
Scientific Programming 14 (2006) 151–170 151
IOS Press

Regular Paper

Communication analysis of distributed
programs

Sharon Simmonsa,∗, Dennis Edwardsa and Phil Kearnsb

aDepartment of Computer Science, University of West Florida, 11000 University Parkway, Pensacola, FL 32503,
USA
bDepartment of Computer Science, The College of William & Mary, Post Office Box 8795, Williamsburg, VA 23185,
USA

Abstract. Capturing and examining the causal and concurrent relationships of a distributed system is essential to a wide range of
distributed systems applications. Many approaches to gathering this information rely on trace files of executions. The information
obtained through tracing is limited to those executions observed.

We present a methodology that analyzes the source code of the distributed system. Our analysis considers each process’s
source code and produces a single comprehensive graph of the system’s possible behaviors. The graph, termed the partial order
graph (POG), uniquely represents each possible partial order of the system. Causal and concurrent relationships can be extracted
relative either to a particular partial order, which is synonymous to a single execution, or to a collection of partial orders. The
graph provides a means of reasoning about the system in terms of relationships that will definitely occur, may possible occur, and
will never occur.

Distributed assert statements provide a means to monitor distributed system executions. By constructing the POG prior to
system execution, the causality information provided by the POG enables run-time evaluation of the assert statement without
relying on traces or addition messages.

1. Introduction

Core to a wide range of distributed system challenges is examining the causal and concurrent relationships among
events of an execution. Some examples of these challenges are deadlock detection [2], debugging [6,11,12], rollback
and recovery [5,9], termination detection [8,20], mutual exclusion violation [1] and global predicate evaluation [3,7,
13,18]. Techniques designed to meet these challenges is an ongoing area of research. Most current techniques make
use of trace files generated during execution. Trace files of an execution provide the information needed to deduce
the causal and concurrent relationships for that particular execution but are limited to the execution from which they
were gathered. Other executions of the systems can define different relationships not present in the trace.

We present a methodology that provides a comprehensive examination of a distributed system. Each possible
partial order is discovered and combined into a single, representative graph. This partial order graph, or POG,
provides a complete view of the system without being tethered to any particular execution. From the POG, causal

∗Corresponding author: Sharon Simmons, Tel.: +1 850/473 7349; Fax: +1 850/857 6056; E-mail: ssimmons@cs.uwf.edu.

ISSN 1058-9244/06/$17.00 2006 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208513585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 S. Simmons et al. / Communication analysis of distributed programs

and concurrent relationships can be extracted. The extracted relationships can convey a view of the system ranging
from a single execution to all possible executions. We have developed a prototype tool based on static analysis of a
system’s source code to produce the POG for asynchronous communication systems [14,15].

Taylor [19] has developed an algorithm for statically analyzing the synchronous communication of a distributed
program. Synchronous communication occurs when the transmitting process blocks until the message is received
by the destination process. Our research into the static analysis of source code was partially motivated by Taylor’s
results, but differs in both objectives and outcomes.

Taylor’s work determines all possible total orders of execution where a single partial order may be embedded in
many total orders. In enumerating the total orders, the concurrency defined by a partial order is not preserved. Our
work uniquely identifies each partial order of the system. From each identified partial order, we preserve the inherent
concurrency.

In Section 2, our system model is presented. Sections 3, 4 and 5 present each step in generating the POG from
source code. Although we intitially present the method in a simplified environment, Section 6 explains how looping
constructs are incorporated. Event relationships are extracted from the POG in Section 7. In Section 8 an example
of the utility of the technique is provided. Conclusions are found in Section 9.

2. Model

A distributed system consists of a fixed number of processes Π = {P0, . . . , PN−1}. The execution of a distributed
program is viewed as a set of events E = E0 ∪ . . . ∪EN−1 where Ei represents the events of Pi, and an irreflexive
partial order is defined on these events [10]: →⊆ E×E. The → relation is commonly referred to as happens before
or causally precedes. For e, f ∈ E, e → f if and only if e has potential causal impact upon f .

Interprocess communication defines the happens before relationship among events on different processes. Asyn-
chronous communication [17] occurs when a process places a message “on the network,” and continues execu-
tion. This type of communication, for example, is offered by the transport level datagram service UDP. The des-
tination process blocks until it receives the message, then continues execution. We assume FIFO point-to-point
communication.

In an asynchronous communication regime, the happens before relationship is the smallest relation satisfying the
following three conditions: (1) if e and f are events in the same process, and e precedes f , then e → f ; (2) if e is
the transmission of a message and f is the receipt of the same message, then e → f ; and (3) if e → f and f → g,
then e→ g.

If e → f , e causally precedes f and f causally succeeds e. If e �→ f and f �→ e, then e and f are causally
unrelated or concurrent, denoted e‖f , and neither can causally affect the other.

One of possibly many partial orders is defined when a distributed system executes. The potential for many partial
orders exists from branches in control of execution, from communication delays, and from unpredictable process
execution speeds. Consider the source code of a three process distributed system shown in Fig. 1. The function
async send(i, msg) transmits msg to Pi, and async recv(j, msg) receives msg from Pj .

One of two possible partial orders is defined when this program executes. The time-space diagrams representing
the two possible partial orders, PO1 and PO2, are shown in Fig. 2. Set P is the set of possible partial orders of a
distributed system’s execution. For the example system, P = {PO1, PO2}. For any given execution, one partial
order, ρ ∈ P , is produced.

The first step in generating the POG is to examine the source code and create a flow graph for each process. Each
flow graph enumerates the possible execution paths for that process. Communication analysis of the flow graphs
is used to construct an intermediate graph that represents the causal and concurrent relationships possible in all
executions of the system. An optimized graph, the POG, is derived from the intermediate graph.

