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An algorithm was proposed for very fast and low-complexity computation of three-dimensional
Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric
moments where the later are computed exactly through the mathematical integration of the
monomial terms over the digital image/object voxels. A new symmetry-based method was
proposed to compute 3D Zernikemoments with 87% reduction in the computational complexity. A
fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison
with existing methods was performed, where the numerical experiments and the complexity
analysis ensured the efficiency of the proposed method especially with image and objects of large
sizes.

1. Introduction

Moments of images are generally defined as projections of the image function onto a set of
basis functions. In his pioneer work, Hu [1] popularized the usage of image moments in
2D pattern recognition. The set of Hu’s moments gain the interest of scientists and widely
applied during the last five decades. Teague [2] suggested the usage of orthogonal basis
functions such as Legendre and Zernike to construct moments. Orthogonal moments are
used to represent images with a minimum amount of information redundancy. Teh and Chin
[3] evaluated different orthogonal and nonorthogonal moments. They found 2D Zernike
moments superior over others moments in terms of noise sensitivity and discrimination
power. 2D Zernike moments are used in a wide range of applications such as pattern



2 Mathematical Problems in Engineering

recognition applications [4–6], content-based image retrieval [7–9], image watermarking
[10–12], biometrics [13, 14], analysis and recognition of medical images [15–17], and edge
detection [18].

Reconstruction, recognition, and discrimination of 3D objects gained more research
interest during the last decade. 3Dmoment invariants are used as shape descriptors [19]. The
superiority of orthogonal 2D Zernike moments over the nonorthogonal moments motivate
Canterakis [20] to generalize the classical 2D Zernike polynomials to 3D. Canterakis paid his
attention to theoretical aspects of deriving 3D Zernike polynomials and moments. Novotni
and Klein [21] addressed 3D Zernike descriptors for content-based shape retrieval where
the information content of the recovered 3D shape has no redundancy because of the
orthonormality. In addition to this property, a group of 3D Zernike moments are rotation-
invariant and the shape reconstruction from 3D Zernike is a very simple process. Also, 3D
Zernike moments have the advantage of capturing global information about the 3D shape
without requiring closed boundaries as in boundary-based methods.

Due to the attractive properties, applications of 3D Zernike descriptor gain more
interest. Millán et al. [22] used 3D Zernike moment invariants in morphological charac-
terization of intracranial aneurysms. Qiuting and Bing [23] used the 3D Zernike moments
to derive a 3D terrain matching algorithm. Since, shape plays a crucial role in molecular
recognition and function. The development of shape analysis techniques is important for
understanding protein structure-function relationships. Recently, 3D Zernike moments gain
more interest from peoples working in the area of bioinformatics and molecular biology.
Sael et al. [24, 25] applied 3D Zernike moments for protein tertiary structure retrieval and
comparison of properties on protein surface. 3D Zernike moments are promising descriptors
in the field of biological imaging. X-ray diffraction and electronic microscopic imaging are
examples where these 3D descriptors could be used to build up 3D views of biological entities
such as proteins, nucleic acids, cells, tumors, tissues and whole organs or organisms.

Unfortunately, high computational demands of 3D Zernike moments hindered the
wide applications of these applications. The need for computational approaches to efficiently
store, display, and compare this data is the motivation of the present work. In the literature,
there are many methods and approaches for fast computation of 2D Zrnike moments. The
extendibility of these methods to compute 3D Zernike moments will be discussed.

In the first approach, Papakostas et al. [26] proposed a modified direct method for
the computation of the Zernike moments. They computed factorial terms by using Sirling’s
formula. This method cannot be extended to compute 3D Zernike moments. Using the
recurrence relations is another approach that should be consider. Al-Rawi [27] proposed an
algorithm for fast computation of 2D Zernike moments. Unfortunately, this approach cannot
be extended to compute 3D Zernike moments.

