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Abstract. We introduce a novel “mathematical pathology” approach, founded on a biophysical model, to identify robust patient-
specific predictors of tumor growth useful in clinical practice to improve the accuracy of diagnosis/prognosis and intervention. In
accordance with biological observations, our model simulates the diffusion-limited in-situ tumors with a relatively short phase of
fast initial growth, followed by a prolonged slow-growth phase where tumor size is constrained primarily by the relative weight
of cell mitosis and death. The former phase may only last for a few months, so that at the time of diagnosis, we may assume
that most tumors will have entered the phase where their size is changing slowly. Based on this prediction, we hypothesize that
the volume of breast with ducts affected by in-situ tumors at the time of diagnosis will be closely approximated by a model-
derived mathematical function based on the ratio of tumor cell proliferation-to-apoptosis indices and on the extent of diffusion
of cell nutrients (diffusion penetration length), which can be measured from immunohistochemical and morphometric analysis
of patient histopathology specimens without the need for multiple-time measurements. We tested this idea in a retrospective
study of 17 patients by staining breast tumor specimens containing ductal carcinoma in situ for mitosis with Ki-67 and for
apoptosis with cleaved caspase-3 and counting cells positive for each marker. We also determined diffusion penetration by
measuring the thickness of viable rims of tumor cells within ducts. Using the ensuing ratios, we applied the model to determine
a predicted surgical volume or tumor size. We then corroborated our hypothesis by comparing the predicted size of each tumor
based on our model with the actual size of the pathological specimen after tumor excision (R2 = 0.74–0.88). In addition, for the
17 cases studied, both histological grade and mammography were not found to correlate with tumor size (R2 = 0.08–0.47). We
conclude that our mathematical pathology approach yields a high degree of accuracy in predicting the size of tumors based on
the mitotic/apoptotic index and on diffusion penetration. By obtaining these ratios at the time of initial biopsy, pathologists can
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employ our model to predict the size of the tumor and thereby inform surgeons how much tissue to remove (surgical volume).
We discuss how results from the model have implications concerning the current debate on recommendations for screening
mammography, while the model itself may contribute to better planning of breast conservation surgery.

Keywords: DCIS, mathematical model, patient histology, IHC analysis, cell proliferation, cell death

1. Introduction

While tumor growth is a multifactorial dynamic
phenomenon that evolves over time (e.g., months to
years), clinicians often need to make diagnoses and
decisions on treatments from one-time measurements
of a few tumor properties, such as radiographic size
and histologic patterns. Recent advances in biophysi-
cal models of tumor growth provide mathematical tools
that could be employed to better predict tumor size
based on measurements made in histological images
of individual patients’ tumors compared to the cur-
rent approach, which is to use diagnostic imaging. We
call this approach “mathematical pathology”. Math-
ematical pathology is capable of distinguishing slow,
long-term behaviors from fast, transient dynamics, thus
identifying robust predictors of tumor growth that do
not require measurements at multiple time points and
may be readily incorporated within current clinical
practice. In this paper, we apply a biophysical model
of tumor growth [1] to predict tumor volumes of ductal
carcinoma in situ with the long-term goal of employ-
ing this novel method to inform surgical planning for
complete tumor excision.

Among the very few attempts to define new diag-
nostic/prognostic criteria using biophysical models,
time-invariant “wavelengths” of roughness of the
tumor boundary were identified as an important pre-
dictor of glioblastoma invasion through “fingering”
into the brain stroma; the functional dependence of
the fingering growth rates on tumor cell proliferation,
apoptosis, and adhesion was calculated [2]. Further-
more, imaging data and mathematical models were
used to predict glioma patient survival time and inform
decisions on drug administration [3, 4]. Using math-
ematical models, it was also demonstrated that the
growth of U87 glioblastoma converges to a constant
rate, which can be directly linked to tumor prolifera-
tion, apoptosis, and vascularization [5].

There is a major unmet need for more accurate pre-
surgical approaches to determine the size of a newly
diagnosed breast cancer. Patients with DCIS (possibly
the most prevalent precursor to invasive breast cancer

[6–11]) currently undergo some combination of breast
conserving surgery, radiation therapy, and hormonal
therapy. Breast conserving surgery fails to remove the
entire tumor 38–72% of the time, requiring up to three
surgeries for adequate tumor excision [12–14]. In the
absence of adjuvant radiation and hormonal therapy,
the estimated rate of recurrence after surgery is up
to 25%. With adjuvant radiation it is approximately
10% [15]. Half of these recurrences already show
progression to invasive cancer, and at least 85% of
the recurrences are either in the same site or in the
same quadrant of the breast. The single most important
underlying cause that contributes to both re-excisions
and to recurrences has been attributed to malignant
cells left inside the breast [16]. Mathematical pathol-
ogy in combination with a breast imaging modality
may be used to optimize surgical treatment of DCIS
(in particular if accelerated partial breast irradiation is
used [17]) by providing more accurate, patient-specific
estimates of tumor volumes.

Mathematical analysis of the biophysics of
diffusion-limited tumor growth in ductal carcinoma
in situ of the breast leads to the hypothesis that in-
situ tumors with low cell mobility (e.g., non-pagetoid
DCIS) begin with a relatively short phase of fast growth
followed by a prolonged slow-growth phase. Thus
DCIS tumors will progress to a slow growing, nearly
stationary state where their final volumes depend
mechanistically on the balance between tumor cell pro-
liferation and tumor cell death. This balance depends
on the diffusion of nutrients through the affected breast
tissue and their penetration into the intraductal space.
As we will demonstrate in this manuscript, the final
volumes can be directly and quantitatively linked to
the breast density, represented as the density of ducts
within the breast tissue, and the relative rates of pro-
liferation and apoptosis for the individual tumor.

2. Materials and methods

Previous mathematical and computational models
of DCIS have focused on a single breast duct and
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have been successful in recapitulating certain features
of the spatio-temporal dynamics of proliferating and
motile tumor cells at this microscale [18–29], and have
even, in some cases, been capable of extrapolating
their results to predictions of macroscopic growth fea-
tures [24] or invasive potentials as a function of grade
[29]. Here we adopt a multiscale approach to predict
growth and size of the volume of breast containing
ducts with DCIS based on molecular measurements
from histopathology of individual patient tumors. We
thus aim not at predicting tumor volume within a sin-
gle duct, but rather the gross volume of a breast lesion
(herein denoted as surgical volume), which is currently
the subject of mammographic imaging, and contains,
among the various tissues: breast stroma, endothelium,
fat, and ducts with DCIS within. Immunohistochem-
istry (i.e., Ki-67 and cleaved caspase-3 staining) and
morphometric measurements (e.g., duct radius and
thickness of viable rim of tumor cells within) are used
to calibrate a cell-scale population dynamics model
[24]. This information is then upscaled to a con-
tinuum, tissue-scale model [1] to estimate (surgical)
tumor volumes. The present manuscript builds upon

our preliminary work [30] with more patient data
points, improved methods, and in-depth analysis of
the results. This multiscale approach of mathematical
pathology is illustrated in Fig. 1. We thus aim at pro-
viding a tool for more accurate assessment of surgical
volume, which could improve the success of complete
excision of breast tumors.