A compiler for ANSI start C has been implemented to create a POG from source code. First, the steps to generate
a POG are presented for source code without looping constructs using the small example pseudo code shown in
Fig. 1 as an example. Looping constructs are then incorporated into the POG generation methodologies and two
more complex program examples are given.

S. Simmons et al. / Communication analysis of distributed programs 153

P0 :: P1 :: P2 ::
begin begin begin

x = 1 if y = 3
as ync s end(1, x) as ync r ecv(0, x) z = 4
x = 2 as ync r ecv(2, y) as ync s end(1, y)
as ync s end(1, x) else end

end as ync r ecv(2, y)
as ync r ecv(0, x)

endif
as ync r ecv(0, x)

end

Fig. 1. A simple 3 process system.

P
1

P
2

P
0

P
0

P
1

P
2

PO
2

PO
1

Fig. 2. Two partial orders.

3. Control flow graphs

The possible flows of control through each process, P i, in the system are represented by a control flow graphFG i.
The graph FGi = {Vi, Ai, αi} where Vi is the set of nodes, Ai is the set of arcs, and αi ∈ Vi is the root node of the
graph. Nodes represent computation, communication, or control constructs in the source code. The root node, α i, is
the start of execution of process Pi. Arcs represent the flow of execution of a process created from the source code.
If an arc exists from node v to node v ′, then v′ can be executed immediately following the execution of v. Multiple
paths may exist throughFGi from αi, but all paths will terminate in a single leaf node, ω i if the program terminates.

Returning to the example source code of Fig. 1, we see that processes P 0 and P2 have a single execution path.
Process P1, containing a selection construct, has two possible execution paths.

A slight reduction in the complexity of each FG i is realized through the collapse of consecutive computation
statements into a single representative node, c. We represent communication constructs as t j , the transmission of a
message to Pj , and rj , the receipt of a message from Pj . Nodes representing statements in the body of a selection
construct are bounded by an IF node and an ENDIF node. Figure 3 shows the control flow graphs derived from the
example source code.

The nodes of FGi represent syntactic constructs in the source code of P i. An execution of Pi may be viewed as
a traversal of FGi, from αi to ωi. An event created from the execution of a statement in P i corresponds to the locus
of control passing through the node of FG i representing that source code statement. In the remaining discussion
of the flow graphs, the symbol representing a node of FG i is also used to represent the event corresponding to the
execution of the source code associated with that node. Nodes and events will be distinguished by context.

To summarize the discussion of FGi, the graphFGi represents all possible execution paths of Pi. A path from αi

to ωi represents a single, possible execution of Pi. The order of events on the αi to ωi path indicates the execution
order of those events if the selected path is executed. If both events v and v ′ are executed in Pi such that v → v′,
then a path in FGi will exist from v to v′.

154 S. Simmons et al. / Communication analysis of distributed programs

c

t
1

α
2

ω
2

ω
1

α
1

ω
0

t
1

t
1

α
0

ENDIF ENDELSE

IF

c

c

r

r

r

r

r

0

0

20

2

Fig. 3. Flow graphs for a simple 3 process system.

We define an immediate communication successor set, ICS(v), for each communication node, v ∈ V i. Node v′ is
an immediate communication successor of node v if (1) there exists a path from v to v ′, (2) v′ ∈ {tj, rj , ωi}, and (3)
there does not exist a communication node v ′′ �= v′ on the path from v to v ′. Immediate communication successor
sets are used in the following construction of the intermediate graph.

4. Intermediate graph

From the flow graphs of the distributed system’s constituent processes, an intermediate graph S is constructed.
This graph represents all possible executions by representing all possible partial orders of the system. Concurrency
as well as causality among the events is preserved. A partial order graph, POG, will be constructed from S by
combining nodes that are both causally equivalent and derived from equivalent partial orders.

We begin by generating concurrent communication states, CCSs, from the flow graphs. Each CCS is an orderedN -
tuple, (v0, v1, . . . , vN−1), where vi ∈ Vi is eitherαi, tj , rj , or ωi. If vi ∈ {tj, rj}, it denotes the next communication
command to be executed in Pi. Each CCS is represented by a node in S.

The root node of S, CCS0, contains the root nodes of each flow graph.

CCS0 = {α0, α1, . . . , αN−1}
Successor CCSs are generated using the set of immediate communication successors, ICS(v), for each entry, v, of
the CCS. The S graph represents the hierarchy of successor CCSs.

S. Simmons et al. / Communication analysis of distributed programs 155

(α0 , α1 ,α2)

(1t
1

, r
0

, 2t
1

)

, 1r
0

)(3t
1

, ω
2

, ω), 2r
2

0
(ω

2

, ω), 3r
0

0
(ω

2

, ω), ω
0

(ω
21

(1t
1

, r
2

, 2t
1

)

, 2r
2

)(3t
1

, ω
2

, ω), 2r
2

0
(ω

2

, ω), 1r
0

0
(ω

2

, ω), ω
0

(ω
21

Fig. 4. Tree S for simple 3 process system.

Causal communication constraints force message receipts to be delayed until their corresponding transmissions
have been processed. Those receives that can not be immediately processed are not “ready.” A “ready” receive in
a CCS is one whose corresponding transmission command occurred in an ancestor CCS. Root nodes of each flow
graph, αi, and message transmission elements, tj , are intrinsically “ready”.

All the communication commands of a CCS that are ready to execute are concurrent. Other concurrent relationships
may also be present in S as will be examined in a later section.