Exact computation of 2D Zernike moments via exact 2D geometric moments is the
third approach. Wee and Paramesran [28] proposed a novel method in which they expressed
2D Zernike moments as expansion of exact 2D geometric moments of the same order. In fact,
the method of Chong is highly accurate and very time consuming. Hosny [29] modified the
method of Chong to be a very fast method. Recently, Hosny [30] proposed a novel method
for fast and accurate computation of the full and subsets 2D Zernike moments. Fortunately,
this approach is extendable to compute 3D Zernike moments.

In this work, a fast, low-complexitymethod is proposed for efficient computation of 3D
Zernike moments. The entire set of 3D Zernike moments and the selected set of rotationally
invariant 3D Zernike moments are computed as a combination of exact 3D geometric
moments. A 3D symmetry-based method is applied where 87% of the computational
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complexity is reduced. A fast algorithm is applied to accelerate the computational process.
The heavy computational expensive binomial coefficients terms are avoided by using a
very simple computational method. The proposed method significantly reduces the whole
computational complexity and seems to be more suitable for large objects and databases.

2. Three-Dimensional Zernike Moments

Three-dimensional Zernike polynomials,Zn,�,m, are orthogonal polynomials defined on a unit
ball as follows:

Zn,�,m(�) = Rn,�(r)Y�,m

(
θ, φ
)
, (2.1)

where n ∈ [0,Max], � ∈ [0, n], and m ∈ [−�, �]. The value (n − �) must be even nonnegative
integer number. Max is the maximum order considered in the computational process. Rn,�(r)
and Y�,m(θ, φ) are real-valued radial functions and spherical Harmonics, respectively. Any
function, f(�), defined within the unit ball could be expanded by using the 3D Zernike
polynomials as follows:

f(�) =
∞∑

n=0

n∑

�=0

�∑

m=−�
Ω n,�,mZn,�,m(�). (2.2)

The expansion coefficients, Ωn,�,m, represent the 3D Zernike moments and determined by
using the complex conjugate of 3D Zernike polynomials as follows:

Ωn,�,m =
∫1

0

∫2π

0

∫π

0
Zn,�,m(�)f(�)r2 sin θ dr dθ dφ. (2.3)

According to the extreme complexity of computation in the 3D spherical coordinates,
Canterakis [20] formulated the 3D Zernike polynomials in the Cartesian coordinates where
the conversion between spherical and Cartesian coordinates, [X]T = [�]T , is defined in an
explicit form as follows:

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
r sin θ sinφ
r sin θ cosφ

r cosφ

⎤

⎦. (2.4)

The 3D Zernike polynomials in the Cartesian coordinates are defined as follows:

Zn,�,m(X) =
k∑

v=0

Q k,�,v|X|2ve�,m(X), (2.5)
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where k is an integer equal to (n − �)/2 and 0 ≤ v ≤ k. The coefficients Qk,�,v are defined as

Qk,�,v =
(−1)k
22k

√
2� + 4k + 3

3

(
2k
k

)
(−1)v

(
k
v

)( 2(k+�+v)+1
2k

)

(
k+�+v

k

) . (2.6)

The harmonic polynomials, e�,m(X), are defined as

e�,m(X) = C�,mr
�

(
îx − y

2

)m

z�−m
�(�−m)/2�∑

μ=0

(
�
μ

)(
� − μ
m + μ

)(

−x
2 + y2

4z2

)μ

, (2.7)

where î =
√−1, z = x + îy is the complex variable and C�,m are the normalization factors and

defined as

C�,m =

√
(2� + 1)(� +m)!(� −m)!

�!
. (2.8)

Based on (2.8), the normalization factors C�,m of positive and negative values of m are
identical, C�,−m = C�,m while the harmonic polynomials with negative values ofm are defined
as

e�,−m(X) = (−1)me�,m(X). (2.9)

The orthogonality relation of 3D Zernike polynomials is defined as follows:

3
4π

∫

|X|≤1
Zn,�,m(X)Zn′,�′,m′(X)dX = δn,n′δ�,�′δm,m′ . (2.10)

The 3D Zernike moments and the image/object reconstruction in spherical coordinates as
defined by (2.3) and (2.2) are converted into the Cartesian coordinates and rewritten as
follows:

