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Coincidence point and common fixed point results with the concept of generalized altering
distance functions in complete ordered metric spaces are derived. These results generalize the
existing fixed point results in the literature. To illustrate our results and to distinguish them from
the existing ones, we equip the paper with examples. As an application, we study the existence of
a common solution to a system of integral equations.

1. Introduction and Preliminaries

The study of common fixed points of mappings satisfying certain contractive conditions
has been researched extensively by many mathematicians since fixed point theory plays a
major role in mathematics and applied sciences (see [1–40] and others). A new category
of contractive fixed point problems was addressed by Khan et al. [1]. In this work, they
introduced the notion of an altering distance function, which is a control function that alters
distance between two points in a metric space.

Definition 1.1 (see [1]). A function ϕ : [0,+∞) → [0,+∞) is called an altering distance
function if and only if

(i) ϕ is continuous,

(ii) ϕ is nondecreasing,

(iii) ϕ(t) = 0 ⇔ t = 0.

Khan et al. [1] proved the following result.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208514543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 International Journal of Mathematics and Mathematical Sciences

Theorem 1.2 (see [1]). Let (X, d) be a complete metric space, ϕ : [0,+∞) → [0,+∞) an altering
distance function, and T : X → X a self-mapping which satisfies the following inequality:

ϕ
(
d
(
Tx, Ty

)) ≤ cϕ(d(x, y)) (1.1)

for all x, y ∈ X and for some 0 < c < 1. Then T has a unique fixed point.

Putting ϕ(t) = t in Theorem 1.2, we retrieve immediately the Banach contraction
principle.

In 1997, Alber and Guerre-Delabriere [2] introduced the concept of weak contractions
in Hilbert spaces.

This concept was extended to metric spaces by Rhoades in [3].

Definition 1.3. A mapping T : X → X, where (X, d) is a metric space, is said to be weakly
contractive if and only if

d
(
Tx, Ty

) ≤ d(x, y) − ϕ(d(x, y)), ∀x, y ∈ X, (1.2)

where ϕ : [0,+∞) → [0,+∞) is an altering distance function.

Theorem 1.4 (see [3]). Let (X, d) be a complete metric space and T : X → X a weakly contractive
map. Then, T admits a unique fixed point.

Weak inequalities of the above type have been used to establish fixed point results
in a number of subsequent works, some of which are noted in [4–7, 20]. In [5], Choudhury
introduced the concept of a generalized altering distance function for three variables.

Definition 1.5 (see [5]). A function ϕ : [0,+∞) × [0,+∞) × [0,+∞) → [0,+∞) is said to be a
generalized altering distance function if and only if

(i) ϕ is continuous,

(ii) ϕ is nondecreasing in all the three variables,

(iii) ϕ(x, y, z) = 0 ⇔ x = y = z = 0.

In [5], Choudhury proved the following common fixed point theorem using altering
distances for three variables.

Theorem 1.6 (see [5]). Let (X, d) be a complete metric space and S, T : X → X two self mappings
such that the following inequality is satisfied:

Φ1
(
d
(
Sx, Ty

)) ≤ ψ1
(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

)) − ψ2
(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

))
(1.3)

for all x, y ∈ X, where ψ1 and ψ2 are generalized altering distance functions andΦ1(x) = ψ1(x, x, x).
Then S and T have a common fixed point.

In [31], Rao et al. generalized Theorem 1.6 for four mappings satisfying a generalized
contractive condition and used the following generalized altering distance function for four
variables.
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Definition 1.7 (see [31]). A function ϕ : [0,+∞)× [0,+∞)× [0,+∞)× [0,+∞) → [0,+∞) is said
to be a generalized altering distance function if and only if

(i) ϕ is continuous,

(ii) ϕ is nondecreasing in all the three variables,

(iii) ϕ(t1, t2, t3, t4) = 0 ⇔ t1 = t2 = t3 = t4 = 0.

Let Ψ4 denote the set of all functions ϕ satisfying (i)–(iii) in Definition 1.7.

Recently, there have been so many exciting developments in the field of existence
of fixed point in partially ordered sets (see [8–19, 21–36] and the references cited therein).
The first result in this direction was given by Turinici [36], where he extended the Banach
contraction principle in partially ordered sets. Ran and Reurings [33] presented some
applications of Turinici’s theorem to matrix equations. The obtained result by Turinici
was further extended and refined in [28–32]. Subsequently, Harjani and Sadarangani
[19] generalized their own results [18] by considering pair of altering functions (ψ, ϕ).
Nashine and Altun [21] and Nashine and Altun [22] generalized the results of Harjani
and Sadarangani [18, 19]. Also, Nashine and Altun [22] and Shatanawi and Samet [41]
worked for a pair (T, S) of weakly increasing mappings with respect to a third mapping R.
In another paper, Nashine et al. [24] prove coincidence point and common fixed point results
for mappings satisfying a contractive inequality which involves two generalized altering
distance functions for three variables in ordered complete metric spaces. As application, they
studied the existence of a common solution to a system of integral equations.

The aim of this paper is to generalize the results of Nashine et al. [24] in the sense of
four variables. We obtain coincidence point and common fixed point theorems in complete
ordered metric spaces for mappings satisfying a contractive condition which involves two
generalized altering distance functions in four variables. Presented theorems are ordered
version of Theorem 2.1 of Rao et al. [31] for three mappings. In addition, an application to
the study of the existence of a common solution to a system of integral equations is given.