A CCS with no ready elements has no successor states. The immediate successor states, ISS(CCS), are determined
from the immediate communication successor sets of the CCS’s ready commands. The states in ISS(CCS) will be
children of CCS in S. The following steps determine ISS(CCS):

1. Let R = {vi : vi ∈ CCS and vi is ready}.
2. Generate CCS’ ∈ ISS(CCS) by replacing each v i ∈ R with an element of ICS(vi).
3. Repeating step 2 until all unique CCS’s are generated from the ready commands’ successor sets. The number

of successor states of CCS is

|ISS(CCS)| = ΠN−1
i=0 |ICS(vi)| if vi ∈ R

A CCS containing no ready commands and one or more receive commands (that are not ready) has no successors
and is an invalid terminal state of the distributed system. A CCS comprised of all ω i elements is a valid terminal
state.

Ready communication events in each CCS will be annotated with an integer counter which will be used in later steps
of POG construction. The annotation on each message transmission to P i indicates the number of transmissions to
Pi encountered in predecessors of the current CCS. For example, the entry 3t 1 indicates that this message transmitted
to P1 has been preceded by two other messages sent to P1. The number prepended to the transmit events does not
imply the receipt order of messages. Message delivery order is determined by the execution order of receive events
in the current partial order.

A ready receive is prepended with the number taken from the matching transmit. For example, the r j ∈ P1

matching the transmit, 3t1, would be prepended with the number 3. While transmissions are numbered sequentially,
numbers associated with receipts may be unordered. Values attached to receipts will be used to distinguish textually
identical receipts that occur in different orders, thus defined by different partial orders. Not only does the numeric

156 S. Simmons et al. / Communication analysis of distributed programs

(r , ω
1

, ω
2 3

, ω)2 (r , ω
1

, ω
2 3

, ω)3

(r
2

, 1t
0

, 1t
1

, 2t)
1

(r
3

, 1t
0

, 1t
1 1

, 2t)

(α
0

, α
1

, α
2 3

, α)

Fig. 5. Same partial orders.

attachment distinguish between syntactically identical communication commands, it also provides a method of
matching transmissions with corresponding receipts.

Figure 4 shows the S graph derived from the flow graphs of Fig. 3. Appended numbers are shown, and “ready”
events are underlined. Consider the left partial order in Fig. 4. The first node following the root consists of a receive
in P1 that is not ready and two ready transmissions that are sequentially numbered. In the successor node, the receive
from P0 is now ready since the the transmit from P0 to P1 occurred in an ancestor node. In the right partial order,
the first ready receive of P1 is a receipt from P2. Referring back to the source code of Fig. 1, the order of receives
in P1 differs within the if-else construct.

Receives that are not ready in a node of S are indicators of what can happen next in a process. The ready events
are the only events that occur, and they forge the causal relationships among events on different processes. If only the
ready events of each node in S are considered, we observe that nodes can contain identical events. In the following
section, the partial order graph of the system is constructed based on these observations.

5. Partial order graph

The construction of the partial order graph, POG, from the S graph is based on the observations outlined in the
previous section. Only ready commands will be represented in the POG, where in the S graph, all commands were
represented to facilitate the matching of transmits and receives. In some cases, two or more branches of S represent
the same partial order. From the tree S, the POG is constructed by combining branches that represent the same
partial order into a single representative branch containing only ready commands.

Consider the simple S graph shown in Fig. 5 constructed from a four process system. The receives of P 0 are
not ready. The transmits of each CCS are replaced in the child CCSs with a terminal node of FG i. Both leaf node
branches indicate that P0 does not complete execution. The two branches shown represent the same partial order.
Receives that are not ready are not part of the partial order.

A POG is a directed graph (N,A, η) where N is the set of nodes, A is the set of arcs, and η ∈ N is the root node
of POG. The nodes of the POG are generated from nodes of S such that the POG nodes represent the transmit and
ready receive commands of the S nodes.

Since only the ready events of an S node need representation in a POG node, a node of the POG may not contain
an element from each Pi. The executing process of an event in a node will not be positionally identified as in S.
Instead, subscripts will identify the process executing the command. A transmission entry has the format ct j

i where
c is the counter, i is the process executing the transmit and j is the destination process. A ready receive entry has the
format crj

i where c is the counter, i is the process executing the receive and j is the sender.
In constructing the POG, it will be necessary to determine if a set of CCS’s has equivalent transmit and ready

receive communication entries. Equivalent communications are found in CCS and CCS’ if each ready communication
command in one CCS exactly matches (in both prepended value and communicating partner identification) the
positionally corresponding command in the other CCS. Specifically, CCS and CCS’ have equivalent communications
if the following conditions are met.

– At least one transmit or ready receive command is in either CCS or CCS’.
– ∀i, if vi = cχj ∈ CCS where χ is either t or r and cχj is ready, then vi = cχj ∈ CCS’ and cχj is ready.

S. Simmons et al. / Communication analysis of distributed programs 157

Fig. 6. Algorithm to create POG from S .

If CCS and CCS’ have equivalent communication commands, the equivalent communication commands are all
the transmit and ready receive commands that occur in CCS and CCS’.

We begin by traversing S breath-first and identifying the equivalent nodes. From these nodes, a representative
node is created in the POG that is labeled with the equivalent communication commands of the identified nodes. An
algorithm is presented for the POG construction. The following data structures and functions are essential to that
algorithm.

VisitNodes :: a queue with entries of the format <POGnode, SnodeSet>. POGnode is a reference to a node of the
POG and SnodeSet is a set of S nodes.