Ωn,�,m =
3
4π

∫

|X|≤1
f(X)Zn,�,m(X)dX

f(X) =
∞∑

n=0

n∑

�=0

�∑

m=−�
Ωn,�,mZn,�,m(X),

(2.11)

where the 3D Zernike moments with negative values of m could be computed directly from
their corresponding ones with positive values ofm as follows:

Ωn,�,−m(X) = (−1)mΩn,�,m(X). (2.12)
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Canterkis [20] compactly formulate the 3D Zernike polynomials of order n as a linear com-
bination of monomials of order up to n as follows:

Zn,�,m(X) =
∑

r+s+t≤n
Hrst

n,�,mx
rysxt. (2.13)

Consequently, the 3D Zernike moments Ωn,�,m of order n could be expressed as a linear
combination of the 3D geometric moments, Gr,s,t, by using the following relation:

Ωn,�,m =
3
4π

∑

r+s+t≤n
Hrst

n,�,mGr,s,t, (2.14)

where the complex coefficients, Hrst
n,�,m

, and the 3D geometric moments are defined as

Hrst
n,�,m = C�,m2−m ·

k∑

v=0

Qk,�,v ·
v∑

α=0

(
v
α

)
·
v−α∑

β=0

(
v − α
β

)
·

m∑

u=0
(−1)m−u

(
m
u

)(
î
)u

·
�(�−m)/2�∑

μ=0
(−1)μ2−2μ

(
�
μ

)(
� − μ
m + μ

)
·

μ∑

η=0

(
μ
η

)
,

(2.15)

Gr,s,t =
∫

|X|≤1
f(X)xrysxtdX, (2.16)

with r = 2(η + α) + u, s = 2(μ − η + β) +m − u, and t = 2(ν − α − β − μ) + � −m.
The rotation invariance of 3D Zernike moments could be achieved where the moments

are collected into (2� + 1) vectors Ωn,� = (Ωn,�,� ,Ωn,�,�−1,Ωn,�,�−2, . . . ,Ωn,�,−�)
T . The rotational

invariant 3D Zernike descriptors, Fn,� , are defined as the norms of these vectors. To avoid
any misunderstanding, an example is illustrated. For maximum moment order, Max = 10,
the total number of 3D Zernike moments is equal to 286. The number of independent 3D
Zernike moments is 161, while the number of 3D Zernike descriptors for this moment order
is 36. The number of 3D Zernike descriptors could be easily determined using the following
form:

Total =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
Max+2

2

)2

, Max is even

(Max+1)(Max+3)
4

, Max is odd.

(2.17)

The independent 3D Zernike moments are used in 3D image reconstruction, while the
3D Zernike descriptors are used in comparing similar structure by simply comparing the
vectors of these descriptors. Theoretically, if a 3D object is rotated with any angle, the vectors
of 3D Zernike descriptors must be the same for both original and rotated objects.
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3. The Proposed Algorithm

3D Zernike moments are defined as the projection of the digital image/object onto the 3D
Zernike polynomials. These polynomials are defined in spherical coordinates within a unit
ball. By converting to Cartesian coordinates, the 3D image/object is defined within a cube;
this cube is completely surrounded by this unit ball where its centre coincides with the centre
of the unit ball. The coordinate axes x, y, and z divide the mentioned cube into eight equal
small cubes.

The 3D digital image/object of size N ×N ×N is a multidimensional array of voxels;
centers of these voxels are the points (xi, yj , zk) where the intensity function is defined only
for this discrete set of points (xi, yj , zk) ∈ �−1/√3, 1/

√
3� × �−1/√3, 1/

√
3� × �−1/√3, 1/

√
3�

with:

xi =
2i −N − 1

N
√
3

, yj =
2j −N − 1

N
√
3

, zk =
2k −N − 1

N
√
3

, (3.1)

where the sampling intervals in the x-, y-, and z-directions areΔxi = xi+1 −xi,Δyj = yj+1 −yj ,
and Δzk = zk+1 − zk with i, j, k = 1, 2, . . . ,N.