2. Main Results

First we introduce some notations and definitions that will be used later.

2.1. Notations and Definitions

The following definition was introduced by Jungck in [37].

Definition 2.1 (see [37]). Let (X, d) be a metric space and f, g : X → X. If w = fx = gx,
for some x ∈ X, then x is called a coincidence point of f and g, and w is called a
point of coincidence of f and g. The pair {f, g} is said to be compatible if and only if
limn→+∞d(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limn→+∞fxn =
limn→+∞gxn = t for some t ∈ X.

LetX be a nonempty set and R : X → X a given mapping. For every x ∈ X, we denote
by R−1(x) the subset of X defined by

R−1(x) := {u ∈ X | Ru = x}. (2.1)
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Definition 2.2 (see [23]). Let (X,�) be a partially ordered set and T, S, R : X → X are given
mappings such that TX ⊆ RX and SX ⊆ RX. We say that S and T are weakly increasing with
respect to R if and only if, for all x ∈ X, we have

Tx � Sy, ∀y ∈ R−1(Tx),

Sx � Ty, ∀y ∈ R−1(Sx).
(2.2)

Remark 2.3. If R : X → X is the identity mapping (Rx = x for all x ∈ X), then S and T
are weakly increasing with respect to R which implies that S and T are weakly increasing
mappings. Note that the notion of weakly increasing mappings was introduced in [9] (also
see [17, 38]).

Example 2.4. Let X = {1, 2, 3} be endowed with the partial order � given by

�:= {(1, 1), (2, 2), (3, 3), (2, 3), (3, 1), (2, 1)}. (2.3)

Define the mappings T, S, R : X → X by

T1 = T3 = 1, T2 = 3,

S1 = S2 = S3 = 1,

R1 = 1, R2 = R3 = 2.

(2.4)

We will show that the mappings S and T are weakly increasing with respect to R.
Let x, y ∈ X such that y ∈ R−1(Tx). By the definition of S, we have Sy = 1. On the

other hand, Tx ∈ {1, 3} and (1, 1), (3, 1) ∈�. Thus, we have Tx � Sy for all y ∈ R−1(Tx).
Let x, y ∈ X such that y ∈ R−1(Sx). By the definitions of S and R, we have R−1(Sx) =

R−1(1) = {1}. Then we have y = 1. On the other hand, 1 = Sx � Ty = T1 = 1. Then, Sx � Ty
for all y ∈ R−1(Sx).

Thus, we proved that S and T are weakly increasing with respect to R.

Definition 2.5. LetX be a nonempty set. Then (X, d,�) is called an ordered metric space if and
only if:

(i) (X, d) is a metric space,

(ii) (X,�) is a partially ordered set.

2.2. Results

Our first result is the following.
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Theorem 2.6. Let (X, d,�) be an ordered complete metric space. Let T, S, R : X → X be given
mappings satisfying for every pair (x, y) ∈ X ×X such that Rx and Ry are comparable,

Φ1
(
d
(
Sx, Ty

)) ≤ ψ1

(
d
(
Rx,Ry

)
, d(Rx, Sx), d

(
Ry, Ty

)
,
1
2
[
d
(
Rx, Ty

)
+ d

(
Ry, Sx

)]
)

− ψ2

(
d
(
Rx,Ry

)
, d(Rx, Sx), d

(
Ry, Ty

)
,
1
2
[
d
(
Rx, Ty

)
+ d

(
Ry, Sx

)]
)
,

(2.5)

where ψ1 and ψ2 are generalized altering distance functions (in Ψ4) and Φ1(x) = ψ1(x, x, x, x). One
assumes the following hypotheses:

(i) T , S, and R are continuous,

(ii) TX ⊆ RX, SX ⊆ RX,

(iii) T and S are weakly increasing with respect to R,

(iv) the pairs {T, R} and {S,R} are compatible.

Then, T , S, and R have a coincidence point, that is, there exists u ∈ X such that Ru = Tu = Su.

Proof. Let x0 ∈ X be an arbitrary point. Since TX ⊆ RX, there exists x1 ∈ X such that Rx1 =
Tx0. Since SX ⊆ RX, there exists x2 ∈ X such that Rx2 = Sx1. Continuing this process, we can
construct a sequence {Rxn} in X defined by

Rx2n+1 = Tx2n, Rx2n+2 = Sx2n+1, ∀n ∈ N. (2.6)

We claim that

Rxn � Rxn+1, ∀n ∈ N. (2.7)

To this aim, we will use the increasing property of the mappings S and T with respect to R.
From (2.6), we have

Rx1 = Tx0 � Sy, ∀y ∈ R−1(Tx0). (2.8)

Since Rx1 = Tx0, then x1 ∈ R−1(Tx0), and we get

Rx1 = Tx0 � Sx1 = Rx2. (2.9)

Again,

Rx2 = Sx1 � Ty, ∀y ∈ R−1(Sx1). (2.10)
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Since x2 ∈ R−1(Sx1), we get

Rx2 = Sx1 � Tx2 = Rx3. (2.11)

Hence, by induction, (2.7) holds.
Without loss of the generality, we can assume that

Rxn /=Rxn+1, ∀n ∈ N. (2.12)

Now, we will prove our result on three steps.
Step 1. We claim that

lim
n→+∞

d(Rxn+1, Rxn+2) = 0. (2.13)

Putting x = x2n+1 and y = x2n, from (2.7) and the considered contraction (2.5), we have

Φ1(d(Rx2n+2, Rx2n+1)) = Φ1(d(Sx2n+1, Tx2n))

≤ ψ1

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Sx2n+1), d(Rx2n, Tx2n),

1
2
[d(Rx2n+1, Tx2n) + d(Rx2n, Sx2n+1)]

)

− ψ2

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Sx2n+1), d(Rx2n, Tx2n),

1
2
[d(Rx2n+1, Tx2n) + d(Rx2n, Sx2n+1)]

)

= ψ1

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)

− ψ2

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)
.