Table 1 lists the definitions of all the model param-
eters and variables used in this paper. The parameter
input values calculated from raw pathologic measure-
ments are summarized in Table 2 and described in the
following.

2.1. A mathematical formula for predicting
the size of in-situ tumors

We model the surgical volume as a porous medium
(of roughly ellipsoidal shape) with tumor cells grow-
ing through it [1]. In this preliminary version of the
model we are not interested in the detailed geometry
of the duct system and other tissues within this volume
of breast, but rather in accurately assessing the extent
of the volume required for adequate surgical excision.

Fig. 1. Patient-specific model prediction of surgical volume from pathology data. The cell-scale measurements (e.g., proliferation and apoptotic
indices) are averaged across each tumor to calibrate the tissue-scale model, which then predicts surgical volume [5]. The key formula (Eq. 1) of
the model depends mechanistically on the pathology-measurable patient-specific parameters L and A, i.e., nutrient diffusion-penetration length
in the tumor and ratio of tumor cell death to proliferation. The left portion of the figure is adapted from [30, Fig. 10.1], reprinted with permission
from Cambridge University Press.
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Table 1

Biophysical model parameters

Parameter Biophysical meaning

A Ratio of cell apoptosis to proliferation rates
(Eqs. 1, 2a)

AI, PI Apoptotic, proliferative indices (Eq. 3)
D, λ Nutrient diffusion coefficient and uptake rate by

tumor cells (Eq. 2b, footnote 1)
f Tumor volume fraction (Eq. 2b, footnote 1)
L Nutrient diffusion penetration length across

tumor surgical volume (Eqs. 1, 2b)
R Geometric-mean tumor surgical radius (Eq. 1)
Rduct, T Duct radius, viable-rim thickness (Eq. 4)
λA, λM Tumor cell apoptosis, mitosis rates (Eqs. 2a, 3)
σ, σH Nutrient concentration, concentration at the

peri-necrotic boundary (Eq. 4, footnote 1)
τA, τP Cell apoptosis, proliferation times (Eq. 3)

Therefore we average local phenotypic and morpho-
metric properties. In the Discussion, we present ideas
for extending this analysis to accurate prediction of
tumor shape (e.g., the ratios of the three dimensions as
measured from mammography).

In this model, cell proliferation and death, together
with nutrient diffusion and uptake by the cells,
uniquely determine the rate of growth and the tumor

size. Analysis [1] of the model reveals that the geomet-
ric mean of the tumor dimensions (i.e., the cube-root
of the surgical volume or, as expressed in our model,
the diameter 2R) reaches a (nearly) stationary value,
which is set by an overall balance of mass gain from
proliferation in well oxygenated areas and mass loss
from cell death in hypoxic or nutrient-depleted areas.
Our simulations using a range of physiological input
values (as described below) show that DCIS tumors
reach nearly stationary sizes following a short period
of fast growth which may last as little as about two
months [31, 32]. Given such short growth time com-
pared to yearly screenings by mammogram, we may
expect most DCIS tumors to be near their stationary
size at the time of diagnosis. The value of R depends
upon two key parameters: A, which is the ratio of
cell-death to cell-proliferation rate constants averaged
over the multitude of ducts within the surgical volume,
and L, the nutrient (e.g., oxygen) diffusion penetra-
tion length within the involved breast tissue, via the
following mathematical pathology formula [1]:

A = 3 · L

R
·
(

1

tanh(R/L)
− L

R

)
. (1)

Table 2

Summary of pathological/mammographic features with model parameter values and predictions for index series∗

Case ID Subtype Grade∗∗∗ A L (�m) Diameter (cm)

Modela Imageb Pathc

8 Cribriform 2 2.00E-02 374.00 11.14 1.56 0.93
13 Solid 3 4.11E-02 196.84 2.83 2.22 3.27
14 Cribriform 2 3.01E-03 350.75 69.96 1.43 1.15
15 Cribriform 1 1.15E-01 301.63 1.51 1.14 0.96
17 Mixed∗∗ 2 2.17E-01 222.33 0.57 0.93 1.13
18.1 Cribriform 1 2.63E-01 237.50 0.49 0.79 1.06
18.2 Mixed∗∗ 3 4.66E-02 228.03 2.89 0.80 3.27
19 Mixed∗∗ 3 2.75E-02 160.99 3.48 6.11 2.27
21 Cribriform 2 5.79E-02 230.88 2.35 1.98 2.05
22 Cribriform 3 3.92E-02 198.16 3.00 4.64 2.08
23 Solid 3 1.06E-01 275.12 1.51 1.64 1.16
28 Solid 3 3.90E-02 176.73 2.69 1.13 2.93
39 Mixed∗∗ 1.5 3.83E-02 158.30 2.45 1.29 1.5
40 Mixed∗∗ 1.5 5.31E-02 457.05 5.07 5.01 4.58
42 Cribriform 1 4.90E-02 303.53 3.65 5.00 3.44
48 Cribriform 1 2.85E-02 278.18 5.80 2.82 2.38
51 Solid 3 9.08E-02 218.23 1.40 3.02 1.39

∗ Volume fraction f = 24% (average of all 17 cases) was used.
∗∗ Mixed Subtype denotes mixed solid and cribriform subtypes.
∗∗∗ Grade of 1.5 is a numerical representation of a low/intermediate grade assigned by a pathologist.
a2R from Eq. (1).
bBased on geometric mean of three dimensions measured from mammographic images.
cBased on geometric mean of three dimensions measured from pathology material.
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Thus we are assuming that increased uptake due to
the presence of the tumor cells in the DCIS-affected
ducts leads to conditions of oxygen and nutrient deple-
tion within the tumor surgical volume, and eventually
to diffusion-limited growth of this volume. Note that
this hypothesis only applies to non-pagetoid DCIS,
where cell migration along the basement membrane
can be neglected.

