n)
n∑

i=1

E|aniXni|qI(|aniXni| ≤ 1)

≤ C
∞∑

n=1

nβl(n)
n∑

i=1

{
E|aniX|qI(|aniX| ≤ 1) + P(|aniX| > 1)

}

≤ C
∞∑

n=1

nβl(n)
n∑

i=1

{
E|aniX|qI(|aniX| ≤ 1) + E|aniX|I(|aniX| > 1)

}

≤ C
∞∑

n=1

nβl(n)
n∑

i=1

E|aniX|qI(|aniX| ≤ 1) + C.

(3.6)

Set Inj = {1 ≤ i ≤ n | (n(j + 1))−r < ani ≤ (nj)−r}, j = 1, 2, . . .. Then ∪j≥1Inj = {1, 2, . . . , n}. Note
also that for all k ≥ 1, n ≥ 1,

nα ≥
n∑

i=1

ani =
∞∑

j=1

∑

i∈Inj
ani ≥

∞∑

j=1

(
#Inj
)(
n
(
j + 1

))−r ≥ n−r
∞∑

j=k

(
#Inj
)(
j + 1

)−rq(k + 1)rq−r . (3.7)

Hence, we have

∞∑

j=k

(
#Inj
)
j−rq ≤ Cnα+rkr−rq. (3.8)

Note that

∞∑

n=1

nβl(n)
n∑

i=1

E|aniX|qI(|aniX| ≤ 1)

=
∞∑

n=1

nβl(n)
∞∑

j=1

∑

i∈Inj
E|aniX|qI(|aniX| ≤ 1)

≤
∞∑

n=1

nβl(n)
∞∑

j=1

#Inj
(
nj
)−rq

E|X|qI(|X| ≤ (n(j + 1
)r))
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=
∞∑

n=1

nβl(n)
∞∑

j=1

#Inj
(
nj
)−rq

E|X|qI(|X| ≤ (2n)r
)

+
∞∑

n=1

nβl(n)
∞∑

j=1

#Inj
(
nj
)−rq

n(j+1)∑

k=2n+1

E|X|qI((k − 1)r < |X| ≤ kr)

=: J1 + J2.

(3.9)

Choosing q large enough such that α + β + r − rq < −1, we obtain by Lemma 1.6 and (3.8) that

J1 =
∞∑

n=1

nβl(n)
∞∑

j=1

#Inj
(
nj
)−rq

E|X|qI(|X| ≤ (2n)r
)

≤
∞∑

n=1

nα+β+r−rql(n)E|X|qI(|X| ≤ (2n)r
) ≤ CE|X|1+((α+β+1)/r)l

(
|X|1/r

)
< ∞.

(3.10)

Noting that α + β > −1, by (3.8) and Lemma 1.5, we see

J2 =
∞∑

n=1

nβl(n)
∞∑

j=1

#Inj
(
nj
)−rq

n(j+1)∑

k=2n+1

E|X|qI((k − 1)r |X| ≤ kr)

≤
∞∑

n=1

nβ−rql(n)
∞∑

k=2n+1

E|X|qI((k − 1)r < |X| ≤ kr)
∞∑

j=[(k/n)−1]
#Inj j−rq

≤ C
∞∑

n=1

nβ−rql(n)
∞∑

k=2n+1

nα+r
(
k

n

)r−rq
E|X|qI((k − 1)r < |X| ≤ kr)

≤ C
∞∑

k=2

kr−rqE|X|qI((k − 1)r < |X| ≤ kr)
[k/2]∑

n=1

nα+βl(n)

≤ C
∞∑

k=2

kα+β+1+r−rql(k)E|X|qI((k − 1)r < |X| ≤ kr)

≤ CE|X|1+((α+β+1)/r)l
(
|X|1/r

)
< ∞.