(2.14)

Suppose, for some n ∈ N, that

d(Rx2n+1, Rx2n+2) > d(Rx2n, Rx2n+1). (2.15)

Using (2.15) and a triangular inequality, we have

1
2
d(Rx2n, Rx2n+2) ≤ 1

2
(d(Rx2n, Rx2n+1) + d(Rx2n+1, Rx2n+2) < d(Rx2n+1, Rx2n+2). (2.16)
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Using this and (2.15) together with a property of the generalized altering function ψ1, we get

ψ1

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)

≤ Φ1(d(Rx2n+2, Rx2n+1)).

(2.17)

Hence, we obtain

Φ1(d(Rx2n+2, Rx2n+1))

≤ Φ1(d(Rx2n+2, Rx2n+1))

− ψ2

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)
.

(2.18)

This implies that

ψ2

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)
= 0, (2.19)

which yields that

d(Rx2n+1, Rx2n) = 0. (2.20)

Hence, we obtain a contradiction with (2.12). We deduce that

d(Rx2n+1, Rx2n+2) ≤ d(Rx2n, Rx2n+1), ∀n ∈ N. (2.21)

Similarly, putting x = x2n+1 and y = x2n+2, from (2.7) and the considered contraction (2.5), we
have

Φ1(d(Rx2n+2, Rx2n+3))

≤ ψ1

(
d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2, Rx2n+3),

1
2
d(Rx2n+1, Rx2n+3)

)

− ψ2

(
d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2, Rx2n+3),

1
2
d(Rx2n+1, Rx2n+3)

)
.

(2.22)

Suppose, for some n ∈ N, that

d(Rx2n+2, Rx2n+3) > d(Rx2n+1, Rx2n+2). (2.23)
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Then, by a triangular inequality, we have

1
2
d(Rx2n+1, Rx2n+3) ≤ 1

2
(d(Rx2n+1, Rx2n+2) + d(Rx2n+2, Rx2n+3)) < d(Rx2n+2, Rx2n+3). (2.24)

Hence, from this, (2.22), and (2.23), we obtain

Φ1(d(Rx2n+2, Rx2n+3))

≤ Φ1(d(Rx2n+2, Rx2n+3))

− ψ2

(
d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2, Rx2n+3),

1
2
d(Rx2n+1, Rx2n+3)

)
.

(2.25)

This implies that

ψ2

(
d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2, Rx2n+3),

1
2
d(Rx2n+1, Rx2n+3)

)
= 0,

(2.26)

which leads to

d(Rx2n+1, Rx2n+2) = 0. (2.27)

Hence, we obtain a contradiction with (2.12). We deduce that

d(Rx2n+1, Rx2n+2) ≥ d(Rx2n+2, Rx2n+3), ∀n ∈ N. (2.28)

Combining (2.21) and (2.28), we obtain

d(Rxn+1, Rxn+2) ≥ d(Rxn+2, Rxn+3), ∀n ∈ N. (2.29)

Then, {d(Rxn+1, Rxn+2)} is a nonincreasing sequence of positive real numbers. This implies
that there exists r ≥ 0 such that

lim
n→+∞

d(Rxn+1, Rxn+2) = r. (2.30)
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By (2.14), we have

Φ1(d(Rx2n+2, Rx2n+1)) ≤ ψ1

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)

− ψ2

(
d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1),

1
2
d(Rx2n, Rx2n+2)

)

≤ ψ1(d(Rx2n+1, Rx2n), d(Rx2n, Rx2n+1), d(Rx2n, Rx2n+1),

d(Rx2n, Rx2n+1))

− ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1), 0)

= Φ1(d(Rx2n, Rx2n+1))

− ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2),d(Rx2n, Rx2n+1), 0).

(2.31)

Letting n → +∞ in (2.31) and using the continuities of Φ1 and ψ2, we obtain

Φ1(r) ≤ Φ1(r) − ψ2(r, r, r, 0), (2.32)

which implies that ψ2(r, r, r, 0) = 0, so r = 0. Hence

lim
n→+∞

d(Rxn+1, Rxn+2) = 0. (2.33)

Hence, (2.13) is proved.
Step 2. We claim that {Rxn} is a Cauchy sequence.

From (2.13), it will be sufficient to prove that {Rx2n} is a Cauchy sequence. We proceed
by negation and suppose that {Rx2n} is not a Cauchy sequence. Then, there exists ε > 0 for
which we can find two sequences of positive integers {m(i)} and {n(i)} such that, for all
positive integer i,

n(i) > m(i) > i, d
(
Rx2m(i), Rx2n(i)

) ≥ ε, d
(
Rx2m(i), Rx2n(i)−2

)
< ε. (2.34)

From (2.34) and using a triangular inequality, we get

ε ≤ d(Rx2m(i), Rx2n(i)
)

≤ d(Rx2m(i), Rx2n(i)−2
)
+ d

(
Rx2n(i)−2, Rx2n(i)−1

)
+ d

(
Rx2n(i)−1, Rx2n(i)

)

< ε + d
(
Rx2n(i)−2, Rx2n(i)−1

)
+ d

(
Rx2n(i)−1, Rx2n(i)

)
.