SuccSet :: a set of S nodes built from the successors of equivalent nodes.
Create PNode(CommoLabel) :: creates a node of the POG and labels the newly created node with the string

CommoLabel.
ISS(Snode) :: constructs a set of nodes from S that are immediate successors of node Snode.
Equiv Set(SnodeSet) :: extracts from SnodeSet those nodes that have equivalent communication commands and

returns these nodes as a set.
CreateLabel(SnodeSet) :: creates a label from the transmits and ready receives of the equivalent nodes in SnodeSet.

A string label is returned. Note that SnodeSet may only have one entry and the label returned is for the ready
commands of this one node.

The algorithm for creating the POG from S is given in Fig. 6. The construction prunes the tree S so that one
branch of the POG from root to leaf node represents an unique partial order ρ ∈ P . The resulting POG represents
all partial orders of the system.

The communication behavior of the system directly influences the size of the POG. The width of the graph is
determined by the number of possible partial orders. For each control branch that results in two communication
choices, a new partial order is created thereby producing a branch in the POG. Admittedly, the POG’s width can
grow large, but the graph accurately represents the complexity of the communication.

The worst case performance of the static analysis is exponential in the number of possible concurrent states. For
the worst case, an unlikely system must exist. Assume every node of a flow graph can occur in the same concurrent
state with every node from the other processes’ flow graphs. If we let T be the number of nodes of all the processes’
flow graphs, then an upper bound on the number of nodes of one flow graph is O(T). The worst case bound on the
number of concurrent states is O(T N), where N is the number of processes in the distributed application.

158 S. Simmons et al. / Communication analysis of distributed programs

1t
1

0
, 2t

2

1

3t
0

1
, 2r

1

2

1r
1

0

3r
0

1

3t
0

, 1r
1

2r
1

3r
1

0

2

1 0

end end

root

Fig. 7. POG derived from S of Fig. 4.

Although static analysis can have exponential performance, the time spent analyzing does not affect the execution
of the distributed system. The analysis is done prior to execution, and provides insight into the application’s behavior
that can be leveraged at run-time.

Figure 7 shows the POG representing the example distributed program of Fig. 1, and generated from S of Fig. 4.
Notice that the two partial orders of Fig. 2 are each represented as a path from root to an end node in the POG. In
particular, the left path of the POG represents PO1, and the right path of the POG represents PO2.

6. Looping constructs

Three looping constructs are considered: do-while, while and for. Each type of loop has one unique entry
point and one unique exit point. When loops are nested, each loop has it’s own entry and exit point. Each loop in a
process’s source code is represented as a cycle in the process’s corresponding flow graph. The cycle is accomplished
with a back edge from the exit point of the loop to the entry point of the loop.

To demonstrate the incorporation of loops into the steps for generating the POG, two distributed programs have
been selected. The first is set partition [4], SETPART, which was chosen for its concise applicability. SETPART
consists of two distributed processes, P0 and P1, that partition disjoint integer sets S and T . P0 maintains S and P1

maintains T . An element of S is exchanged with an element of T until the elements of S are less than the elements
of T . The source code of SETPART is shown in Fig. 8 and the corresponding flow graphs are shown in Fig. 9.

The second program is a distributed sort, DS, which was chosen for its increased size and complexity. A total of
q integers are sorted in ascending order by six processes. The process are connected in a logical ring so that P i’s
neighbors are Pi−1 and Pi+1. Initially each process is assigned q/6 elements. Each process follows the general
source code as shown with Pi in Fig. 10. The corresponding flow graphs are shown in Fig. 11.

S. Simmons et al. / Communication analysis of distributed programs 159

Fig. 8. Set partition.

With the possibility of loops in the source code of each process, loops are also possible in S. Additions are
required for detecting the repeated execution of communication commands and representing these repetitions as
cycles in S. Cycles occur in S if

1. a send command is in the body of a loop,
2. a send command and its matching ready receive are each in a loop body, or
3. a combination of (1) and (2).

Following are the steps taken to incorporate loops into S. When a node n is added to S, a check is made to
determine if the state represented by n has already been represented by another node in n’s execution path. This is
done by comparing n with its ancestors. First n is compared with its immediate predecessor, i.e., parent node. If the
parent does not represent the same state, then the grandparent is compared against n. This continues until either a
node that represents the same state of n is found or the root of S is reached.

Two comparisons are required two determine if node n and its ancestor node n ′ represent the same state. Nodes
n and n′ represent the same state if

– for each entry vi ∈ n, there exists v′i ∈ n′ that is identical with the exception of the counter value, and
– for each vi and v′i pair, vi and v′i correspond to the same node of FGi.

If nodes n and n′ represent the same state, then node n′ is possibly the entry point of a loop, and the parent of n
is possibly the exit point of this loop. The next decision is whether to add a back edge from the parent of n to n ′ to
form the loop.

If n′ is the parent of n, then a loop has been detected. A back edge is added from n ′ to itself and node n is
removed from S. If n′ is not the parent of n, then n′ must be an ancestor of the parent of n. That is, other nodes are
found between n′ and n in S. To identify a loop, the body must be repeated as nodes in S. A loop is detected only
if the nodes from n′ to the parent of n, the loop body, are repeated immediately following node n. A loop detection
results in a back edge inserted from the parent of n to n ′ and the removal of n and its descendants from S.

The S graph for SETPART is shown in Fig. 12 and the S graph for DS is shown in Fig. 13. Note that for
SETPART only one cyclic behavior exists where as with DS four loops exist. The details of the algorithms and the
implementation for generating S can be found in [14].