Computation of 3D Zernike moments in Cartesian coordinated is completely
dependent on two computational modules. The first one consists of the computational
processes required to compute the complex coefficients Hrst

n,�,m. The second is the process
of computing the 3D geometric moments. In order to reduce the overall computational
complexity, both modules must be designed and executed by using efficient methodology.

The extremely time-consuming computational process of the first module could be
significantly reduced through the recurrence relations and avoiding the repeated evaluation
of factorial terms. The computational complexity of the second module is significantly
reduced through the implementation of a symmetry property and the successive computation
of 1D cascade for each moment order. Through the next subsection, a detailed description of
the proposed efficient method is presented.

3.1. Computational Aspects

Fast algorithms are generally desired in the computational processes of 3D moments. In this
subsection, the attention is paid to reduce the computational complexity of the first module.
Analysis of (2.15) shows that the computation of the complex coefficients Hrst

n,�,m
for each

moment order required the computation of the normalization factors C�,m, the coefficients
Qk,�,v, and a huge number of factorial terms. Computation of each of these coefficients is a
source of excessive computational complexity. These time-consuming processes are repeated
with each moment order. In order to reduce the overall computational complexity, an
efficientmethodmust be applied to overcome these aforementioned sources of computational
complexity.

A recurrence relation is derived and employed to compute the normalization factors
C�,m. The derived relation completely ignored the heavy computational costs of factorial
terms. It is clear that these normalization factors are image-independent; so, their values



Mathematical Problems in Engineering 7

could be precalculated, stored, and recalled whenever they are needed. This is another
attractive point. According to (2.8), the derived recurrence relations are

C0,0 = 1, (3.2)

C�,0 =
√
2� + 1, (3.3)

C�,m =

√
� +m

� −m + 1
C�,m−1, (3.4)

where � = 1, 2, 3, . . .Max and m = 1, 2, 3, . . . �.
The second source of excessive computational complexity is the coefficients Qk,�,v

defined by (2.6). To overcome this problem, (2.6)will be rewritten as follows:

Qk,�,v =
(−1)k+v
22k

√
2� + 4k + 3

3
Tk,�,v, (3.5)

with

Tk,�,v =

(
2k
k

)(
k
v

)( 2(k+�+v)+1
2k

)

(
k+�+v

k

) . (3.6)

The time-consuming direct computations of combinational terms are avoided by using
the recurrence relations [29] where an image-independent matrix could be precomputed,
stored, and recalled whenever it is needed. The combinational terms of (3.6) could be easily
computed using the stored values of this matrix. For moment order n ∈ [0,Max], � ∈ [0, n], k
is an integer equal to k = (n−�)/2 and 0 ≤ v ≤ k, the numerical values of the coefficients Tk,�,v
will be precalculated, stored, and recalled any time needed. Consequently, the coefficients
Qk,�,v could be efficiently computed without any combination or factorial terms. So, we could
overcome the second source of excessive computational complexity. For the special case,
� = n, the coefficients Qk,�,v are easily computed using the following equation:

Q0,�,0 =

√
2� + 3

3
. (3.7)

To see the importance of (3.7), the 3D image reconstruction using 3D Zernike moments of
maximum order 10 required the computation of 161 independent moments. Equation (3.7)
computes 66 of these moments where the highest number of moments is found when the
order n equals to �.

The third source of computational complexity is the direct computation of the complex
coefficients Hrst

n,�,m using (2.15). Factorial terms represent the main source of the complexity
in (2.15) where ignoring these factorial terms results in a great simplicity. Replacing factorial
terms in (2.15) by their numerical values will achieve this goal.
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Table 1: 3D symmetry points and their coordinates.

Points Coordinates
P1

(
xi , yj , zk

)

P2
(
xN− i + 1 , yj , zk

)

P3
(
xN− i + 1 , yN− j + 1, zk

)

P4
(
xi , yN− j + 1, zk

)

P5
(
xi , yj , zN−k + 1

)

P6
(
xN− i + 1 , yj , zN−k + 1

)

P7
(
xN− i + 1 , yN− j + 1, zN−k + 1

)

P8
(
xi , yN− j + 1, zN−k + 1

)

3.2. Symmetry Property

According to the mapping of the 3D object inside the unit ball, the radial distance from

any point P1(xi, yj , zk) to the coordinate origin is
√
xi

2 + yj
2 + zk2. Based on the definition of

radial distance, there are eight points in the different eight small cubes having the same radial
distance to the coordinate origin. These points and their coordinates are shown in Table 1.