It would be problematic to input cell-scale (i.e.,
<200 �m) patient-specific histological and immuno-
histochemical molecular measurements directly to
whole-tumor models (e.g., at the centimeter scale) of
surgical volume. To obtain the patient-specific values
of A and L, and thus predict tumor surgical volumes
4πR3/3, we introduce a multiscale approach, where
immunohistochemistry and morphometric measure-
ments of the individual ducts from patient resected
tissue (see below) are used to directly calibrate key
parameters in a cell-scale population model. These
parameters are subsequently upscaled through bio-
physically founded “static” mathematical relations to
accurately inform the parameters A and L of the
tissue-scale continuum model Eq. (1). This mathe-
matical pathology procedure is described in detail in
the following. The definitions of the parameters are
[1, 30]:

A = λA/λM; L = f−1/2 · (D/λ)1/2; (2)

where the maximum mass growth rate constant by
mitosis in ducts is λM (i.e., corresponding to nutrient
conditions of σ = 1), and the analogous death (e.g.,
apoptosis) rate constant is λA (all calculated by their
average values throughout the patient tumor surgical
volume). The term σ represents the local nutrient (e.g.,
oxygen) concentration normalized to the concentration
in the uninvolved breast tissue away from the DCIS-
affected regions (i.e., σ < 1 inside the breast tissue
involved by DCIS and σ = 1 outside the region of
tumor involvement). The (average) nutrient diffusion
coefficient in ducts is D, f is the fraction of surgical
volume occupied by viable tumor cells and λ is the
nutrient uptake rate by cells in ducts. Thus the quan-
tity L is an average property of breast tissues within
the surgical volume that characterize how far oxygen
and nutrients may propagate by diffusion under uptake
by the cells (including the DCIS cells) [1] (the quan-
tity (D/λ)1/2 is the corresponding average intraductal
diffusion penetration length, reflecting the fact that the
cells are placed within a heterogeneous distribution of

oxygen and nutrients diffusing from the vessels outside
the duct walls into the duct interior)1.

2.2. Patient-specific calibration of Eqs. (1) and
(2) from cell-scale measurements

By volume averaging, we set the rates of mass
growth (due to DCIS cell mitosis) and decrease (death)
within the surgical volume by averaging over corre-
sponding proliferation rates in a cell population model
[24, 30, 33]:

λM · 〈σ〉 = PI/τp; and λA = AI/τA; (3)

and thus determine λM and λA. Here, PI and AI are the
proliferative and apoptotic indices (fractions of total
number of cells) respectively. We measured PI using
Ki-67 to identify cycling (non-G0) cells and AI using
cleaved caspase-3 to measure the fraction of cells in
the apoptotic state (see below). Values are measured for
individual ducts by IHC and averaged over the ducts of
each tumor case (Table S1). In the population model2,
τP is the (constant) duration of the cell cycle; cell death
processes (e.g., apoptosis) have time duration τA. We
set τP = 18 hours to complete a cell cycle and prolifer-
ate [37]. We set τA = 6.6 hours [24, 30, 33] by applying
the population model to (benign) breast epithelium [38]
and correcting for the early portion of apoptosis that
cannot be detected by TUNEL assay but is detected by
cleaved caspase-3 [39]; this estimate is consistent with
the experimental literature (e.g., [40, 41]). The diffu-
sion penetration length L is calculated from Eq. (2b),
where we measure f as the fraction of area occupied

1 Eqs. (1) and (2) can be derived [1] by solving corresponding
conservation equations within the surgical volume: ∇ · u = λM ·
σ − λA, for the surgical volume growth rate, and D · ∇2σ − f · λ ·
σ = 0, for nutrient transport within this volume, where u is the local
cell velocity due to proliferation-induced volume expansion, and
the latter describes diffusion and local rate of uptake of nutrients by
(tumor) cells.

2 We apply herein a reduced version of a general agent-based
cell model [24, 30, 33, 34] (preprint of [24] at: http://www.
MathCancer.org/Publications.php#macklin11 jtb) that improves
over a previous cellular automaton approach [35, 36]. Accordingly,
we only determine averaged tumor population dynamics of mitosis
and death, where these phenotypic states are governed by stochas-
tic processes which depend upon the cells’ internal machinery and
its sampling of the heterogeneous microenvironment (nutrient con-
centrations σ). The population dynamics can be averaged across the
viable rim within a duct to obtain an equation governing the total
number N of viable cells therein: dN/dt = (PI/τP − AI/τA) · N,
and then derive Eq. (3).

http://www.MathCancer.org/Publications.php#macklin11_jtb
http://www.MathCancer.org/Publications.php#macklin11_jtb
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by viable tumor (duct space occupied by viable tumor)
from the histopathology images as described below.

The overall population dynamics is substrate-
dependent. We estimate the mean nutrient level across
the viable rim of tumor cells (within an idealized cylin-
drical duct of radius Rduct and viable-rim thickness
T) in Eq. (3a) by solving the diffusion equation (see
footnote 1) to obtain [24, 30]:

〈σ〉 = σH

I0

(
Rduct−T

L0

) · 2L0

2RductT − T 2

·
[
Rduct · I1

(
Rduct

L0

)
− (Rduct − T )

·I1

(
Rduct − T

L0

)]
, (4)

where σH is the threshold concentration value at a
distance T from the duct wall (viable-rim thickness),
below which cells become necrotic due to lack of oxy-
gen and nutrients (we set σH = 0.2 [24, 30] based
upon published models for breast cancer [37, 42]),
and In is the n-th order modified Bessel function of
the first kind. We use the average duct radius 〈Rduct〉
and viable-rim thickness 〈T 〉 values from duct mor-
phometric measurements (see below) in place of Rduct
and T in Eq. (4). We set [30] the intraductal diffusion
length L0 = (D/λ)1/2 by averaging the measurements
of T in several ducts in resected tissue for each patient:
L0 = < T > (Table S2). Note that this measurement
requires necrosis to be present in the histological sec-
tions of DCIS.

2.3. Selection of cases and immunohistochemistry

Our index series of 17 cases has DCIS tumors rang-
ing in maximum dimension from 1–9.8 cm with a
median value of 4.0 cm. Among these 17 cases, 12 of
them, also used in our preliminary study [30], were col-
lected and processed in 2008 (Cases 8–28), while the
other five were obtained in 2009 (Cases 39–51). Our
samples include four solid-type (23.5%), six cribri-
form (35.3%), and seven solid / cribriform mixed-type
(41.2%) growth patterns. Grade distribution for our
series was as follows: four cases (23.5%) were low,
two (11.8%) were low/intermediate (represented by a
numerical grade of 1.5 in Table 2), four (23.5%) were
intermediate, and seven (41.2%) were high grade. A
minimum of one and maximum of three formalin fixed