Loops incorporated into S propagate to the POG. Only the function Equiv Sets() of the algorithm to create the
POG needs modification to handle the back edges of S. Additional tests are needed to determine the equivalency
of S nodes. Suppose CSS and CSS’ are found to have equivalent communication commands, and the nodes that
represent CSS and CSS’ are n and n ′. Function Equiv Sets() must check whether both n and n ′ have an incoming
back edge or both n and n ′ have an outgoing back edge.

If no back edges are found, then n and n ′ are equivalent. If only one of the nodes is referenced by a back edge, then
n and n′ are not equivalent. When nodes n and n ′ are each pointed to by a back edge, both nodes are entry points of

160 S. Simmons et al. / Communication analysis of distributed programs

α
0

t
1

t
1

α
1

r
1

r
1

ω
0

end while

c

while

c

c

c

while

end while

c

c

r
0

t
0

ω
1

c

Fig. 9. Flow Graphs for SETPART.

loops in S. Next is to determine whether the loop associated with node n is equivalent to the loop associated with
node n′.

Suppose node b is the node that has a back edge to node n. Nodes n and b form a subtree rooted at n, where
the nodes that are descendants of n but not descendants of b comprise the nodes of the subtree. Also suppose node
b′ is the node that has a back edge to node n ′, then nodes n′ and b′ also form a subtree. Nodes are compared as
the subtrees are traversed in lock step, starting at the root nodes, in depth first order to determine if the loops are

S. Simmons et al. / Communication analysis of distributed programs 161

Pi ::
intege r pid, phase
arrays list, recv list
pid = i
read q/ 6 elements into list
sort list
for phase = 0 to 5

if phase is even
async send(i + 1 mod N ,list)
async recv(i + 1 mod N ,recv list)
list = m erge sort (list, recv list, first)

endif
if phase is odd && pid != 0 && pid != N-1

async send(i − 1 mod N ,list)
async recv(i − 1 mod N ,recv list)
list = m erge sort (list, recv list, last)

endif
endfor

merge sort (list, recv list, half)
array merge list
merge list = merging of recv list and list
sort merge list
if half = first

return first half of elements in merge list
else

return last half of elements in merge list
endif

Fig. 10. Distributed sort – Generic for all processes.

equivalent.
The current node c of one subtree is compared against current node c ′ of the other subtree. If the CCS of node c

is equivalent to the CCS of node c′, and the number of children of c is equal to the number of children c ′ then the
traversal continues. If either condition is false, the loops are not equivalent and the traversal stops. If the subtrees
are traversed without falsifying either condition, then the loops are equivalent and nodes n and n ′ are represented by
a single node in the POG.

If both n and n′ both have an outgoing back edge, then an addition test is required to determine the equivalence
of the nodes. Let d be the node pointed to by the back edge of n and let d ′ be the node pointed to by the back edge
of n′. If d and d′ are equivalent, then so are n and n ′. Both n and n′ will be represented by a single node in the
POG. A single back edge will be added from the POG node representing n and n ′ to the POG node representing
the equivalent S nodes pointed to by the back edge of n and n ′. Figures 14 and 15 show the POGs generated for
SETPART and DS.

7. Event relationships

The POG conveys concurrent and causal relationships for each possible partial order. Some of the concurrent
relationships are explicitly represented in each node of the POG where other concurrent and causal relationships can
easily be derived. Consider the node in level 2 of Fig. 7. The two transmissions, 1t 1

0 and 2t12, are explicitly shown

162 S. Simmons et al. / Communication analysis of distributed programs

α
0

t
1

ω
0

α
1

ω
1

α
2

r
1

t
0

t
2

r
0

r
2

t
3

t
1

r
3

r
1

α
5

t
4

α
4

ω
4

end for

end if end else

α
3

ω
3

end for

end if end else

t
2

t
4

r
2

r
4

t
5

t
3

r
5

r
3

r
4

ω
5

if

c

if

c

if

c

for

end for

end if

for

end for

end elseend if

for

end for

end elseend if

ω
2

if

c

end if

if

c

if

c

for for for

end for

Fig. 11. Flow graphs for DS.

to be concurrent. Specifically, the communication events represented by a node of the POG are concurrent in that
partial order. Other concurrency relationships are implicit and must be derived from absence of causality.

If a transmission event, ctji , is an entry of node n of the POG, then the matching receive, cr i
j , is found in a

descendant node of n. For example, consider again 2t 1
2 of level 2. The matching receive, 2r2

1, is found in the

S. Simmons et al. / Communication analysis of distributed programs 163

(,)α α0 1

0ω 1ω

1ω

(,)2r1

0ω

0r

0r(,)

1ω

1ω

(,)1t1 0r

(,)r1 01r

(,)r1 01t

(,)1r 0r

(,)2t1 0r

(,)r1 02r

1

(,)r1 02t

(,)1r1

0ω 0r(,) (,)

(,)2r1

0ω(,)

Fig. 12. S for SETPART.

left partial order in a descendant node at level 4. The matching receive is also found in the right partial order in a
descendant node at level 3.

The positional relationships between nodes, as well as the event content of nodes, is used to derive relationships
among events. Consider, for example, event 1r 0

1 in level 3 and event 3r0
1 in level 5 of the left partial order. The

common subscript indicates that both events are executed on P 1, thereby ensuring that a causal relationship exists
between them. Since 1r0

1 occurs in an ancestor node of 3r0
1, we conclude that 1r0

1 → 3r01. Deriving the remaining
interprocess relationships requires additional reasoning.