(2.35)
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Letting i → +∞ in the previous inequality and using (2.13), we obtain

lim
i→+∞

d
(
Rx2m(i), Rx2n(i)

)
= ε. (2.36)

Again, a triangular inequality gives us

∣
∣d
(
Rx2n(i), Rx2m(i)−1

) − d(Rx2n(i), Rx2m(i)
)∣∣ ≤ d(Rx2m(i)−1, Rx2m(i)

)
. (2.37)

Letting i → +∞ in the above inequality and using (2.13) and (2.36), we get

lim
i→+∞

d
(
Rx2n(i), Rx2m(i)−1

)
= ε. (2.38)

On the other hand, we have

d
(
Rx2n(i), Rx2m(i)

) ≤ d
(
Rx2n(i), Rx2n(i)+1

)
+ d

(
Rx2n(i)+1, Rx2m(i)

)

= d
(
Rx2n(i), Rx2n(i)+1

)
+ d

(
Tx2n(i), Sx2m(i)−1

)
.

(2.39)

Then, from (2.13), (2.36), and the continuity of Φ1, we get by letting i → +∞ in the above
inequality

Φ1(ε) ≤ lim
i→+∞

Φ1
(
d
(
Sx2m(i)−1, Tx2n(i)

))
. (2.40)

Now, using the considered contractive condition (2.5) for x = x2m(i)−1 and y = x2n(i), we have

Φ1
(
d
(
Sx2m(i)−1, Tx2n(i)

)) ≤ ψ1

(
d
(
Rx2m(i)−1, Rx2n(i)

)
, d

(
Rx2m(i)−1, Rx2m(i)

)
,

d
(
Rx2n(i), Rx2n(i)+1

)
,

1
2
[
d
(
Rx2m(i)−1, Rx2n(i)+1

)
+ d

(
Rx2n(i), Rx2m(i)

)]
)

− ψ2

(
d
(
Rx2m(i)−1, Rx2n(i)

)
, d

(
Rx2m(i)−1, Rx2m(i)

)
,

d
(
Rx2n(i), Rx2n(i)+1

)
,

1
2
[
d
(
Rx2m(i)−1, Rx2n(i)+1

)
+ d

(
Rx2n(i), Rx2m(i)

)]
)
.

(2.41)

Then, from (2.13), (2.38), and the continuities of ψ1 and ψ2, we get by letting i → +∞ in the
above inequality

lim
i→+∞

Φ1
(
d
(
Sx2m(i)−1, Tx2n(i)

)) ≤ ψ1(ε, 0, 0, ε) − ψ2(ε, 0, 0, ε) ≤ Φ1(ε) − ψ2(ε, 0, 0, ε). (2.42)
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Now, combining (2.40) with the previous inequality, we get

Φ1(ε) ≤ Φ1(ε) − ψ2(ε, 0, 0, ε), (2.43)

which implies that ψ2(ε, 0, 0, ε) = 0, that is a contradiction since ε > 0. We deduce that {Rxn}
is a Cauchy sequence.
Step 3. We claim existence of a coincidence point.

Since {Rxn} is a Cauchy sequence in the complete metric space (X, d), there exists
u ∈ X such that

lim
n→+∞

Rxn = u. (2.44)

From (2.44) and the continuity of R, we get

lim
n→+∞

R(Rxn) = Ru. (2.45)

By the triangular inequality, we have

d(Ru, Tu) ≤ d(Ru,R(Rx2n+1)) + d(R(Tx2n), T(Rx2n)) + d(T(Rx2n), Tu). (2.46)

On the other hand, we have

Rx2n −→ u, Tx2n −→ u as n → +∞. (2.47)

Since R and T are compatible mappings, this implies that

lim
n→+∞

d(R(Tx2n), T(Rx2n)) = 0. (2.48)

Now, from the continuity of T and (2.44), we have

lim
n→+∞

d(T(Rx2n), Tu) = 0. (2.49)

Combining (2.45), (2.48), and (2.49) and letting n → +∞ in (2.46), we obtain

d(Ru, Tu) ≤ 0, (2.50)

that is,

Ru = Tu. (2.51)

Again, by a triangular inequality, we have

d(Ru, Su) ≤ d(Ru,R(Rx2n+2)) + d(R(Sx2n+1), S(Rx2n+1)) + d(S(Rx2n+1), Su). (2.52)
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On the other hand, we have

Rx2n+1 −→ u, Sx2n+1 −→ u as n −→ +∞. (2.53)

Since R and S are compatible mappings, this implies that

lim
n→+∞

d(R(Sx2n+1), S(Rx2n+1)) = 0. (2.54)

Now, from the continuity of S and (2.44), we have

lim
n→+∞

d(S(Rx2n+1), Su) = 0. (2.55)

Combining (2.45), (2.54), and (2.55) and letting n → +∞ in (2.52), we obtain

d(Ru, Su) ≤ 0, (2.56)

that is,

Ru = Su. (2.57)

Finally, from (2.51) and (2.57), we have

Tu = Ru = Su, (2.58)

that is, u is a coincidence point of T , S, and R. This makes end to the proof.

