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We introduce an Ishikawa iterative scheme by the viscosity approximate method for finding
a common element of the set of solutions of an equilibrium problem and the set of fixed points
of a nonexpansive mapping in Hilbert space. Then, we prove some strong convergence theorems
which extend and generalize S. Takahashi and W. Takahashi’s results (2007).

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F be a
bifunction from C x C to R, where R is the set of real numbers. The equilibrium problem for
F:CxC — Ristofind x € C such that

F(x,y) >0, VYyeC (1.1)

The set of solutions of (1.1) is denoted by EP(F). Given a mapping T : C — H, let
F(x,y) = (Tx,y — x) for all x,y € C. Then, z € EP(F) if and only if (Tz,y — z) > 0 for all
y € C. Numerous problems in physics, optimization, and economics reduce to find a solution
of (1.1); for more details, see [1, 2].

Recall that a self-mapping S of a closed convex subset C of H is nonexpansive [3] if
there holds that

|Sx-Sy| < ||x-v|, Vx,yeC. (1.2)
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We denote the set of fixed points of S by F(S). There are some methods for approximation
of fixed points of a nonexpansive mapping. In 2000, Moudafi [4] introduced the viscosity
approximation method for nonexpansive mappings (see [5] for further developments in both
Hilbert and Banach spaces). Some methods have been proposed to solve the equilibrium
problem; see, for instance, [1, 2, 6, 7]. Recently, Combettes and Hirstoaga [6] introduced an
iterative scheme of finding the best approximation to the initial data when EP(F) is nonempty
and proved a strong convergence theorem. S. Takahashi and W. Takahashi [7] introduced a
Mann iterative scheme by the viscosity approximation method for finding a common element
of the set of solution (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert
space and proved a strong convergence theorem.

On the other hand, Ishikawa [8] introduced the following iterative process defined
recursively by

Xn+l = ApXp + (1 - an)synz
(1.3)
Yn = ,ann + (1 - ﬁn)an, Vn e N,

where the initial guess x is taking in C arbitrarily, {a,} and {f,} are sequences in the interval
[0,1].

In this paper, motivated by the ideas in [4-8], we introduce an Ishikawa iterative
scheme by the viscosity approximation method for finding a common element of the set of
solution (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space.

Starting with an arbitrary x; € H, define sequences {x,}, {y.}, and {u,} by

F(unly) +rl<y_un/un_xn> 20, vyEC,
n

Xn+l = anf(xn) + (1 - an)Syn, (14)

Yn = ,ann + (1 - ﬁn)sun, VneN,

where {a,}, {f.} C [0,1] and {r,} C (0, o).

We w111 prove in Section 3 that if the sequences {a,}, {f.}, and {r,} of parameters
satisfy appropriate conditions, then the sequences {x,}, {y.}, and {u,} generated by (1.4)
converge strongly to z € F(S) N EP(F). The results in this paper extend and generalize S.
Takahashi and W. Takahashi’s results [7].

2. Preliminaries

Let H be a real Hilbert space with inner product (-, -), and norm || - || and let C be a nonempty
closed convex subset of H. x, — x implies that {x,} converges strongly to x and x, — x
means that {x,} converges weakly to x. In a real Hilbert space H, we have

[l + (1= Dy = Mxll? + A= D]ly|* =20 =) ||x -y (2.1)

forall x,y € H and A € R; see [9].
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For any x € H, there exists a unique nearest point in C, denoted by Pc(x), such that
llx = Pc(x)|| < |lx = y|| forall y € C. Such a P is called the metric projection of H onto C. It is
also known that y = Pc(x) is equivalent to (x -y, y —z) > 0 forall z € C.

For solving the equilibrium problem, let us assume that the bifunction F satisfies the
following conditions:

(A1) F(x,x) =0forall x € C;
(A2) F is monotone, that is, F(x, y) + F(y,x) <0 for any x,y € C;
(A3) foreach x,y,z € C,

ltilrgl-“(tz +(1-t)x,y) <F(x,y); (2.2)

(A4) for each x € C, y — F(x,y) is convex and lower semicontinuous.
We recall some lemmas needed later.