paraffin embedded (FFPE) blocks of tumor tissue were
selected from each case for immunohistochemistry
measurements. Blocks were selected that contained the
highest density of tumor cells. Each block had a min-
imum of 1 cm2 surface area of breast tissue for exam-
ination. Five (5) micron sections were cut for staining
either with Hematoxylin and Eosin (H&E) to visualize
the tumor, or with immunohistochemistry for a specific
antibody to identify and quantify a particular antigen
and its subcellular location at a minimum resolution of
approximately 2 �m (spatial resolution equivalent to
quarter-width of nucleus). We measured the prolifera-
tive index (PI) as the fraction of cells that were Ki-67
positive. Ki-67 is a nuclear antigen that is expressed
throughout cell cycle, except during portions of the G1
phase, and is the gold standard for measuring PI (e.g.,
[43]). Ki-67 was stained with MIB-1 (clone of antibod-
ies from Dako). Cleaved caspase-3, an executioner pro-
tein that has been documented as an apoptotic marker
throughout most of the apoptotic cycle (e.g., [44]), was
used to quantify the apoptotic index AI, i.e., the fraction
of cells in the apoptotic state. Cleaved caspase-3 was
stained using antibody purchased from Biocare Medi-
cal. For both stains, five micron sections were hydrated
to water and antigen retrieved in citrate buffer pH6. The
sections were blocked with 3% hydrogen peroxide for
5 minutes, whole goat serum for 5 minutes, incubated
with antibody to either Ki-67 or cleaved caspase-3
for 30 minutes followed by goat anti-rabbit IgG-horse
radish peroxidase (HRP) for 15 minutes, and then
localized with diaminobenzidine (DAB) for 5 minutes.
Slides were counterstained with Mayer’s hematoxylin
for 5 minutes, dehydrated and cover-slipped.

Quantification for AI and PI on immunohisto-
chemistry stained sections was performed as follows.
Magnified images (100× and 200×) of multiple areas
of DCIS were analyzed using computational image
processing routines. The image samples of the 2008
batch were preprocessed by a custom-built Visual
Basic color-thresholding plug-in for Image Pro Plus
4.5 to quantify the total number of tumor cells (denom-
inator to AI and PI) and the number of Ki-67 positive
nuclei (numerator for PI) in a selected duct. The
image samples of the 2009 batch were preprocessed
and counted by a MATLAB program developed by
our group, using three-cluster k-means to distinguish
the positive and the negative nuclei and the image
background3 [45]. Images that were too faint for

3 Preprint to be made available at http://www.MathCancer.org

http://www.MathCancer.org
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the computational routines to distinguish the stained
cells from the background were counted manually. We
counted a minimum of 1891 cells per tumor specimen
(Table S1). We expect the k-means algorithm, which
can achieve better separation of the chromogen stain
color space versus the background stain color space on
IHC because it is using the individual spectral output
of the images, to be more consistent than grayscale-
thresholding techniques currently in widespread use,
which do not use spectral information but rely on rela-
tive intensity of colors. Based on 21 randomly selected
duct images, the individual results for PI and AI gen-
erated by the k-means algorithm differed from the
manual cell counts by 23.2% on average. The result-
ing difference in the parameter A values for the same
images was only 6.4%. We attributed the differences
in cell counts for AI and PI to systematic errors due to
image quality that partially canceled each other when A
was calculated form their ratio. Thus we conclude that
the calculation of A is quite robust against systematic
counting errors. We also note that the total number of
cells is approximately the same in both the Ki-67 and
the cleaved caspase-3 sections; thus AI/PI reduces to
the ratio of positive cleaved caspase-3 cells to positive
Ki-67 cells. The automated and manual counts of the
positive cells are more robust due to the darker color
of the positive stain when grayscale thresholding is
used, and to the spectral separation of the positive stain
when the k-means algorithm is used. In addition, the
smaller number of cells to count improves the manual
accuracy.

The IHC counts for each case are given in Table S1 in
the Supplementary Data. We estimated the variations
of A (Eq. 3) using Taylor expansion of the standard
errors of the mean (SEM) of the PI and AI measure-
ments performed on individual duct cross sections for
each tumor [46, 47], thus accounting for the combined
effects of intra- tumor heterogeneity (e.g., due to phe-
notypic and microenvironmental differences), sample
sizes and measurement errors.

There was significant variation between cases.
Among the 17 cases, one intermediate grade cribri-
form type case (Case 21) did not display any positive
staining for cleaved caspase-3. In addition, one high-
grade case (Case 13) displayed a high background of
non-specific cleaved caspase-3 staining suggesting that
the staining procedure failed. Given the clustering of
values for AI and PI that was observed as a function
of grade (see discussion that follows) the values for
AI for these two cases was substituted with the mean

value for AI for the remaining intermediate and high
grade tumors, respectively.

2.4. Tumor-size and morphometric measurements

Tumor size was estimated by reviewing the pathol-
ogy gross description and individual tumor sections.
The dimensions for small DCIS present on a single
slide (<1 cm in greatest extent) were estimated by mea-
suring the span on a single slide using a measuring tool
(Olympus BX 41 with ocular micrometer). For larger
DCIS, the width was estimated by multiplying the
number of slices containing DCIS by the average width
of a slice. The standard procedure for DCIS surgical
specimens is serially slicing the gross specimen from
medial to lateral. The thickness of individual slices was
estimated by dividing the width of the specimen by the
total number of serial slices. Width in the medial to
lateral plane was estimated using the number of slices
involved multiplied by the average width of a slice.
Adjacent sections that represented DCIS in its entirety
in a cross section of either the anterior-posterior and
superior-inferior planes were laid out and the extent of
the DCIS estimated by measuring the distance between
the furthest points to which it extended across the glass
slides. This approach is similar to that used in the lit-
erature to estimate pathologic size of DCIS (e.g., [48])
and is considered the most accurate means of measur-
ing tumor size [49]. The 17 cases used in this paper
did not include any multicentric DCIS, which is con-
sidered to be independent tumors present in more than
one quadrant [50].

Typically DCIS is characterized by the largest
measurement along any single dimension, called the
“greatest dimension” of the tumor. We used instead
the “geometric mean” diameter (the cube-root of the
product of the three measured dimensions of the
tumor, which is a better indicator of the volume), and
compared this to the diameter predicted by Eq. (1).
Although the greatest dimension for our series of duc-
tal carcinoma cases was as high as 9.8 cm, none of the
tumors had a geometric mean larger than 4.58 cm. The
full list of measured dimensions is reported in Table
S3.

Mammographic measurements of tumor dimensions
were performed by reviewing the images and deter-
mining the maximum distance between suspicious
calcifications belonging to the target lesion in the sagit-
tal (anterior-posterior), transverse (medial-lateral), and
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coronal (superior-inferior) planes. As for the pathology
specimens, the geometric mean of the mammographic
dimensions was calculated, while the full list of the
measurements is reported in Table S3.

We measured f (the volume fraction of the viable
tumor) by taking multiple H&E images of DCIS at
40× and calculating the fraction of area occupied by
viable DCIS in the representative blocks selected for
study. If adipose tissue was present in the slides, the
corresponding area was not included in the denomina-
tor of f for consistency. Our basis for this approach is
that the vasculature is predominantly associated with
the stroma of the breast and not in the adipose tissue.
We used this 2-D area fraction as an estimate of the
3-D volume fraction, which is most accurate when the
ducts seen in the tissue block are predominantly cross
sections of tubular structures. Because of difficulties
in estimating f from individual sections that may have
included variable amounts of surrounding stroma, we
averaged f across all of the index series based on the
assumption that duct density is relatively constant in
the affected population.