In the next theorem, we omit the continuity hypotheses satisfied by T , S, and R.

Definition 2.7. Let (X, d,�) be a partially ordered metric space. We say that X is regular if and
only if the following hypothesis holds: if {zn} is a nondecreasing sequence in X with respect
to � such that zn → z ∈ X as n → +∞, then zn � z for all n ∈ N.

Now, our second result is the following.

Theorem 2.8. Let (X, d,�) be an ordered complete metric space. Let T, S, R : X → X be given
mappings satisfying for every pair (x, y) ∈ X ×X such that Rx and Ry are comparable,

Φ1
(
d
(
Sx, Ty

)) ≤ ψ1

(
d
(
Rx,Ry

)
, d(Rx, Sx), d

(
Ry, Ty

)
,
1
2
[
d
(
Rx, Ty

)
+ d

(
Ry, Sx

)]
)

− ψ2

(
d
(
Rx,Ry

)
, d(Rx, Sx), d

(
Ry, Ty

)
,
1
2
[
d
(
Rx, Ty

)
+ d

(
Ry, Sx

)]
)
,

(2.59)
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where ψ1 and ψ2 are generalized altering distance functions and Φ1(x) = ψ1(x, x, x, x). We assume
the following hypotheses:

(i) X is regular,

(ii) T and S are weakly increasing with respect to R,

(iii) RX is a complete subspace of (X, d),

(iv) TX ⊆ RX, SX ⊆ RX.

Then, T , S, and R have a coincidence point.

Proof. Following the proof of Theorem 2.6, we have {Rxn} is a Cauchy sequence in (RX, d).
Since RX is a complete, there exists u = Rv, v ∈ X such that

lim
n→+∞

Rxn = u = Rv. (2.60)

Since {Rxn} is a nondecreasing sequence andX is regular, it follows from (2.60) thatRxn � Rv
for all n ∈ N. Hence, we can apply the contractive condition (2.5). Then, for x = v and y = x2n,
we obtain

Φ1(d(Sv,Rx2n+1)) = Φ1(d(Sv, Tx2n))

≤ ψ1

(
d(Rv,Rx2n), d(Rv, Sv), d(Rx2n, Rx2n+1),

1
2
[d(Rv, Tx2n) + d(Rx2n, Sv)]

)

− ψ2

(
d(Rv,Rx2n), d(Rv, Sv), d(Rx2n, Rx2n+1),

1
2
[d(Rv, Tx2n) + d(Rx2n, Sv)]

)
.

(2.61)

Letting n → +∞ in the above inequality and using (2.13), (2.60), and the properties of ψ1 and
ψ2, we obtain

Φ1(d(Sv,Rv)) ≤ ψ1

(
0, d(Rv, Sv), 0,

1
2
d(Rv, Sv)

)
− ψ2

(
0, d(Rv, Sv), 0,

1
2
d(Rv, Sv)

)

≤ Φ1(d(Sv,Rv)) − ψ2

(
0, d(Rv, Sv), 0,

1
2
d(Rv, Sv)

)
.

(2.62)

This implies that ψ2(0, d(Rv, Sv), 0, (1/2)d(Rv, Sv)) = 0, which gives us that d(Rv, Sv) = 0,
that is,

Rv = Sv. (2.63)
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Similarly, for x = x2n+1 and y = v, we obtain

Φ1(d(Rx2n+2, Tv)) = Φ1(d(Sx2n+1, Tv))

≤ ψ1

(
d(Rx2n+2, Rv), d(Rx2n+1, Rx2n+2), d(Rv, Tv),

1
2
[d(Rx2n+1, Tv) + d(Rv, Sx2n+1)]

)

− ψ2

(
d(Rx2n+2, Rv), d(Rx2n+1, Rx2n+2), d(Rv, Tv),

1
2
[d(Rx2n+1, Tv) + d(Rv, Sx2n+1)]

)
.

(2.64)

Letting n → +∞ in the above inequality, we get

Φ1(d(Rv, Tv)) ≤ ψ1

(
0, 0, d(Rv, Tv),

1
2
d(Rv, Tv)

)
− ψ2

(
0, 0, d(Rv, Tv),

1
2
d(Rv, Tv)

)

≤ Φ1(d(Rv, Tv)) − ψ2

(
0, 0, d(Rv, Tv),

1
2
d(Rv, Tv)

)
.

(2.65)

This implies that ψ2(0, 0, d(Rv, Tv), (1/2)d(Rv, Tv)) = 0, and then,

Rv = Tv. (2.66)

Now, combining (2.63) and (2.66), we obtain

Rv = Tv = Sv. (2.67)

Hence, v is a coincidence point of T , S, and R. This makes end to the proof.

Now, we give a sufficient condition that assures the uniqueness of the common
coincidence point of {T, R} and {S,R}.

Theorem 2.9. Under the hypotheses of Theorem 2.6 (resp., Theorem 2.8) and suppose that (SX,�)
is a totally ordered set and S is one-to-one mapping, then one obtains a unique common coincidence
point of {T, R} and {S,R}.