Lemma 2.1 (see [2]). Let C be a nonempty closed convex subset of H and let F be a bifunction from
C x C to R satisfying (A1)-(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(z,y)+%<y—z,z—x>20, vy eC. (23)

Lemma 2.2 (see [5]). Let C be a nonempty closed convex subset of H, and let F be a bifunction from
C x C to R satisfying (A1)-(A4). For r > 0 and x € H, define a mapping T, : H — C as follows:

Tr(x)={zeC:F(z,y)+%<y—z,z—x>20, VyEC} (2.4)

forall x € H. Then, the following statements hold:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

T, (x) - T, ||” < (T, (x) - T, (y), x - y); (2.5)

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.3 (see [10]). Let {a,} be a sequence of nonnegative real numbers such that

an1 <(1-cp)a,+b,, VYneN, (2.6)
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where {by,} is a sequence of real numbers and {c,} is a sequence in (0,1) such that

(i) Zfzozl Cn = 0,

(ii) imsup, _,  (bu/cn) <0o0r 372, |by| < o0.

Then, lim,, _, a, = 0.

3. Strong Convergence Theorem

In this section, we show a strong convergence theorem which solves the problem of finding a
common element of the set of solutions of an equilibrium problem and the set of fixed points
of a nonexpansive mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C x C to R
satisfying (A1)—-(A4) and let S be a nonexpansive mapping of C into H such that F(S) N EP(F) #0.
Let f be a contraction of H into itself and let {x,}, {u,}, and {y,} be sequences generated by x; € H
and (1.4). If {a,,}, {Bn} C [0,1] and {r,} C (0, o0) satisfy the following conditions:

[ee) (o)
lim ar, = 0, Zan =, Z|an+1 - an| <,
nme n=1 n=1
[ee)
0 <liminfB, <limsupfy <1,  D}|fu1 = Pu| < o0, (3.1)
n— oo n—oo o
[ee)
liminfr, >0, Z|rn+1 — 1| < o0,
n— oo =1

then, {x,}, {y.}, and {u,} converge strongly to z € F(S) N EP(F), where z = Pr(s)ngp(r) f (2).

Proof. Let Q = Prs)nep(r)- Then Qf is a contraction of H into itself. In fact, there exists a €
[0,1) such that || f(x) — f(y)|| < allx — y|| for all x,y € H. So, we have that

1Qf ) = Qf Wl < lfx) = fF(WII < allx - vl (3.2)

forall x, y € H. Since H is complete, there exists a unique element z € H such that z = Q f(z).
Such a z € H is an element of C.
Let v € F(S) NEP(F). Then from u, = T,,x,, we have

lun — ol = [ITy, xn = Ty, 0l < [|2n = | (3.3)

forall n € N. Put M = max{||x; —v|, (1/(1-a))|f(v)-v]|}.Itis obvious that ||x; — v|| < M.
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Suppose ||x, — v|| £ M. Then, we have

[1%pe1 — 0| < aul| f(xn) — 0| + (1 = @) || Sym — 0|
< anl| f () = f@)[| + an| f (@) = ]| + (1 - @) | Syw — 2| (34)
< aan||x, — | + ‘xn”f(v) - 7)” +(1- an)”]/n - U”
On the other hand

”yn - z)” < ﬁn“xn -l + (1 - ﬁn)”sun -7

< ﬂn“xn - U” + (1 - ﬁn)”un - U”

(3.5)
< Pullxn =0l + (1 = fu) llxn — 0|l
= [lxn = 2.
Putting (3.5) into (3.4), we have
%041 = 0l| < aay||xn = ol + an || f (0) = 2| + (1 = an) 10 = 2
=[1-a,(1-a)]lx, -2 +an(1—a)w (3.6)

<l-a,1-a)]M+a,(1-a)M =M.