Since the points {Pd, d = 1, 2, 3, . . . , 8} have the same radial distance, then the
numerical values of xr ys zt will be dependent on whatever r, s, and t are even or
odd. For quick proof of this assumption, we consider the following illustrative example.
Let the first point P1 has the coordinates P1(x4, y3, z2) ≡ P1(−1/8

√
3,−3/8√3,−5/8√3).

Based on coordinate relations defined in Table 1, the other seven points could be written
as P2(1/8

√
3,−3/8√3,−5/8√3), P3(1/8

√
3, 3/8

√
3,−5/8√3), P4(−1/8

√
3, 3/8

√
3,−5/8√3),

P5(−1/8
√
3,−3/8√3, 5/8

√
3), P6(1/8

√
3,−3/8√3, 5/8

√
3), P7(1/8

√
3, 3/8

√
3, 5/8

√
3), and

P8(−1/8
√
3, 3/8

√
3, 5/8

√
3). Numerical values of xr ys zt for the points {Pd, d = 1, 2, 3, . . . , 8}

with different possibilities of exponent indices, r, s, and t are listed in Table 2.
Based on this symmetry property and the numerical results in Table 2, we can define

the different eight cases for what is called augmented intensity function as follows.

Case 1. r = E, s = E, and t = E;

fA
(
xi, yj , zk

)
= f1

(
xi, yj , zk

)
+ f2
(
xi, yj , zk

)
+ f3
(
xi, yj , zk

)
+ f4
(
xi, yj , zk

)

+ f5
(
xi, yj , zk

)
+ f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

)
+ f8
(
xi, yj , zk

)
,

(3.8a)

Case 2. r = E, s = E, and t = O;

fA
(
xi, yj , zk

)
= − f1

(
xi, yj , zk

) − f2
(
xi, yj , zk

) − f3
(
xi, yj , zk

) − f4
(
xi, yj , zk

)

+ f5
(
xi, yj , zk

)
+ f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

)
+ f8
(
xi, yj , zk

)
,

(3.8b)

Case 3. r = E, s = O, and t = E;

fA
(
xi, yj , zk

)
= − f1

(
xi, yj , zk

) − f2
(
xi, yj , zk

)
+ f3
(
xi, yj , zk

)
+ f4
(
xi, yj , zk

)

− f5
(
xi, yj , zk

) − f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

)
+ f8
(
xi, yj , zk

)
,

(3.8c)
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Case 4. r = E, s = O, and t = O;

fA
(
xi, yj , zk

)
= f1

(
xi, yj , zk

)
+ f2
(
xi, yj , zk

) − f3
(
xi, yj , zk

) − f4
(
xi, yj , zk

)

− f5
(
xi, yj , zk

) − f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

)
+ f8
(
xi, yj , zk

)
,

(3.8d)

Case 5. r = O, s = E, and t = E;

fA
(
xi, yj , zk

)
= − f1

(
xi, yj , zk

)
+ f2
(
xi, yj , zk

)
+ f3
(
xi, yj , zk

) − f4
(
xi, yj , zk

)

− f5
(
xi, yj , zk

)
+ f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

) − f8
(
xi, yj , zk

)
,

(3.8e)

Case 6. r = O, s = E, and t = O;

fA
(
xi, yj , zk

)
= f1

(
xi, yj , zk

) − f2
(
xi, yj , zk

) − f3
(
xi, yj , zk

)
+ f4
(
xi, yj , zk

)

− f5
(
xi, yj , zk

)
+ f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

) − f8
(
xi, yj , zk

)
,

(3.8f)