Duct radius and viable-rim thickness were mea-
sured individually for each patient using a calibrated
scale embedded in the pathology images (to take into
account the effect of local cellular uptake on the oxygen
concentration). Corresponding diffusion penetration
lengths ranged in value from 77–224 �m, which com-
pare well with typical published values of 100 �m
under ideal conditions (e.g., [37]). The larger values
corresponded to low grade cribriform DCIS where the
local density of cells is less than it is for higher grade
and more dense (solid) DCIS. This result corresponds
to our expectations based on the relatively lower oxy-
gen uptake by low-grade cribriform type DCIS (per
unit tissue volume) due to the lower density of tumor
cells. The lower density can be attributed to the type of
DCIS, as cribriform type has internalized acinar-like
spaces, and the lower PI values observed for low grade
DCIS tumors.

These measurements for each case are given in
Table S2 in the Supplementary Data. Because Eq.
(4) assumes the presence of a peri-necrotic boundary,
the model calibration described above is best suited
to solid, cribriform and mixed solid-cribriform type
DCIS, where a viable rim thickness can be readily iden-
tified, in contrast to micropapillary type DCIS, which
is characterized by ducts with hollow centers. To be
more consistent with the assumptions of Eq. (4), and
thus to obtain more accurate parameter calibration, we

excluded duct cross sections with non-necrotic hollow
centers in the 2009 batch, whereas all samples were
previously considered [30].

3. Results

Our simulation studies [1] of the growth of the DCIS
surgical volumes over time (not shown) using input
parameters calculated as in Methods indicate that more
than 80% DCIS tumors, assuming that they are not
palpable and therefore would not be self-diagnosed,
should have reached at least 95% of their (quasi-)steady
state surgical volumes by the time they were detected
by yearly mammography screening, also assuming
slow-to-non-varying tumor cell phenotypic properties
during the course of their growth. This model predic-
tion is consistent with published findings that nearly
80% of in-situ tumors identified by mammographic
screening are either static with respect to size, or have
very slow growth rates consistent with an approach to
steady state [51, 52]. Thus we used Eq. (1) to compute
the steady-state geometric-mean diameter of the sur-
gical tumor volume from the parameters A = λA/λM
and L according to the protocol described in Meth-
ods (Fig. 1) for comparison with tumors measurements
from pathologic specimen studies and from the mam-
mographic images. Note that for “large” tumors where
R exceeds the value of L, Eq. (1) reduces to a simple
expression for the geometric mean diameter:

2R = 6 · L/A. (5)

Thus, for large tumors the surgical volume is directly
proportional to the ratio of L to A, where larger L indi-
cates adequate access to nutrients by diffusion deeper
into the duct, and A represents an index of cell death
relative to cell proliferation (see Methods). Examining
our measured values for L and for A (see Table 2), we
can see that we are effectively in the range where this
simplification applies. These values for L represent the
quantified effect that diffusion processes within tumor
tissue have on the size each tumor can achieve.

As shown in Fig. 2 the simplified formula (Eq. 5)
allows us to compare in physical units (i.e., centime-
ter) the tumor sizes (the “Path” column from Table 2)
measured from pathologic specimens and plot these
against L/A values calculated from Ki-67 prolifera-
tive index, cleaved caspase-3 death index and viable
rim thickness as per Eq. (2) (the error estimation is
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described in caption). Tumor sizes correlated with the
parameter L/A (linear correlation coefficient R2 = 0.74
by removing two outlier cases 8 and 14), as predicted
by the simplified version (Eq. 5) of our model. Size
increases proportional to the ratio 1/A of cell mito-
sis over death and to the nutrient diffusion penetration
length L, i.e., availability of nutrients limits tumor
growth. This correlation demonstrates the predictive
value of the biophysical model of tumor growth. A pre-
liminary version of this figure was previously reported
[30, Fig. 10.8], where the full formula (Eq. 1) was
plotted against the 2008-batch of data only in a math-
ematically non-dimensionalized units.

Three cases (8, 14, 48 in Fig. 2) deviate signifi-
cantly from the predictions of the model curve Eq.
(5). In all three cases the estimated mean geometric
diameter is greater than 5.01 cm. In contrast, cases 8
and 14 are small tumors (geometric-mean diameter
∼1 cm); closer examinations of the tissue samples of
these two cases show relatively high proliferation and
thick viable rims, suggesting substantial oxygenation
within the tumors. Hence, they are likely still in the
rapid-growth stage, where Eq. (1) (and therefore Eq.
(5)) does not apply (see Methods). In fact, the com-

puted final diameter for case 14 is nearly 70 cm, which
is physically impossible. For case 8 the computed geo-
metric mean diameter is approximately 11 cm, which
would also be a very large tumor; for case 48 the
geometric mean diameter is 5.8 cm. Simulations of
the time-dependent model [1] indicate that the tumor
should reach nearly 90–95% of their final size stage by
approximately 2 months for the values of A measured
in the 17 cases, thus predicting roughly a 2/12 = 17%
probability of a tumor being diagnosed still in this
stage using yearly mammogram screenings. This is
consistent with the observation that these three cases
represent 3/17 or approximately 18% of cases exam-
ined here, thus corroborating the hypothesis that these
three outliers should be indeed still in the early, more
rapid growth phase. In addition, for these three cases
the fewest tissue samples among the entire 17 cases
were analyzed by IHC, which, together with the gener-
ally low frequency of apoptosis, potentially introduced
a higher degree of significant error in the measurement
of A.

Mammographic measurements demonstrate
roughly equal numbers of overestimates versus
underestimates of the tumor size, and are not a reliable

Fig. 2. Tumor size correlates with the death-to-proliferation ratio parameter. Tumor geometric-mean diameters 2R (dashed) vs. A/L predicted
by Eq. (5) compared to the corresponding pathology measurements from the 17 excised tumors (symbols, with de-identified case numbers).
Standard errors of the mean (SEMs) are reported [46, 47] (see Methods for details) (see also Table 2). SEMs for L/A were calculated as the
summation of the first order in Taylor expansion from the variability of the AI and PI stains and the viable-rim thickness measurements in each
tumor. For an explanation of cases 8, 14 and 48 see text of Results section. Previously [30, Fig. 10.8], we used the 2008 batch of patient tumor
volume data alone (cases 8–28) to assess the feasibility and accuracy of a prototype parameter calibration protocol.
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Fig. 3. Mammography, grade are poor predictors of tumor size.
Comparison between the geometric-mean tumor dimension from
mammograms and from pathology analysis of 17 excised DCIS
tumors (de-identified case numbers are reported). Mammography
overestimates tumor size in ten cases and underestimates the other
seven. Correlations of both the mammography and the nuclear grade
(in legend) with the tumor sizes are poor at best.

patient-specific predictor (R2 = 0.47), as shown in
Fig. 3. For example, specimen 19 has a geometric
mean diameter of approximately 6 cm by mammog-
raphy but only approximately 2 cm by pathological
examination of the surgical specimen after excision.
In contrast, specimen 18 L was less than 1 cm by
mammography but was >3 cm by pathologic analysis
after excision (both are high grade tumors). See also
Tables 2 and S3. Note that in both cases the size
correlation between the pathologic examination and
the model prediction are very close.