So, we have that ||x,.1 — v|| £ M for any n € N. And hence {x,} is bounded. We also obtain
that {u,}, {v.}, {Sun}, {Sy.}, and { f(x,)} are bounded. Next, we show that lim,, _, oo || X1 —
x|l = 0. In fact,

[y = ynall = [|Buxn + (1= ) St = [BraXna + (1= ua) Suna] |
= ”ﬂn(xn - xn—l) + (ﬂn - ﬂn—l)xn—l + (1 - ﬂn)(sun - Sun—l) + (ﬁn—l - ﬂn)sun—l ”

< |ﬁn - ﬁn—1|||xn—1|| + ﬂn“xn - xn—l” + (1 - ﬂn)“un - un—l” + |ﬂn - ﬂn—l | ”Sun—lnr
(3.7)
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and hence

1201 = xull = ||etnf (xn) + (1 = @) Sy — dna f (1) = (1 = A1) Sy ||
= ||t f (xn) = @nf (Xn1) + @ f (Xn1) = @noa f (X01)
+(1-a,)Syn— (1 =-a,)Syp1+ (1 —a,)Syp1— (1 —ap-1)Syna ||
< nal|xn = Xn-all + law = ana || f (en-0) | + (1 = @) | Y = Y|
+ ety = 1 ||| Syn-a |
< apal|xy — x|l + |y — @ ||| f (1) || + (1 — )
% [|Bn = Bt [l1Xn-1ll + Bullocn = xn-a |l + (1= ) Nt = tn-all + | B = P || Sttn-1 1]
+ latn = ctna || Syna |
= [Bn = an (B — @) ][I0 = xn1ll + latn = &l [[| f ) || + || Sy ][]
+ (1= )| B = Buct | Ulxnca | + 1Sttt 1] + (1 = ) (1= Bu) [t — tta |
< [Brn— an(Bn — @) l1xn — xpall + |y — a1 [Ky + (1 — ) | B — 1 | K2
+ (1= ) (1= Pu) lltn = -,

(3.8)
where K1 = sup{||f (xu)|| + |Syxll : n € N} and Ky = sup{||x,|| + ||Su,|| : n € N}.
On the other hand, from u,, = T, x, and 1,41 = Ty, Xn11, We have
1
F(un,y) + r—(y —Up, Un—Xn) 20, YyeC, (3.9)
1
F(tns1, ) + r—1<y ~ Uns1, Uns1 = Xn1) 20, Yy eC. (3.10)
n+
Putting v = 1,41 in (3.9) and y = u, in (3.10), we have
1
F(unr un+1) + r_<un+1 —Up, Uy — xn> >0,
" (3.11)

F(upi1,un) + (Up — Ups1, Uns1 — Xpe1) > 0.

Yns1

So, from the monotonicity of F, we get

<un+1 —u,, Uy — X _ Uny1 — xn+1> > O, (312)

n Tn+1
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and hence

n
<un+l —Up,Up — Up1 + Ups1 — Xp — ; (tns1 — xn+1)> > 0. (3.13)
n+1

Without loss of generality, let us assume that there exists a real number b such thatr, > b > 0
for all n € N. Then, we have

r
[ttns1 — unllz < <un+1 —Up, Xn+1 — Xp + <1 - = )(un+1 - xn+1)>

Tn+1
(3.14)
r
< et =l o =l [1.= 2t = ],
Tn+1
and hence
1
”un+1 - un” < ”xn+1 - xn” + r_lrn+l - rn|||un+1 - xn+1”
il (3.15)
1
S ”xn+1 - xn” + Elrn+1 - rnlL/
where L = sup{||lu, — x,|| : n € N}. So from (3.8), we have
||xn+1 - xn” < [ﬂn —ay (ﬂn - a)] ”xn - xnflll + |an - an71|K1
1
+ (1= an)|Bn = Pno1| Ko + (1= an) (1 = ) [l = xpa || + E|rn —7n1|L
=(1- “n(l - a))”xn - xn—l” + |an - an—1|K1
1
+(1-ay,) |ﬁn - ,Bn—l |K2 + (1 - an)(l - ﬁn)l_?|rn - rn—1|L'
(3.16)
Using Lemma 2.1 in [10], we obtain
Tim [l = x| = 0. (3.17)
From (3.15) and |r,,;1 — 1| — 0, we have
lim (|11 — y| = 0. (3.18)
n— oo