Case 7. r = O, s = O, and t = E;

fA
(
xi, yj , zk

)
= f1

(
xi, yj , zk

) − f2
(
xi, yj , zk

)
+ f3
(
xi, yj , zk

) − f4
(
xi, yj , zk

)

+ f5
(
xi, yj , zk

) − f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

) − f8
(
xi, yj , zk

)
,

(3.8g)

Case 8. r = O, s = O, and t = O;

fA
(
xi, yj , zk

)
= − f1

(
xi, yj , zk

)
+ f2
(
xi, yj , zk

) − f3
(
xi, yj , zk

)
+ f4
(
xi, yj , zk

)

+ f5
(
xi, yj , zk

) − f6
(
xi, yj , zk

)
+ f7
(
xi, yj , zk

) − f8
(
xi, yj , zk

)
,

(3.8h)

where f1,f2,f3,f4,f5,f6,f7, and f8 refer to the image intensity function defined in the cubes
from 1 to 8, respectively. The letters “E” and “O” are the acronyms of even and odd,
respectively.

As shown in Figure 1, the removed small cube refers to the first subcube. Therefore,
only one-eighth of the whole object space is required to compute the entire set of 3D Zernike
moments. The implementation of this property results in 87% reduction in the computational
cost. A detailed discussion of this will be found through the following subsections.

3.3. Fast Computation of Exact 3D Geometric Moments

General 3D geometric moments of order (r + s + t) for the object intensity function f(x, y, z)
are defined as the projection of the function f(x, y, z) onto the monomial xryszt as follows:

Grst =
∫∫∫∞

−∞
xrysztf

(
x, y, z

)
dx dy dz. (3.9)
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Figure 1: Input 3D image is mapped inside the unit ball.

Based on the circumstances of the present problem, where the input 3D image is mapped
inside the unit ball, the upper and lower limits of triple integrals in (3.9)must be rewritten as
follows:

Grst =
∫∫∫1/

√
3

−1/√3
xrysztf

(
x, y, z

)
dx dy dz. (3.10)

Equation (3.10) could be written as follows:

Gpqr =
N∑

i=1

N∑

j=1

N∑

k=1

Spqr

(
xi , yj , zk

)
f
(
xi, yj , zk

)
, (3.11)

where

Spqr

(
xi, yj , zk

)
=
∫xi+(Δxi/2)

xi−(Δxi/2)

∫yj +(Δyj/2)

yj−(Δyj/2)

∫zk+(Δzk/2)

zk−(Δzk/2)
xrysztdx dy dz. (3.12)

The triple integral defined by (3.12) is the source of approximation error. For exact compu-
tation of 3D geometric moments, this triple integral could be divided into three separate
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individual integrals as follows:

Ir(i) =
∫xi+(Δxi/2)

xi−(Δxi/2)
xrdx =

1
r + 1

[(
xi +

Δxi

2

)r+1

−
(
xi − Δxi

2

)r+1
]

(3.13a)

Is
(
j
)
=
∫yj+(Δyj/2)

yj−(Δyj/2)
ysdy =

1
s + 1

[(
yj +

Δyj

2

)s+1

−
(
yj −

Δyj

2

)s+1]

(3.13b)

It(k) =
∫zt+(Δzt/2)

zt−(Δzt/2)
ztdz =

1
t + 1

[(
zt +

Δzt
2

)t+1

−
(
zt − Δzt

2

)t+1
]

. (3.13c)

The upper and lower limits of these integrals are created and stored in a vector form. By
applying the symmetry property, the set of geometric moments can thus be computed exactly
by

Gpqr =
�N/2�∑

i=1

�N/2�∑

j=1

�N/2�∑

k=1

Ir(i)Is
(
j
)
It(k)fA

(
xi, yj , zk

)
, (3.14)

where fA(xi, yj , zk) is the augmented intensity function defined by using (3.8a)–(3.8h). For
even value ofN, the operator �N/2� equals toN/2, while it equals to (N−1)/2 for odd value.
The kernel of the exact 3D geometric moments is defined by (3.13a)–(3.13c). This kernel
is image-independent. Therefore, this kernel could be precomputed, stored, and recalled
whenever it is needed to avoid repetitive computation.