A communication transitive path is relevant to a particular partial order and follows the definition of happens
before. A communication transitive path of t + 1 events, from e 0

j to et
i�=j , is a series of communication events

e0j , . . . , e
t
i such that

– ev
k → ev+1

l ,where there does not exist an event e ′ that is an event of the path such that ev
k → e′ → ev+1

l ,
– for ev

k and ev+1
l , where k �= l, ev

k and ev+1
l are a transmit/receive pair (ev

k being the transmission and ev+1
l being

the receipt), and
– for ev

k, e
v+1
l , where k �= l, the next event of the path (if it exists), ev+2

l , must occur on Pl.

164 S. Simmons et al. / Communication analysis of distributed programs

)(α , α , α , α , α , α
0 1 2 3 4 5

, 1t(1t , 1t , 1t , 1t , 1t)
1 0 3 2 5 4

, 1r(1r , 1r , 1r , 1r , 1r)
1 0 3 2 5 4

, 2t(2t , 3t , 2t , 2t , 3t)
1 2 1 4 3 4

, 3r(r , 2r , 2r , 2r , r)
1 2 1 4 3 4

, 2t(r , 3t , 3t , 2t , r)
1 2 1 4 3 4

, 2r(2r , 3r , 3r , 3r , 2r)
1 0 3 2 5 4

)(ω , ω , ω , ω , ω , ω
0 1 2 3 4 5

, 3r(r , 2r , 2r , 4r , r)
1 2 1 4 3 4

, 2t(r , 3t , 3t , 2t , r)
1 2 1 4 3 4

, 2r(r , 1r , 1r , 1r , r)
1 2 1 4 3 4

, 1t(1t , 2t , 1t , 1t , 2t)
1 2 1 4 3 4

, 1t(r , 2t , 2t , 1t , r)
1 0 3 2 5 4

, 1r(1r , 2r , 2r , 2r , 1r)
1 0 3 2 5 4

)(ω , ω , ω , ω , ω , ω
0 1 2 3 4 5

Fig. 13. S for DS.

If e0j , e
1
k, e

2
k, e

3
l , e

4
l , e

5
i is a valid communication transitive path of length 6, e0

j is a transmission to Pk, and e1
k is

the corresponding receipt, e2
k is a transmission to Pl, and e3

l is the corresponding receipt, and e4
l is a transmission to

Pi and e5
i is the corresponding receipt.

For any two communication events, e and e ′, represented in the POG , exactly one of the following relationships
will hold:

– e and e′ are in different partial orders;
– e and e′ are concurrently related, e‖e′; or
– e and e′ are causally related, either e→ e′ or e′ → e.

If node n, representing event e, and node n ′, representing event e′, are not on a single path from the root to the
END, then the nodes are contained in different partial orders. The two events can not occur in the same execution
since they are in different partial orders. Causal and concurrent relationships do not exist between events in different
executions. Therefore, e and e ′ are not related: neither through causality nor concurrency.

If, on the other hand, a single path from the root to the END contains both n and n ′, then the nodes are contained in
the same partial order. Events e and e ′, now from the same execution of the system, are related. If a communicative
transitive path exists from e to e′, then e → e′. If no communicative transitive path exists between the events, then
e‖e′; the events are concurrent.

The information derived from the POG is not limited to a single execution of the system. Since all partial orders
are represented, questions regarding the possibilities of execution can be answered. For example,

S. Simmons et al. / Communication analysis of distributed programs 165

1t
1

0

1r
1

0

1t
0

1

1r
0

1

2t
0

1

2r
1

0

2t
1

0

2r
0

1

root

end

end

Fig. 14. POG for SETPART.

– Is it possible that e and e′ can execute concurrently?
– Is there a single event that will always precede event e?
– Which events can have an immediate causal effect on e?
– Can event e have a causal effect on event e ′?

166 S. Simmons et al. / Communication analysis of distributed programs

1t
1

0
,1t

0

1
,1t

3

2
,1t

2

3
,1t

5

4
,1t

4

5

1r
1

0
,1r

0

1
,1r

3

2
,1r

2

3
,1r

5

4
,1r

4

5

2t
1

0
,2t

2

1
,3t

1

2
,2t

4

3
,2t

3

4
,3t

4

5

 3r
2

1
,2r

1

2
,2r

4

3
,2r

3

4

 2t
0

1
,3t

3

2
,3t

2

3
,2t

5

4

2r
1

0
,2r

0

1
,3r

3

2
,3r

2

3
,3r

5

4
,2r

4

5

1t
1

0
,1t

2

1
,2t

1

2
,1t

4

3
,1t

3

4
,2t

4

5

 2r
2

1
,1r

1

2
,1r

4

3
,1r

3

4

 2t
2

1
,3t

1

2
,3t

4

3
,2t

3

4

,2r
1

2
,2r

4

3
,4r

3

4

 1t
0

1
,2t

3

2
,2t

2

3
,1t

5

4

1r
1

0
,1r

0

1
,2r

3

2
,2r

2

3
,2r

5

4
,1r

4

5
 3r

2

1

root

end

end

Fig. 15. POG for DS.

These questions indicate the significance of a unified representation of a distributed system. Challenges of
distributed systems that require reasoning about event relationships can be answered with respect to one, any, or all
possible executions.

8. Monitoring execution

Reasoning about causal and concurrent relationships is fundamental to monitoring and debugging distributed
systems. Monitoring the execution of a distributed program requires reasoning about constituent processes’ execution
as a single collective entity. We have extrapolated the semantics of the assert statement for sequential programs into

S. Simmons et al. / Communication analysis of distributed programs 167

Fig. 16. Set partition with assert.

the distributed context and developed a run-time methodology for monitoring and debugging using distributed assert
statements. The POG is the basis for the efficient evaluation methodology of the distributed assert statement.