Proof. Following the proof of Theorem 2.6 (resp., Theorem 2.8), the set of common
coincidence points of {T, R} and {S,R} is nonempty. Let μ, ν ∈ Xbe two common coincidence
points of {T, R} and {S,R}, that is,

Tμ = Rμ = Sμ, Tν = Rν = Sν. (2.68)
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This implies that Rμ,Rν ∈ SX, and then, Rμ and Rν are comparable with respect to �. Then,
we can apply the contractive condition (2.5). We have

Φ1
(
d
(
Sμ, Tν

)) ≤ ψ1

(
d
(
Rμ,Rν

)
, d

(
Rμ, Sμ

)
, d(Rν, Tν),

1
2
[
d
(
Rμ, Tν

)
+ d

(
Rν, Sμ

)]
)

− ψ2

(
d
(
Rμ,Rν

)
, d

(
Rμ, Sμ

)
, d(Rν, Tν),

1
2
[
d
(
Rμ, Tν

)
+ d

(
Rν, Sμ

)]
)

= ψ1
(
d
(
Sμ, Tν

)
, 0, 0, d

(
Sμ, Tν

)) − ψ2
(
d
(
Sμ, Tν

)
, 0, 0, d

(
Sμ, Tν

))

≤ Φ1
(
d
(
Sμ, Tν

)) − ψ2
(
d
(
Sμ, Tν

)
, 0, 0, d

(
Sμ, Tν

))
.

(2.69)

This implies that ψ2(d(Sμ, Tν), 0, 0, d(Sμ, Tν)), which gives us that d(Sμ, Tν) = 0, that is,
Sμ = Tν. From (2.68), we get Sμ = Sν. Since S is one-to-one, we have μ = ν. This makes end
to the proof.

Now, it is easy to state a corollary of Theorem 2.6 or Theorem 2.8 involving
contractions of integral type.

Corollary 2.10. Let R, S and T satisfy the conditions of Theorem 2.6 or Theorem 2.8, except that
condition (2.5) is replaced by the following: there exists a positive Lebesgue integrable function u on
R+ such that

∫ε
0 u(t)dt > 0 for each ε > 0 and that

∫Φ1(d(Sx,Ty))

0
u(t)dt ≤

∫ψ1(d(Rx,Ry),d(Rx,Sx),d(Ry,Ty),(1/2)[d(Rx,Ty)+d(Ry,Sx)])

0
u(t)dt

−
∫ψ2(d(Rx,Ry),d(Rx,Sx),d(Ry,Ty),(1/2)[d(Rx,Ty)+d(Ry,Sx)])

0
u(t)dt.

(2.70)

Then, T , S, and R have a coincidence point.

If R : X → X is the identity mapping, we can deduce easily the following common
fixed point results.

The next result is an immediate consequence of Theorem 2.6.

Corollary 2.11. Let (X, d,�) be an ordered complete metric space. Let T, S : X → X be given
mappings satisfying for every pair (x, y) ∈ X ×X such that x and y are comparable,

Φ1
(
d
(
Sx, Ty

)) ≤ ψ1

(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

)
,
1
2
[
d
(
x, Ty

)
+ d

(
y, Sx

)]
)

− ψ2

(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

)
,
1
2
[
d
(
x, Ty

)
+ d

(
y, Sx

)]
)
,

(2.71)
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where ψ1 and ψ2 are generalized altering distance functions and Φ1(x) = ψ1(x, x, x, x). One assumes
the following hypotheses:

(i) T and S are continuous,

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point, that is, there exists u ∈ X such that u = Tu = Su.

The following result is an immediate consequence of Theorem 2.8.

Corollary 2.12. Let (X, d,�) be an ordered complete metric space. Let T, S : X → X be given
mappings satisfying for every pair (x, y) ∈ X ×X such that x and y are comparable,

Φ1
(
d
(
Sx, Ty

)) ≤ ψ1

(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

)
,
1
2
[
d
(
x, Ty

)
+ d

(
y, Sx

)]
)

− ψ2

(
d
(
x, y

)
, d(x, Sx), d

(
y, Ty

)
,
1
2
[
d
(
x, Ty

)
+ d

(
y, Sx

)]
)
,

(2.72)

where ψ1 and ψ2 are generalized altering distance functions and Φ1(x) = ψ1(x, x, x, x). One assume
the following hypotheses:

(i) X is regular,

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point.

Now, we give some examples to support our results.

Example 2.13. Let X = {4, 5, 6} be endowed with the usual metric d(x, y) = |x − y| for all
x, y ∈ X, and �:= {(4, 4), (5, 5), (6, 6), (6, 4)}. Consider the mappings

S = T =
(
4 5 6
4 6 4

)
, R =

(
4 5 6
4 5 6

)
. (2.73)

We define the functions ψ1, ψ2 : [0,+∞)4 → [0,+∞) by

ψ1(t1, t2, t3, t4) =
1
4
(t1 + t2 + t3 + t4),

ψ2(t1, t2, t3, t4) =
1
16

(t1 + t2 + t3 + t4).

(2.74)

Clearly, Φ1(t) = t for all t ≥ 0. Now, we will check that all the hypotheses required by
Theorem 2.8 are satisfied.

(i) X is regular.
Let {zn} be a nondecreasing sequence in X with respect to � such that zn → z ∈ X as

n → +∞. We have zn � zn+1 for all n ∈ N.

(a) If z0 = 4, then z0 = 4 � z1. From the definition of �, we have z1 = 4. By induction,
we get zn = 4 for all n ∈ N and z = 4. Then, zn � z for all n ∈ N.
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(b) If z0 = 5, then z0 = 5 � z1. From the definition of �, we have z1 = 5. By induction,
we get zn = 5 for all n ∈ N and z = 5. Then, zn � z for all n ∈ N.