The computational complexity of exact 3D geometric moments could be greatly
reduced by applying the successive computation process. The 3D geometric moments of
order (r + s + t) defined by (3.14) are computed in three separate steps by successive
computation of the 1D sth-order moment for each row, followed by the 2D (r + s)th-
order moment. Then, the required 3D moment is calculated as the sum of the different 2D
moments. This approach was successfully applied in recent works of Hosny [31, 32] where
it significantly reduces the total number of required addition and multiplication processes.
Equation (3.14) is rewritten in separable forms as follows:

Grst =
�N/2�∑

k=1

It(zk)Rrsk, (3.15a)

where

Rrsk =
�N/2�∑

i=1

Yisk Ir(xi), (3.16a)

Yisk =
�N/2�∑

j=1

Is
(
yj

)
fA
(
xi, yj , zk

)
. (3.16b)
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Figure 2: Elapsed CPU times for computing 3D Zernike moments (first numerical experiment).

Table 3: Elapsed CPU times and the reduction percentage for selected moment orders (first numerical
experiment).

Moment order Conventional method [21] Proposed method Reduction percentage
1 0.629653 0.057412 90.8820%
3 6.742940 0.078032 98.8428%
5 32.336633 0.095085 99.7060%
10 212.330483 0.174056 99.9180%
12 386.394043 0.182601 99.9527%
15 847.327152 0.276992 99.9673%

4. Experimental Results

The computation of 3D Zernike moments as a liner combination of exact 3D geometric
moments ensures the accuracy. This approach was proved through our previously published
works of 2D Zernike moments [29, 30]. Based on this fact, this work concentrates on the issue
of efficiency in computational time and complexity. The conducted numerical experiments
concentrate on the efficiency of the proposed method against the existing methods. The full
set of 3D Zernike moments is computed by using the proposed method and the conventional
method [21]. Elapsed CPU times for both methods are used to judge the efficiency. Two
numerical experiments are conducted. In the first experiment, a randomly generated 3D
image with intensity function f(xi, yj , zk) is generated by using the Matlab8 statement
f(xi, yj , zk) = r and (M,N,K) where 0 ≤ f(xi, yj , zk) ≤ 1 for all i, j, k with M = N = K = 64.
Selected orders of 3D Zernike moments and the corresponding elapsed CPU times are for
both methods shown in Table 3. A graphical representation of these elapsed CPU times is
plotted in Figure 2.

In the second experiment, a protein structure of dimensions 70 × 70 × 70 is used. All
computational processes are performed by using a code designed with Matlab8 and operated
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Figure 3: Elapsed CPU times for computing 3D Zernike moments (second numerical experiment).

Table 4: Elapsed CPU times and the reduction percentage for selected moment orders (second numerical
experiment).

Moment order Conventional method [21] Proposed method Reduction percentage
1 0.634301 0.068551 89.1927%
3 6.880023 0.080441 98.8308%
5 37.497548 0.132576 99.6464%
10 303.177357 0.198912 99.9344%
12 731.124886 0.282519 99.9614%
15 913.281611 0.342348 99.9625%

on a Lenovo R400 laptop. Similar to the first numerical experiment, selected orders of 3D
Zernike moments and their elapsed CPU times for both methods are shown in Table 4. The
graphical representation of the elapsed CPU times for moment orders ranging from 1 to 15 is
plotted in Figure 3. The logarithmic scale is more suitable to clearly show the big differences
in the elapsed CPU times.

It is clear that the proposed method outperformed the conventional method where
the reduction in the elapsed CPU times exceeds 95%. In addition to this big reduction,
the implementation of symmetry property achieved 87% of memory saving. On the other
side, the conventional method does not have any kind of memory saving. Generally, the
comparison ensures the superiority of the proposed method.

4.1. Computational Complexity

Complexity analysis of any numerical method presents a simple and clear way to judge
the efficiency of this method. Complexity analysis mainly concentrates on the number of
operations required by such a method to achieve its goal. The total number of multiplication
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and addition operations is the core of the complexity analysis. Evaluation of additional
operations such as factorial terms, exponential and power functions is also considered.