The distributed assert has the format

assert(P)

where P is a global predicate that is anchored at a control point of one processes and evaluated when the process
executes the assert. If P is true then the program continues its execution. If P is false, however, the program is
aborted, and a diagnostic message is produced.

Our global predicate is not restricted by the format of the logical comparisons, and variables from different
processes can be compared directly. Both stable and unstable properties can be monitored. A distributed assert
statement monitors a distributed system’s execution, but only a subset of the system execution states are relevant for
evaluation. In particular, the distributed assert presented in this paper monitors the execution having the most recent
causal impact on the assert statement.

The property that is monitored is determined by the predicate. Examples of deadlock detection, mutual exclusion
violation and specific behaviors of a program can be found in [14]. Distributed assert statements have been developed
for the two example programs SETPART and DS as shown in Figs 16 and 17, respectively.

The assert statement in P1 of SETPART,

assert(y = max(S) � mn > x ∧ |S | = |S0| ∧ S ∩ T = y)

is evaluated on each exchange of data between the processes. The clauses of the assert predicate compare variables
from both processes. A false evaluation indicates erroneous execution of the program. SETPART’s error is identified
by the assert’s falsifying clause. If y is not equal to max(S); P0 did not send the correct value. If max(S) �� mn;
processing should have stopped on the last exchange, and a likely error is P 0’s exchange loop condition. If mn �> x;
either a value other than the minimum of T was chosen, or P 0 has erroneously altered the variable x since the last
exchange. If the new size of S has changed, P0 has not correctly added or removed a value from S since the last
exchange. If the intersection of S and T is not equal to y; either S or T has not been correctly updated since the
last exchange, and the results of the other clauses help in identifying the incorrect set. For example, suppose the
programmer mistypes async send(1, mx) of P0 as async send(1, x). The clause y =max(S) evaluates to
false and identifies an incorrect value sent by P0.

For DS, processP2’s source code is shown below with the two assert statementsA2a andA2b. Two assert statement
could be in any one of the six processes and provide the same meaningful information. Process P 2 was arbitrarily
selected. The clause Pi.list � Pi.recv list tests whether every element inPi.list is less than or equal to all elements
of Pi.recv list, and the clause Pi.list � Pi.recv list tests whether every element in Pi.list is greater than or
equal to all elements Pi.recv list. The clause Pi.recv list = Pi+1.list, for i = 2 . . . 4, of assert A2a determines
whether process Pi received the correct list from its right neighbor P i+1. The clause Pi.recv list = Pi−1.list, for

168 S. Simmons et al. / Communication analysis of distributed programs

Fig. 17. P2 of Distributed Sort with asserts.

i = 1 . . . 2, of assert A2b determines whether process Pi received the correct list from its left neighbor P i−1. The
clauses Pi.list � Pi.recv list and Pi.list � Pi.recv list ensure that merge sort() correctly sorted and halved
the merged list.

For a distributed assert to be evaluated during run-time, the local state information of the constituent processes
must be shipped to the process executing the assert. This is necessary since the assert predicate can compare variables
from the different processes but the value of these non-local variables are not available in the process executing the
assert.

A brute-force implementation of evaluating distributed assert statements would have each process piggyback its
state information on each of its outgoing messages. This approach would alter every message in the distributed
execution and porportionally increase the execution time of the system [14]. By using the POG, we can reduce the
number of messages piggybacking state information. The amount of reduction varies according to the distribruted
program, but, in general, the reduction is significant. For each partial order, exactly one message in each process is
identified for piggybacking the correct state information.

If event e in Pi is the evaluation of the assert statement, LCP (e, j) where j �= i, denotes event e’s latest causally
preceding in Pj . We define LCP (e, j) = f if and only if f is an event in Pj , such that f happens before e, and

S. Simmons et al. / Communication analysis of distributed programs 169

there does not exist an event f ′ in Pj such that f happens before f ′ and f ′ happens before e. Given a partial order
and an event e, there exist exactly one LCP event in each process.

The LCP events are the means by which we reduce the number of messages piggybacking state information,
which can be identified from the POG. By using the POG, a distributed assert is evaluated but the methodology
neither generates and analyzes traces, nor adds messages to the original distributed application. Only the LCP
messages are increased in size to propagate state information to the assert control point for assertion evaluation [16].

For event e, a causal cut through e is the set of events consisting of e and the LCP event of e of each process for
a partial order α. The causal cut through event e, denoted CC(e), is defined as

CC(e) = {e}
⋃

0�k<N
k �=i

{LCP(e, k)} .

Intuitively, CC(e) is the “latest” set of events of a partial order which can have a causal impact upon e. For each
partial order, there is one causal cut for a given event. The LCP events that comprise the causal cut for one partial
order may differ from the LCP events that comprise the causal cut for a different partial order.

From each causal cut CC, a global state exists for evaluating a distributed assert statement. If e is the execution
of a causal distributed assert statement in Pi, then the causal global state, anchored on e, is

CGState(e) = {pre(f) : f ∈ CC(e)}.
The pre(f) denotes the local state of Pi in which the execution of f is begun. When the system executes, one of the
possible partial orders is identified. The global state corresponding to this partial order can then be used for assertion
evaluation.

In [16], it is proved that LCP events are communication events. In particular, for event e of P i, each LCP(e,j) is a
send event. Corresponding to each LCP send event is a receive event, denoted LCP’. A causal cut consists of LCP
send events. The LCP and LCP’ events of a partial order comprise the communication events that are sufficient for
delivering the CGState data to the process evaluating the assert. In Figs 14 and 15 the underlined entries indicate
the LCP and LCP’ events.