It follows from (3.7) that

Jg&”ynu - yn” =0. (319)
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Since x,, = ap-1 f (xp-1) + (1 — &p—1) Syu-1, we have

[l = Syl < llxn = Syu-all + |Syn-1 = Syal|

(3.20)
< e || (1) = Sy || + | Y-t =yl
From a, — 0, we have ||x, — Sy,|| — 0. For v € F(S) NEP(F), we have
[ = 0l = | T, 20 = T, 0l
<(Ty,xy - Ty, 0, %, — )
= (tty =0, Xn - V) (3.21)
_1 2 2 2
= 5 (Ihtn = 01 + llxs = 0P = 120 = 1],
and hence
[t = 0l < [l = 01 = It = 14a|*- (322)
Therefore, from the convexity of || - ||>, we have
[yn = 0|1* < Bullxw = 0I* + (1 = B) 1St - 0|
< Bullxn =0l + (1= fu) llun — oI
i i i (3.23)
< ﬂn”xn -o|”+ (1 _ﬂn) [”xn =" = ||xn — un| ]
= [Jac, — 0”2 - (1 - ﬂn)”xn - un”Z/
and hence
|¢n+1 = Ullz = ”lxnf(xn) +(1- lxn)S]/n - UHZ
<ay||f o) = o” + (1= @) || Sy - o||°
< | f (en) = 0" + (1 = @) |y = || (324)
< | f () = o1* + (1 = @) [llxn = oI = (1= o) 10 = ual?]
< || f () = 0|” + 11200 = 0l = (1 = @) (1 = ) 1200 — 1]
So, we have
(1= ) (1= Ba) %0 = tnl® < aal| f () = || + 1200 = 0 = | X1 = )12
(3.25)

2
< lxn”f(xn) - U” + |20 = a1l (1 = ol + |x0401 = 2|])-
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Without loss of generality, let us assume that there exists two real numbers * and f§ such that

1>pB>p,>p*>0forallne N. Hence,

(1= an) (1= B) 1 = all” < (1= ) (1= B 10 =

2
< || f () = 0|7 + lloen = sl (260 = Ol + [[2¢ne1 = 2[)).-

It follows that ||x,, — u,|| — 0. We also have

1St = xull < ||SYn = xa|| + || Sttn — S|
< |[Syn = x| + [|tn = yu|
S ”Syn - xn” + ”un - xn” + ”xn - yn”

= 1Sy — x| + lltn = xull + (1 = ) 1260 — Stanl-
It follows that
BNISun = xull < PullSttn = xull < [|Syn = x| + |1t = xall-
Hence, ||Su,, — x,|| — 0. Since
Sun = unll < St = xull + |20 = unll,
we also have lim,, _, .. ||Su,, — u,|| = 0. Next, we show that

limsup(f(z) - z,x, —z) <0,

n—oo

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where z = Pr(s)nep(r) f (2). To show this inequality, we choose a subsequence {x,,} of {x,}

such that

Jijr;o(f(z) - z,X,, — z) = limsup(f(z) - z,x, — z).

n— oo

(3.31)

Since {uy;} is bounded, there exists a subsequence {uy;;} of {uy;} which converges weakly
to w. Without loss of generality, we can assume that {u,;} — w. From ||Su, — u,|| — 0, we

obtain Su,, — w. Let us show w € EP(F). By u,, = T, x,, we have
1
F(un,y) + r—(y— Un, Uy —Xn) >0, VyeC.
n
From (A2), we also have

rl(y — Up, Un — Xn) = F(y,un),

(3.32)

(3.33)
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and hence,

<y — Uy, u"ir_ Xn > > F(y, un,). (3.34)

n;
Since (Uy, — Xp,)/1n, — 0and u,, — w, from (A4), we have

f(y,w) <0, VyeC (3.35)

FortwithO<t<landy e C,lety; =ty + (1 - t)w. Since y € C and w € C, we obtain y; € C
and hence F(y;, w) < 0. So we have

0=F(y,yr) StF(yry) + A= OF (yr,w) <IF(y1, ). (3.36)
Dividing by t, we get
F(y,y) >0. (3.37)
Letting t — 0 and from (A3), we get

F(w,y) >0 (3.38)

for all y € C and hence w € EP(F). We shall show that w € F(S). Assume w ¢ F(S). Since
Uy; — w and w # Sw, from the Opial theorem [11] we have

lim inf||u,, - w|| < liminf||u,, — Sw||
< iminf{[[uy, — Sty || + 1|Sts, — Seol]) (3.39)
< liminf||u,, — w||.