Histological grades also showed weak to no correla-
tion with tumor sizes (Fig. 3;R2 = 0.08 or the spearman
rank correlation coefficient ρ = 0.16). Consistent with
previous work [53], the apoptotic and proliferative
indices tracked similarly with grade of tumor (Fig. 4a;
ρ = 0.82 for PI and ρ = 0.77 for AI). Note that these
two indices show very similar trend when graphing
index versus grade. Thus their ratio would be only
weakly dependent on grade (ρ = −0.26), corroborat-
ing the finding that net proliferation (i.e., ratio of PI to
AI) and thus tumor size should have a weaker correla-
tion with grade.

Finally, viable-rim thickness of tumor in ducts
and thus the nutrient diffusion penetration length L
decrease as a function of histological grade (Fig. 4b):
more proliferative, high-grade tumors result in tightly
packed patterns and thus are likely to hamper oxy-

Fig. 4. Correlations of IHC and morphometric measurements with
nuclear grade (with spearman rank correlation coefficients). (a) Aver-
age apoptotic (AI) and proliferative (PI) indices for each tumor
as increasing functions of (modified Black’s) nuclear grade (one
overstained-AI tumor and one zero-AI tumor were excluded). (b)
Nutrient diffusion penetration length L from average measured
viable-rim thickness T in each tumor’s ducts is a decreasing function
of nuclear grade.

gen and nutrient diffusion. Diffusion limits tumor size.
Lack of oxygen in these high-grade tumors would drive
hypoxia-inducible factors and cell migration, leading
to penetration of the ductal wall and infiltration of the
tumor in the breast stroma, as has been previously
reported [21, 22].

4. Discussion

The death-to-mitosis ratio A is a strong predictor of
tumor volume, thus suggesting that cell death immuno-
histochemical measurements should be performed on
biopsied tissue (in addition to cell proliferation) to
aid in the surgical planning. Studies seeking correla-
tions between pathology based measurements of actual
tumor volume and histological grade or tumor dimen-
sions predicted from mammography indicate that these
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are unreliable sources for estimates of tumor size [54,
55]. Excluding the outlier cases 8 and 14, then the
pathology based tumor sizes correlate with L/A (lin-
ear correlation coefficient R2 = 0.74) as predicted by
Eq. (5). In contrast the pathology based tumor size does
not correlate with grade for the same cases (R2 = 0.08).
Considering that grade is a subjective assessment of
nuclear size and nuclear pleomorphism and thus not a
precise quantification, we also calculate the spearman
rank correlation coefficient ρ = 0.16 between tumor
size and grade, still revealing a very weak correla-
tion. Examining the data further, we find that grade
does correlate with PI (ρ = 0.82) and AI (ρ = 0.77). The
correlation is less pronounced with L (ρ = −0.62) and
much weaker for A (ρ = −0.26). Thus, while grade is
informative with regard to PI it is not informative with
respect to expected tumor size, while the ratio of L/A
is informative. If we only consider the cases where
the mean geometric diameter is less than or equal to
5.01 cm, then the correlation of L/A with the geometric
mean diameter of the pathology-based size is even bet-
ter (R2 = 0.88). In comparison, the correlation of the
geometric mean diameter of the pathology-based size
with the geometric mean diameter based on mammog-
raphy measurements is poor (R2 = 0.47 excluding the
two outlier cases). It is the same when case 48 is also
excluded.

Our findings demonstrate that morphology and other
tumor characteristics (e.g., margin width, mammo-
graphic size, extent of involvement of the cores by
DCIS, in addition to solid type, high grade, presence of
necrosis, and presence of calcifications), which have
been correlated with compromised surgical margins
[14, 56], are histological surrogates for mechanis-
tic parameters. Using the novel, biophysics-based
approach applied here, we can more accurately predict
surgical volumes in the form of explicit mathemat-
ical functions. We can conclude that the ratio of
parameter L, the characteristic diffusion length from
morphometric studies, to A, the death-to-mitosis ratio
as determined by cleaved caspase-3 and Ki-67 stain-
ing, is a strong predictor of steady state tumor volume.
In comparison, mammographic estimates have a poor
correlation.

Our results also indicate that while high grade corre-
lates with PI, it has poor correlation with A, L and thus
with tumor size. We note that we are able to obtain
more accurate counts of both AI and PI from higher
grade tumors, resulting in more accurate prediction of
their steady-state tumor diameters (Fig. 2 and Table 2).

High-grade tumors are more likely to be associated
with necrosis, which is required so that we can deter-
mine L from the viable rim thickness. Thus, for high
grade tumors diagnosed on core biopsy, measurements
of A and L could not only be feasible, but they might
be used to predict tumor volume with better accuracy
than current methods.4

We can interpret these results as a biophysical expla-
nation of how diffusion processes within the tumor
tissue limit the maximum size that the tumor could
achieve in an otherwise ideal environment with excess
nutrients. Highly proliferative tumors with low apop-
totic rates and with good penetration of nutrients will
be larger; however, as the diffusion penetration length
gets smaller then access to nutrients to support growth
is negatively impacted and the expected tumor size
decreases.

Despite the small number of tumor ducts used in
this study to calculate the input parameters A and L
to the biophysical model for each patient, the model
predicted diameter and the pathology determined
geometric mean diameter strongly correlate, demon-
strating the potential of the mathematical pathology
approach for translational application. In contrast, the
image predicted geometric mean diameter has a poor
correlation with the actual tumor geometric mean
diameter determined from pathology. We envision
future work with the model to validate a role in predict-
ing surgical volumes required for adequate excision
of DCIS, and for predicting whether there is a high
likelihood of residual disease after excision with close
margin based on the expected tumor volume versus the
excised surgical volume.