In [14,15], a two-pass compiler prototype system for enabling the evaluation of a causal distributed assert statement
is presented. This system ensures that when an assert is executed, the relevant components of the causal global state
are immediately available at the process executing the assert. From the POG, the causal cuts can be identified prior
to program execution. Our prototype statically analyzes the distributed source code to

– generate the POG,
– identify the LCP and LCP’ events of the distributed assert statements from the POG, and
– append the necessary causal global state information to the already existing LCP send commands.

9. Conclusions

This paper has presented a methodology for analyzing the communication of a distributed system. Source code
is analyzed to produce a partial order graph, POG, that conveys all possible execution scenarios. In particular, the
POG represents all possible causal relationships that can be forged by executing the system’s processes. Concurrent
relationships are upheld in the POG by not imposing an order on the events where causality does not exists.

Our methodology first produces a graph representing the flow of control through each program of the distributed
system. These flow graphs represent the possible orders of execution of statements in the source code. Each path
through the graph from root to leaf provides the execution order of events within a single execution of the program.

The flow graphs of the individual programs are combined to create a unified representation of the system, resulting
in an intermediate graph S. The graph S represents all partial orders of execution while preserving concurrency.
However, the graph may contain duplicate nodes that can be combined to produce a more compressed, yet still
accurate, representation of the system.

The final resulting graph, the POG, is constructed from the intermediate graph by combining duplicate represen-
tations of the same partial order. The POG is derived from S so that each path from the root node to a leaf node

170 S. Simmons et al. / Communication analysis of distributed programs

represents one partial order and each partial order is presented in one path of the POG. The generation of the POG
from C source code has been accomplished with a prototype system.

Causal and concurrent relationships can be derived from the POG and this information can aid in solving difficult
distributed system challenges. Distributed assert statements provide a means to monitor the execution of a distributed
system. By using the causal information contained in the POG, messages can be identified prior to execution
for delivering the state information to the assert’s control point for run-time evaluation. The POG enables the
identification of the latest causally preceding messages relative to the assert’s control point. A prototype two-pass
compiler exists for identifying the latest causally preceding messages and automating the piggybacking of relevant
statement information on these messages. The POG enables this ability.

References

[1] J.H. Anderson, Lamport on Mutual Exclusion: 27 Years of Planting Seeds, In Proceedings of the twentieth annual ACM symposium on
Principles of distributed computing, ACM Press, 2001, 3–12.

[2] K.M. Chandy and L. Lamport, Distributed snapshots: Determining global states of distributed systems, ACM Transactions on Computer
Systems 3(1) (1985), 63–75.

[3] R. Cooper and K. Marzulo, Consistent Detection of Global Predicates, In Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, 1991, 163–173.

[4] E.W. Dijkstra, A correctness proof for networks of communicating process – A small exercise. Technical Report EWD-607, Burroughs,
1977.

[5] E.N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang and D.B. Johnson, A survey of rollback-recovery protocols in message-passing systems,
ACM Comput Surv 34(3) (2002), 375–408.

[6] C.J. Fidge, Partial Orders for Parallel Debugging, In Proceedings Workshop Parallel and Distributed Debugging, University of Queensland,
May 1988, 183–194.

[7] V. Garg and N. Mittal, On Slicing a Distributed Computation, In In Proceedings of the 21st IEEE International Conference on Distributed
Computing Systems, 2001, 322–332.

[8] F.C. Gartner, Fundamentals of fault-tolerant distributed computing in asynchronous environments, ACM Comput Surv 31(1) (1999), 1–26.
[9] B. Gupta and S.K. Banerjee, A roll-forward recovery scheme for solving the problem of coasting forward for distributed systems, SIGOPS

Oper Syst Rev 35(3) (2001), 55–66.
[10] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communications of the ACM 21(7) (1978), 558–565.
[11] M.S. Meier, K.L. Miller, D.P. Pazel, J. syula R. Rao and J.R. Russell, Experiences with Building Distributed Debuggers, In Proceedings

of the SIGMETRICS symposium on Parallel and distributed tools, ACM Press, 1996, 70–79.
[12] N. Mittal and V.K. Garg, Debugging Distributed Programs using Controlled Re-Execution, In Proceedings of the nineteenth annual ACM

symposium on Princi ples of distributed computing, ACM Press, 2000, 239–248.
[13] R. Schwarz and F. Mattern, Detecting causal relationships in distributed computations: In search of the holy grail, Distributed Computing

7(3) (1994), 149–174.
[14] S. Simmons, Causal Distributed Assert Statement, PhD thesis, The College of William and Mary, 1999.
[15] S. Simmons and P. Kearns, A Causal Assert Statement for Distributed Systems, Proceedings of the Seventh IASTED/ISMM International

Conference on Parallel and Distributed Computing and Systems, IASTED-ACTA Press, 1995, 495–498.
[16] S. Simmons and P. Kearns, Runtime Evaluations of a Distributed Assert, Proceedings of the ISCA Fifteenth International Conference on

Parallel and Distributed Systems, 2002, 179–186.
[17] A.S. Tannenbaum and M. van Steen, Distributed Systems, Prentice Hall. 2002.
[18] A. Tarafdar and V.K. Garg, Addressing False Causality while Detecting Predicates in Distributed Programs, In Proceedings of the 18th

IEEE International Conference on Distributed Computing Systems (ICDCS98), Amsterdam, The Netherlands, 1998, 94–101.
[19] R.N. Taylor, A general-purpose algorithm for analyzing concurrent programs, Communications of the ACM 26(5) (May 1983), 362–376.
[20] G. Tel and F. Mattern, The derivation of distributed termination detection algorithms from garbage collection schemes, ACM Trans Program

Lang Syst 15(1) (1993), 1–35.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