This is a contradiction. So, we get w € F(S). Therefore, w € F(S) N EP(F). Since z =
Pr(s)nep(r) f (2), we have

limsup(f(z) - z,x, — z) = lim (f(z) = z,xp, — z)

= lim (f(2) - z,uy, - 2) (3.40)

=(f(z)-zw-2z)<0
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From xy41 — z = a,(f (x4) — 2) + (1 — a,) (Sy, — z), we have

(1= a)?]|Syn = 2||* 2 1Xns1 = 2I* = 200 (f (Xn) = 2, Xpe1 — 2), (3.41)
|y = 2||* = [|Buxn + (1 = Bu)Stt — 2|

< ﬁn“-xn - Z”2 + (1 _ﬂn)llsun - z”z

(3.42)
< Pulloen = 2I* + (1= ) un - 2]
< loen = 2%
It follows that
xp —z|* < (1- an)?||Syn - z||2 + 200, (f (Xn) = 2, Xns1 — Z)
<(1-an)?||yn - z||2 + 20, (f (%) = f(2), Xp1 — 2)
+2a,(f(2) = 2, X1 — 2)
< (1= ap)?[lxn = 2[1* + 2anal 12, = 2| %01 - 2| (343)
+20,(f(2) — 2, %p41 — 2)
< (1= ) = 21 + anallen = 2IP + s - 21
+20,(f(2) — 2, Xpa1 — 2).
Hence
%1 — z||* < %”xn —z|*+ %U(z) — Z,Xps1 — Z). (3.44)

From a,, — 0, we know that there exists a positive integer ny, such that1 > 1 - a,a > 1/2 for
all n > ny. Then

(1-ay)’+aza 1-2a,+aya a2
1-a,a B 1-a,a 1-a,a
1 2(1-a)a, . a? (3.45)
B l1-aya 1-ana

<1-2(1-a)a, + 20(,21, Vn > ng.
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Putting above inequality into (3.44), we get

— 2
xXni1 — zlI* < (1 =2(1 - a@)a,) ||, — z||* + 2Ma? + ﬁo Vn > no, (3.46)
—Un

where M = sup{|lx, - z|* : n € N}, and 0, = (f(2) — 2, Xus1 — 2)-
It follows from Lemma 2.3 that

x, — z € F(S) NEP(F). (3.47)

It follows from ||x, — u,|| — 0and (3.42) thatu, — zand y, — z. O
By Theorem 3.1, we can obtain the following new result.

Corollary 3.2. Let C be a nonempty closed convex subset of H. Let S be a nonexpansive mapping of C
into H such that F(S) #0. Let f be a contraction of H into itself and let {x, } and {y,} be sequences
generated by x1 € H and

Xn+l = anf(xn) + (1 - “n)Synr

(3.48)
Yn = ﬂnxn + (1 _ﬂn)spcxn, Vn € N.
If {an}, {Bn} C [0, 1] satisfy the following conditions:
lima, =0, Z“" = oo, Z|“"+1 —ay| < oo,
n—e n=1 n=1
(3.49)

0 <liminfB, <limsupf, <1, Z'ﬂ"” - ﬁn| < oo,
n—oo n=1

n—oo

then, {x,} and {y,} converge strongly to z € F(S), where z = Pr(s) f (2).

Proof. Put F(x,y) =0forall x,y € Cand r, = 1 for all n € N in Theorem 3.1. Then, we get
U, = Pcx,. So from Theorem 3.1, the sequences {x,} and {y,} converge strongly to z € F(S),
where z = Pr(s) f(2). O

Remark 3.3. Theorem 3.1 and Corollary 3.2, respectively, extend and generalize Theorem 3.2
and Corollary 3.3 in [7] from the Mann iterative form to the Ishikawa iterative form.
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