The complexity analysis of the proposed and the conventional methods for computing
3D Zernike moments is performed. The computational process of 3D Zernike moments
required the computation of 3D geometric moments and the complex coefficients Hrst

n,�,m
.

It is clear that the computation of 3D geometric moments is image-dependent, while the
computation of Hrst

n,�,m is image-independent. Therefore, we concentrate on the complexity
analysis of 3D geometric moments.

For a 3D digital image of size N × N × N and a maximum moment order equal to
Max, the complexity analysis of the conventional method represented by (2.16) is discussed
first. The total number of arithmetic operations (addition and multiplication) required by the
conventional method for computing 3D geometric moments is

(Max + 1)(Max+ 2)(Max+ 3)N3

6
, additions (4.1a)

(Max + 1)(Max+ 2)(Max+ 3)N3

3
, multiplications. (4.1b)

The corresponding total number of arithmetic operations required by the proposed method
will be evaluated. The computational process of the 3D geometric moments by using the
proposed method consists of three steps represented by (3.15a), (3.16a), and (3.16b). The
total number of arithmetic operations for each step will be discussed individually; then
the whole computational complexity will be evaluated. Starting with (3.16b), the creation
of the matrix Yiqk requires (N/2)3(Max+1) multiplications and (N/2)2(N/2 − 1)(Max+1)
additions. The creation process of the matrix Rpqk using (3.16a) requires (N/2)((N/2) −
1)(Max+1)(Max+2)/2 additions and (N/2)2(Max+1)(Max+2)/2 multiplications. Finally,
the computational complexity of the 3D geometric moments using (3.15a) requires
(N/2)(Max+1)2(Max+2)/2 multiplications and ((N/2)− 1)(Max+1)2(Max+2)/2 additions.
Therefore, computing the set of independent exact 3D geometric moments requires the
following number of additions and multiplications:

(Max+ 1)(Max+ 2)
8

[
N2 − 2N + 2Max(N − 2)

]
+
N2(N − 2)(Max+ 1)

8
, additions

(4.2a)

(Max+ 1)(Max+ 2)
8

[
N2 + 2N(Max+ 1)

]
+
N3(Max+ 1)

8
, multiplications. (4.2b)

A quick and clear comparison of the complexity of both methods is shown in Table 5 where
the total number of arithmetic operations is required by both methods for computing 3D
geometric moments with the dimensionN and maximummoment order Max. It is clear that
the proposed method tremendously reduced the total number of arithmetic operations.

5. Conclusion

This paper proposes very fast and computationally efficient method for computing 3D
Zernike moments. In the proposed method, 3D Zernike moments are expressed as a linear
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Table 5: Number of addition and multiplication processes required by both methods.

Image size and moment order Conventional method [21] Proposed method
No. of + No. of ∗ No. of + No. of ∗

Max = 5,N = 64 14,680,064 29,360,128 27,063 222,144
Max = 10, N = 64 74,973,184 149,946,368 91,388 451,264
Max = 15, N = 64 213,909,504 427,819,008 206,088 733,184
Max = 20, N = 64 464,257,024 928,514,048 382,788 1,079,904
Max = 5,N = 128 1.0e + 009 ∗ 0.1174 1.0e + 009 ∗ 0.2349 103,383 1,666,944
Max = 10, N = 128 1.0e + 009 ∗ 0.5998 1.0e + 009 ∗ 1.1996 329,868 3,200,384
Max = 15, N = 128 1.0e + 009 ∗ 1.7113 1.0e + 009 ∗ 3.4226 709,128 4,890,624
Max = 20, N = 128 1.0e + 009 ∗ 3.7141 1.0e + 009 ∗ 7.4281 1,264,788 6,761,664

combination of 3D geometric moments. Numerical experiments show the efficiency of the
proposed method, where it achieves more than 95% saving in elapsed CPU times. The
implementation of the symmetry property achieves 87% memory saving, which is a very
attractive property especially in the processing of 3D images.
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