(c) If z0 = 6, then z0 = 6 � z1. From the definition of �, we have z1 ∈ {6, 4}. By
induction, we get zn ∈ {6, 4} for all n ∈ N. Suppose that there exists p ≥ 1 such that
zp = 4. From the definition of �, we get zn = zp = 4 for all n ≥ p. Thus, we have
z = 4 and zn � z for all n ∈ N. Now, suppose that zn = 6 for all n ∈ N. In this case,
we get z = 6 and zn � z for all n ∈ N.

Thus, we proved that, in all cases, we have zn � z for all n ∈ N. Then, X is regular.
(ii) T and S are weakly increasing.
Since S = T , we have to check that Tx � T(Tx) for all x ∈ X.
For x = 4, we have

T4 = 4 � T(T4) = T4 = 4. (2.75)

For x = 5, we have

T5 = 6 � T(T5) = T6 = 4. (2.76)

For x = 6, we have

T6 = 4 � T(T6) = T4 = 4. (2.77)

Thus, we proved that T and S are weakly increasing.
On the other hand, it is very easy to show that (2.5) is satisfied for all x, y ∈ X such

that Rx � Ry.
Now, all the hypotheses of Theorem 2.8 are satisfied. Then R, S, and T have a

coincidence point u = 4.
Note that inequality (2.5) is not satisfied for x = 4 and y = 5. Indeed,

ψ1

(
d(R4, R5), d(R4, S4), d(R5, T5),

1
2
[d(R4, T5) + d(R5, S4)]

)

− ψ2

(
d(R4, R5), d(R4, S4), d(R5, T5),

1
2
[d(R4, T5) + d(R5, S4)]

)

= ψ1

(
1, 0, 1,

3
2

)
− ψ2

(
1, 0, 1,

3
2

)

=
21
32

< Φ1(d(S4, T5)) = Φ1(2) = 2.

(2.78)

Then, Theorem 2.1 of Rao et al. [31] cannot be applied (for three maps) in this case.

Example 2.14. Let X = {(0, 1), (1, 0), (1, 1)} ⊂ R
2 with the Euclidean distance d2. (X, d2)

is, obviously, a complete metric space. Moreover, we consider the order � in X given by
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R = {(x, x), x ∈ X}. Notice that the elements in X are only comparable to themselves, so
(X,�) is regular. Also we consider R, S, T : X → X given by

T(1, 0) = S(1, 0) = R(1, 0) = (1, 0),

T(0, 1) = S(0, 1) = (1, 0), R(0, 1) = (0, 1),

T(1, 1) = S(1, 1) = R(1, 1) = (1, 1).

(2.79)

It is easy that, for all x ∈ X, TSx � Sx, and STx � Tx, so the pair {S, T} is weakly increasing.
Define ψ1, ψ2 : [0,+∞)4 → [0,+∞) by

ψ1(t1, t2, t3, t4) = max{t1, t2, t3, t4},

ψ2(t1, t2, t3, t4) =
1
2
max{t1, t2, t3, t4}.

(2.80)

Then, ψ1(t) = t for all t ≥ 0.
As the elements in X are only comparable to themselves, condition (2.5) appearing

in Theorem 2.8 is, obviously, satisfied. Now, all the hypotheses of Theorem 2.8 are satisfied.
(1, 1) and (1, 0) are the coincidence points of the mappings R, S, and T .

On the other hand, the inequality (2.5) is not satisfied for x = (1, 0) and y = (1, 1).
Indeed,

ψ1

(
d2(R(1, 0), R(1, 1)), d2(R(1, 0), S(1, 0)), d2(R(1, 1), T(1, 1)),

1
2
[d2(R(1, 0), T(1, 1)) + d2(R(1, 1), S(1, 0))]

)

− ψ2

(
d2(R(1, 0), R(1, 1)), d2(R(1, 0), S(1, 0)), d2(R(1, 1), T(1, 1)),

1
2
[d2(R(1, 0), T(1, 1)) + d2(R(1, 1), S(1, 0))]

)

= ψ1(1, 0, 0, 1) − ψ2(1, 0, 0, 1)

=
1
2

< Φ1(d2(S(1, 0), T(1, 1))) = Φ1(1) = 1.

(2.81)

Then, again Theorem 2.1 of Rao et al. [31] cannot be applied (for three maps) in this case.
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A number of fixed point results may be obtained by assuming different forms for the
functions ψ1 and ψ2. In particular, fixed point results under various contractive conditions
may be derived from the above theorems. For example, if we consider

ψ1
(
x, y, z, t

)
= k1xs + k2ys + k3zs + k4t4,

ψ2
(
x, y, z, t

)
= (1 − k)

[
k1x

s + k2ys + k3zs + k4t4
]
,

(2.82)

where s > 0 and 0 < k = k1 + k2 + k3 + k4 < 1, we obtain the following results.
The next result is an immediate consequence of Corollaries 2.11 and 2.12.

Corollary 2.15. Let (X, d,�) be an ordered complete metric space. Let T, S : X → X be given
mappings satisfying for every pair (x, y) ∈ X ×X such that x and y are comparable,

[
d
(
Sx, Ty

)]s ≤ k1
[
d
(
x, y

)]s + k2[d(x, Sx)]
s + k3

[
d
(
y, Ty

)]s + k4
[
1
2
(
d
(
x, Ty

)
+ d

(
y, Sx

))
]s
,

(2.83)

where s > 0 and 0 < k = k1 + k2 + k3 + k4 < 1. One assumes the following hypotheses:

(i) T and S are continuous or X is regular,

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point, that is, there exists u ∈ X such that u = Tu = Su.