One aspect of surgical planning that has not been
addressed here is how shape impacts the individ-

4 High grade when combined with presence of necrosis has been
associated with an increased risk of invasion [57]. We note that the
measured value for L tends to cluster at a range of lower values
for the high-grade tumors (see Fig. 3c and Table 2). High-grade
tumors are more proliferative and result in ducts with more tightly
packed cells. This higher cell density will hamper oxygen and nutri-
ent diffusion to the inner part of the duct. When these tumors
involve ducts with a radius larger than L, proliferation is reduced
and ischemic necrosis occurs. Lack of oxygen has been postulated
to drive hypoxia-inducible factors leading to penetration of the duc-
tal wall and infiltration of the tumor in the breast stroma [21, 22].
This may explain the correlation of grade and necrosis with inva-
sion. It does not explain the correlation of mammographic size with
invasion, although this might be due to the fact that more extensive
calcifications across the breadth of the tumor are an indicator of
ongoing hypoxia and necrosis.
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ual dimensions once the surgical volume has been
estimated. As can be seen from the individual mam-
mographic measurements (see Table S3) these x-ray
based images that detect calcifications in patterns
associated with the Presence of DCIS are not very
accurate in determining the actual size of a tumor,
nor are they very accurate in predicting the relative
axes of the tumors. It is likely that different size
distributions of ducts are present along the three dimen-
sions of the tumor, thus leading to different extents
of necrosis along the different dimensions and there-
fore inaccurate relative dimensions. For example tumor
in smaller ducts along one dimension may have suf-
ficient oxygen to preclude ischemic necrosis. This
dimension might be underestimated, while tumor in
larger ducts growing in another dimension may be
adequately measured because of necrosis. Calcifica-
tions within lesions such as columnar cell change
confound the measurements.5 Other imaging modal-
ities such as magnetic resonance imaging (MRI) or
possibly ultrasound may be able to provide more accu-
rate information regarding the relative proportions
of the dimensions of a tumor. A model assisted 3-
dimensional image combining MRI and a predicted
volume from the model may provide better technical
assistance to the surgeon. Estimating the proximity of
margins and the probability of tumor left in the patient
in a 3-dimensional image may become increasingly
important as the quantity of radiation is reduced in the
adjuvant setting.

Breast architecture and the arborization of ducts,
unique to each individual although on a common
body plan, may also influence the actual geometry
and thereby local extension of intraductal tumor
cells. Imaging modalites other than mammography,
such as MRI, ultrasound, and optical approaches, for
the breast are rapidly coming generally available at
affordable cost. Such newer imaging provides detailed
information about duct architecture and could then be
used as a map to input the simulated cancer growth
derived from our model, thereby greatly enhancing
the predictive power of the tumor size. Statistical
approaches have also described a number of genes
expressed in more aggressive DCIS [58] which could

5 Mammography is not a reliable indicate because it is dependent
upon calcifications and these can often be due to glandular secretions
in some of the glands that have undergone columnar change. Only
about 20% of biopsies have tumor present (invasive or in situ); hence
most calcifications are benign.

be identified in biopsy samples and further empower
our predictive model.

In addition to contributions to planning for treatment
of high grade DCIS, the model also has implications
in assessing the utility of screening mammography.
The expected result of a screening program begin-
ning at age 40 that would detect pre-invasive or early
invasive cancers was a reduction in the number of
invasive carcinomas or deaths from cancer later in
life. A significant reduction has not been observed,
leading public health officials to question the suc-
cess of screening mammography. Specifically, a rapid
growth phase (on a time scale of 2–3 months) is fol-
lowed by a prolonged phase of slow growth (on a time
scale of years) as tumor growth becomes hampered
by diffusion gradients of cell nutrients. Using input
parameters that represent a physiological range seen
in DCIS tumors excised at the University of Texas
MD Anderson Cancer Center, the model predicts that
DCIS tumors will have reached a stationary volume
within approximately three months [32]. Thus, within
a year’s time most of the in situ tumors will have
reached their steady-state volume. If these tumors do
not progress to an invasive state, it is unlikely that they
will be detected by self-palpation prior to screening.
In contrast, aggressive tumors that rapidly progress
to an invasive state will begin a rapid growth phase
again, now that their growth rate is no longer con-
strained by the need for nutrients to penetrate the
intraductal space. We would expect these tumors to
become large enough to be self-palpated prior to being
detected on screening mammography. This expecta-
tion is reflected in the finding that symptom-detected
breast cancers have more copy number imbalances,
which is associated with more aggressive behavior
[59]. Thus, the screening process is biased to detect
less aggressive tumors that do not progress to an inva-
sive state. Based on our estimates of the time to reach
steady state, approximately 15% of tumors are detected
prior to reaching steady state. The benefit to be real-
ized in terms of reduced morbidity and mortality in
subsequent decades would only be for the proportion
of those tumors that were detected early (15%) and
that were likely to invade within one year (67–75%
based on SEER estimates of DCIS diagnosed with and
without co-existing invasive carcinoma). This would
result in a benefit of reduced morbidity and mortal-
ity in approximately 10% of the cases diagnosed early
by screening. It may be that mammographic screen-
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ing, which is limited to yearly surveillance at least in
part because of the risk incurred by radiation, may
not be suitable as a screening tool for the timeframe
over which DCIS may develop, reach steady state,
and progress to invasive carcinoma. We are currently
compiling these results for a forthcoming publica-
tion.

This study represents a proof of principle that it
should be possible to incorporate a mathematical mod-
eling step within current clinical practice to improve
assessment of tumor volumes and thus the outcome of
surgery. Since IHC and morphometric measurements
are performed on patient-specific breast biopsies, the
clinical value of this mathematical pathology approach
is that the prediction and resulting surgical planning
can be tailored for that particular patient.
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Supplementary data

Tables S1 and S2 list the distribution (mean ±
standard deviation) of the raw immunohistochemistry
and morphometric data for each of the 17 tumor cases.
Table S3 lists the measured dimensions of the tumor-
affected volumes of these 17 tumor cases.

The PI and AI of each duct were calculated as the
ratios of the numbers of the positively stained Ki-67
and Caspase-3 cells to the total numbers of the cells
within the duct cross sections on the examined slides.

We averaged these per-duct calculations over all the
processed ducts for each case (Table S1: columns 2
and 3). Also reported are the numbers of the counted
duct cross sections (Table S1: columns 4 for PI and 5
for AI), as well as the numbers of the total counted cells
(Table S1: columns 6 for PI and 7 for AI). Cases 8–28
were counted using the grayscale algorithm, while
cases 39–51 were processed by the k-mean algorithm.
The algorithms occasionally fail to count certain duct
cross sections, for which the cells were counted man-
ually.

We calculated the average Rduct and T (Table S2:
columns 2 and 3) over only the ducts containing
necrotic cores or entirely filled with viable tumors,
excluding hollow ducts. Case 15 showed no necrotic
cores, resulting in 〈Rduct〉 = 〈T 〉. Case 48 also resulted
in 〈Rduct〉 = 〈T 〉 because its necrotic regions were rel-
atively small. The number of ducts used for these
measurements for each case is also reported (Table S2:
column 4), where the sample sizes are mostly smaller
than those of AI and PI because ducts with hollow
centers are disqualified due to key assumptions of the
model (see Methods).