(3.11)

From (3.6), (3.9), (3.10), and (3.11), we know that

∞∑

n=1

nβl(n)
n∑

i=1

E|aniXni|qI(|aniXni| ≤ 1) < ∞. (3.12)

By (3.3), (3.5), and (3.12), we see that (a), (b), and (c) in Lemma 1.9 with Xni replaced by
aniXni are fulfilled. Since {aniXni, 1 ≤ i ≤ n, n ≥ 1} is also an array of rowwise NA random
variables, by Lemma 1.9, we complete the proof of (2.3).
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Next, we prove (2.4). If α + β + 1 = 0, then
∑k

n=1 n
α+β ≤ C log(1 + n). Similarly for the

proof of (3.3), noting that l(x) ≤ Cl(y), 0 < x < y, we have

∞∑

n=1

nβl(n)
n∑

i=1

E|aniXni|I(|aniXni| > 1) ≤ C
∞∑

n=1

nα+βl(n)E|X|I(|X| > nr)

= C
∞∑

n=1

n−1l(n)E|X|I(|X| > nr)

= C
∞∑

n=1

n−1l(n)
∞∑

k=n

E|X|I(kr < |X| ≤ (k + 1)r
)

= C
∞∑

k=1

E|X|I(kr < |X| ≤ (k + 1)r
) k∑

n=1

n−1l(n)

≤ C
∞∑

k=1

log(1 + k)l(k)E|X|I(kr < |X| ≤ (k + 1)r
)

≤ CE|X| log
(
(1 + |X|)l|X|1/r

)
< ∞.

(3.13)

Taking q = 2, from the proof of (3.9), (3.10), and (3.11), we obtain

∞∑

n=1

nβl(n)
n∑

i=1

E|aniX|2I(|aniX| ≤ 1)

≤ C
∞∑

n=1

nα+β+r−2r l(n)E|X|2I(|X| ≤ (2n)r
)

+ C
∞∑

n=1

nα+βl(n)
∞∑

k=2n+1

kr−2rE|X|2I((k − 1)r < |X| ≤ kr)

= C
∞∑

n=1

n−1−r l(n)E|X|2I(|X| ≤ (2n)r
)

+ C
∞∑

n=1

n−1l(n)
∞∑

k=2n+1

k−rE|X|2I((k − 1)r < |X| ≤ kr)

≤ CE|X|l
(
|X|1/r

)
+ CE|X| log(1 + |X|)l

(
|X|1/r

)
< ∞.

(3.14)

Thus, for q = 2, (a), (b), and (c) in Lemma 1.9 with Xni replaced by aniXni are fulfilled. So
(2.4) holds.

Proof of Theorem 2.2. By Lemma 1.10, the rest of the proof is similar to that of Theorem 2.1 and
is omitted.
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Proof of Corollary 2.5. Note that

[∣
∣
∣
∣
∣

∞∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

]+

≤
[

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

]+

. (3.15)

Therefore, by (2.7) and (2.8), we prove that (2.12) holds.

Proof of Corollary 2.6. By applying Theorem 2.1, taking β = p − 2, ani = n−1/t for 1 ≤ i ≤ n, and
ani = 0 for i > n, then we obtain (2.13). Similarly, taking β = −1, ani = n−1/t for 1 ≤ i ≤ n, and
ani = 0 for i > n, we obtain (2.14) by Theorem 2.1.

Proof of Theorem 2.7. Let Xni = Yi and ani = n−1/t∑n
j=1 ai+j for all n ≥ 1, −∞ < i < ∞.

Since
∑∞

−∞ |ai| < ∞, we have supi|ani| = O(n−1/t) and
∑∞

i=−∞ |ani| = O(n1−1/t). By applying
Corollary 2.5, taking β = (r/t) − 2, r = 1/t, α = 1 − (1/t), we obtain

∞∑

n=1

n(r/t)−2−(1/t)l(n)E

[∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
− εn1/t

]+

=
∞∑

n=1

nβl(n)E

[∣
∣
∣
∣
∣

∞∑

i=−∞
aniXni

∣
∣
∣
∣
∣
− ε

]+

< ∞ ∀ε > 0.

(3.16)

Therefore, (2.15) and (2.16) hold.
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