Remark 2.16. Other fixed point results may also be obtained under specific choices of ψ1 and
ψ2.

3. Application

Consider the integral equations:

u(t) =
∫T

0
K1(t, s, u(s))ds + g(t), t ∈ [0, T],

u(t) =
∫T

0
K2(t, s, u(s))ds + g(t), t ∈ [0, T],

(3.1)

where T > 0.
The purpose of this section is to give an existence theorem for common solution of

(3.1) using Corollary 2.15. This application is inspired by [9].
Previously, we consider the spaceX = C(I)(I = [0, T]) of continuous functions defined

on I. Obviously, this space with the metric given by

d
(
x, y

)
= sup

t∈I

∣∣x(t) − y(t)∣∣, ∀x, y ∈ C(I), (3.2)
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is a complete metric space. C(I) can also be equipped with the partial order � given by

x, y ∈ C(I), x � y ⇐⇒ x(t) ≤ y(t), ∀t ∈ I. (3.3)

Moreover, in [28], it is proved that (C(I),�) is regular.
Now, we will prove the following result.

Theorem 3.1. Suppose that the following hypotheses hold:
(i) K1, K2 : I × I × R → R and g : R → R are continuous,
(ii) for all t, s ∈ I,

K1(t, s, u(t)) ≤ K2

(

t, s,

∫T

0
K1(s, τ, u(τ))dτ + g(s)

)

,

K2(t, s, u(t)) ≤ K1

(

t, s,

∫T

0
K2(s, τ, u(τ))dτ + g(s)

)

,

(3.4)

(iii) there exist k1, k2, k3 ≥ 0 such that

∣∣Gx(t) − Fy(t)
∣∣ ≤ k1

(
y(t) − x(t)) + k2

∣∣x(t) −Gx(t) − g(t)
∣∣ + k3

∣∣y(t) − Fy(t) − g(t)
∣∣, (3.5)

where

Fx(t) =
∫T

0
K1(t, s, x(s))ds, t ∈ I, Gx(t) =

∫T

0
K2(t, s, x(s))ds, t ∈ I, (3.6)

and k1 + k2 + k3 < 1, for every x, y ∈ X and x � y and t ∈ I.
Then, the integral equations (3.1) have a solution u∗ ∈ C(I).

Proof. Define T, S : C(I) → C(I) by

Tx(t) = Fx(t) + g(t), t ∈ I,
Sx(t) = Gx(t) + g(t), t ∈ I.

(3.7)

Now, we will prove that T and S are weakly increasing. From (ii), for all t ∈ I, we have

Tx(t) =
∫T

0
K1(t, s, x(s))ds + g(t)

≤
∫T

0
K2

(

t, s,

∫T

0
K1(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫T

0
K2(t, s, Tx(s))ds + g(t)

= STx(t).

(3.8)
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Similarly,

Sx(t) =
∫T

0
K2(t, s, x(s))ds + g(t)

≤
∫T

0
K1

(

t, s,

∫T

0
K2(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫T

0
K1(t, s, Sx(s))ds + g(t)

= TSx(t).

(3.9)

Then, we have Tx � STx and Sx � TSx for all x ∈ C(I). This implies that T and S are weakly
increasing.

Now, for all x, y ∈ C(I) such that x � y, by (iii), we have

∣∣Sx(t) − Ty(t)∣∣ = ∣∣Gx(t) − Fy(t)
∣∣

≤ k1
(
y(t) − x(t)∣∣ + k2

∣∣x(t) −Gx(t) − g(t)
∣∣ + k3

∣∣y(t) − Fy(t) − g(t)
∣∣.

(3.10)

Hence

d
(
Sx, Ty

)
= sup

t∈[0,T]

∣∣Sx(t) − Ty(t)∣∣

≤ k1 sup
t∈[0,T]

∣∣x(t) − y(t)∣∣ + k2 sup
t∈[0,T]

∣∣x(t) −Gx(t) − g(t)
∣∣ + k3 sup

t∈[0,T]

∣∣y(t) − Fy(t) − g(t)
∣∣

= k1 sup
t∈[0,T]

∣∣x(t) − y(t)∣∣ + k2 sup
t∈[0,T]

|x(t) − Sx(t)| + k3 sup
t∈[0,T]

∣∣y(t) − Ty(t)∣∣.

(3.11)

Then

d
(
Sx, Ty

) ≤ k1d
(
x, y

)
+ k2d(x, Sx) + k3d

(
y, Ty

)
(3.12)

for all x, y ∈ X such that y � x.
This implies that, for all x, y ∈ C(I) such that x � y,

d
(
Sx, Ty

) ≤ k1d
(
x, y

)
+ k2d(x, Sx) + k3d

(
y, Ty

)
. (3.13)

Hence the contractive condition required by Corollary 2.15 is satisfied with s = 1, k4 = 0, and
k1 + k2 + k3 < 1.

Now, all the required hypotheses of Corollary 2.15 are satisfied. Then, there exists u∗ ∈
C(I), a common fixed point of T and S, that is, u∗ is a solution to (3.1).
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