The viable volume fractions f (Table S2: column 5)
were calculated as ratios of viable tumor volumes to the
total DCIS volumes including the host tissues outside
the ducts. We obtained f using low-resolution (40 ×)
images that showed several ducts instead of high-
resolution (100 ×) ones that focused on the vicinities of
just one or two ducts that could consequently overesti-
mate f. However, we still found that the calculation of
f was considerably affected by sampling the images.
Given that our model is relatively less sensitive to
f (only through a square-root law in Eq. (2b)), we
adopted the average f over all the tumors for our calcu-
lation to increase robustness, which gave 〈f 〉 = 0.24
with the current 17 cases.

We also calculated the tumor cell density in each
duct by dividing the total tumor cell count by the viable
rim area, and averaged these over all the processed
ducts for each case (Table S2: column 6).

The volumes of the tumor-affected tissues for each
case were estimated by pathologically examining the
specimens of the excised tissue samples. The three
dimensions (Table S3: columns 2–4) were respec-
tively obtained along the AP (anterior-to-posterior),
SI (superior-to-inferior), and TS (medial-lateral) axes
relative to the breast. The mammographic estimations
along the same three axes are also reported (Table S3:
columns 5–7).
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Table S1

Raw immunohistochemistry data for each case

Case PI (%) AI (%) Number of Number of total
ID counted ducts cell counts

PI AI PI AI

8 9.37 ± 3.41 0.24 ± 0.23 5 3 3178 3539
13 25.90 ± 5.80 8.59 ± 1.06∗ 3 5 2318 913
14 7.87 ± 3.43 0.04 ± 0.06 8 10 11595 13335
15 0.56 ± 0.30 0.10 ± 0.12 9 8 7311 4278
17 3.08 ± 1.97 1.07 ± 1.64 11 7 5480 4778
18.1 0.11 ± 0.16 0.04 ± 0.07 11 18 15308 15320
18.2 13.99 ± 1.95 0.86 ± 0.64 4 6 2006 2753
19 17.43 ± 9.25 0.64 ± 0.42 7 11 2398 3325
21 3.64 ± 1.82 0 12 4 8514 4509
22 16.08 ± 7.06 0.77 ± 1.08 13 10 6576 4581
23 17.07 ± 4.20 2.81 ± 3.01 6 16 2631 5768
28 19.78 ± 4.64 1.10 ± 1.22 33 28 9202 7881
39 3.30 ± 1.56 0.18 ± 0.16 5 7 1891 4384
40 4.39 ± 4.39 0.34 ± 0.58 24 31 22165 26588
42 3.33 ± 2.08 0.25 ± 0.24 11 20 3429 12022
48 5.03 ± 1.27 0.23 ± 0.17 6 5 3249 3040
51 16.24 ± 6.00 1.81 ± 1.59 24 23 8256 11654

∗ Over-stained samples.

Table S2

Raw morphometric data for each case

Case Duct radius Viable rim Number of Viable Cell density
ID Rduct (�m) thickness measured volume (105 cells/cm2)

T (�m) ducts fraction
f (%)

8 422.58 ± 51.00 183.22 ± 57.80 3 36.59 ± 2.81 4.77 ± 0.58
13 243.03 ± 117.64 96.43 ± 31.95 5 16.83 ± 2.64 2.79 ± 0.54
14 204.53 ± 45.28 171.83 ± 34.96 8 23.89 ± 8.41 8.51 ± 1.92
15 147.77 ± 58.06 147.77 ± 58.06 9 31.76 ± 4.59 8.83 ± 1.58
17 115.86 ± 41.80 108.92 ± 46.18 11 19.60 ± 12.94 5.94 ± 1.94
18.1 146.27 ± 48.98 116.35 ± 42.40 11 25.45 ± 10.79 11.20 ± 1.84
18.2 232.75 ± 55.86 111.71 ± 22.59 4 29.46 ± 7.67 3.44 ± 0.70
19 158.75 ± 75.98 78.87 ± 12.53 7 19.11 ± 4.45 3.21 ± 0.60
21 120.68 ± 73.45 113.11 ± 71.70 12 21.12 ± 5.50 5.57 ± 1.27
22 270.87 ± 97.59 97.08 ± 25.85 9 23.63 ± 7.53 4.52 ± 1.13
23 157.62 ± 73.13 134.78 ± 36.43 6 N/A 4.03 ± 0.36
28 135.51 ± 81.34 86.58 ± 36.52 33 26.85 ± 9.06 4.36 ± 1.44
39 119.60 ± N/A 77.55 ± N/A 2 22.03 ± 7.67 N/A∗∗
40 323.17 ± 33.22 223.91 ± 26.82 3 24.07 ± 6.08 N/A∗∗
42 191.82 ± N/A 148.70 ± N/A 2 29.49 ± 7.61 N/A∗∗
48 136.28 ± N/A 136.28 ± N/A 1 7.61 ± 4.95 N/A∗∗
51 293.21 ± 118.09 106.91 ± 24.24 6 20.97 ± 6.40 N/A∗∗

∗∗ Cell density was not calculated for these cases.

Table S3

Measured dimensions for each case

Case ID Pathological dimensions (cm) Mammographic dimensions (cm)

AP∗∗∗ SI∗∗∗ TS∗∗∗ AP∗∗∗ SI∗∗∗ TS∗∗∗

8 0.9 1.1 0.8 1.9 1.8 1.1
13 4.0 3.5 2.5 2.7 1.5 2.7
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Table S3

(Continued)

Case ID Pathological dimensions (cm) Mammographic dimensions (cm)

AP∗∗∗ SI∗∗∗ TS∗∗∗ AP∗∗∗ SI∗∗∗ TS∗∗∗

14 1.2 0.8 1.6 2.0 2.1 0.7
15 0.5 1.2 1.5 1.0 1.0 1.5
17 0.5 1.1 2.6 1.0 1.0 0.8
18.1 3.0 1.0 0.4 1.0 1.0 0.5
18.2 5.0 2.8 2.5 0.8 0.8 0.8
19 2.0 0.6 9.8 3.0 9.5 8.0
21 0.9 2.4 4.0 2.0 1.5 2.6
22 1.0 3.2 2.8 5.0 5.0 4.0
23 0.5 2.1 1.5 2.1 1.0 2.1
28 4.5 2.0 2.8 1.2 1.1 1.1
39 0.5 4.5 1.5 1.5 0.8 1.8
40 3.0 4.0 8.0 7.0 3.0 6.0
42 2.0 3.0 6.8 5.0 5.0 5.0
48 1.5 2.0 4.5 3.0 2.5 3.0
51 1.1 1.1 2.2 3.2 3.6 2.4

∗∗∗AP: anterior-to-posterior, SI: superior-to-inferior, TS: transverse plane (medial-lateral).
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