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ABSTRACT 

Complex signal-processing problems are naturally described by compositions of pro­
gram modules that process streams of data. In this article we discuss how such composi­
tions may be analyzed and mapped onto multiprocessor computers to effectively exploit 
the massive parallelism of these applications. The methods are illustrated with an exam­
ple of signal processing for an optical surveillance problem. Program transformation 
and analysis are used to construct a program description tree that represents the given 
computation as an acyclic interconnection of stream-processing modules. Each module 
may be mapped to a set of threads run on a group of processing elements of a target 
multiprocessor. Performance is considered for two forms of multiprocessor architecture, 
one based on conventional DSP technology and the other on a multithreaded-processing 
element design. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

An important goal toward making parallel comput­
ers more usable for practical computations is to 
provide compiling technology that is able to con­
vert algorithms expressed directly and simply in a 
high-level language into efficient machine code. 
The parallelism implicit in the expression of the 
algorithm must be identified and exploited by the 
compiler. Complex signal-processing problems are 
naturally described by compositions of program 
modules that process streams of data. \Ve use an 
example to illustrate how such compositions may 
be analyzed and mapped onto multiprocessor 
computers using extensions of methods used in 
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the Paradigm compiler designed and implemented 
by the author [ 6]. 

We begin by discussing how the mapping of 
compositions of stream-processing modules differs 
from the application of data parallel principles in 
mapping scientific computations onto massively 
parallel computers. In the domain of high-perfor­
mance signal and image processing, applications 
can exploit massively parallel computation, but the 
form of parallelism present is not the data parallel 
form encountered in scientific computations: (1) 
Program modules often work together in producer/ 
consumer relationships, allowing concurrent oper­
ation; and (2) all modules of the program are con­
tinuously processing streams of data. The use of 
stream data types plays a central role in expressing 
such computations in a high level form that permits 
automatic analysis. We illustrate an approach to 
mapping such computation by analyzing a typical 
processing computation for image data arriving 
from a sensor array. We indicate how the computa­
tion (when expressed in the Sisal functional pro-
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gramming language) may be analyzed and its 
structure represented in a program description tree 
(PDT), and used to guide the construction of code 
for a target multiprocessor. We discuss the prob­
lem of finding an optimal mapping, and discuss 
the structure and performance of constructed code 
for two choices of multiprocessor architecture. 

2 STATIC MAPPING 

The problem of implementing programs written in 
high-level languages on parallel computers may be 
approached in two fundamental ways according 
to the philosophy of managing processing and 
memory resources. One may strive to implement 
a very general model of parallel computing and 
implement it by a suitable combination of architec­
tural features and run-time services so that all 
scheduling and memory allocation decisions are 
performed during program execution. This general 
approach is exemplified by the Monsoon multi­
processor [13], but the mechanisms have not 
evolved to the level of efficiency required to attract 
practical usage. The second approach is based on 
making most memory management decisions at 
compile time. This can yield very efficient exploita­
tion of multiprocessors built of conventional pro­
cessors for computations having a suitable regular 
structure. This second approach has been the ba­
sis for the development of the data parallel model 
and its implementation in such work as the Think­
ing Machines Fortran compiler [ 15], the definition 
of high-performance Fortran, and advanced work 
in Prof. Kennedy's group at Rice University. 

The data parallel approach can also be followed 
for programs expressed in functional programming 
languages with significant advantages. It is simpler 
to identify the program blocks that are suitable 
for data parallel implementation, and the global 
program analysis needed to determine optimum 
alignment and mapping for the arrays of a program 
is more readily accomplished. This is because 
functional language programs do not make use of 
side effects, and each use of any data definition 
is readily identified. This has been done in the 
Paradigm compiler [ 6] designed and built by the 
author for the Sisal language and targeted for the 
CM-2 Connection Machine. 

2.1 Compiler Structure 

The Paradigm compiler was designed to identify 
the principal data structures constructed by a pro-
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FIGURE 1 Structure of the Paradigm compiler. 

gram through global compile-time analysis, and to 
map these structures onto the processing elements 
of the target machine. The structure of the com­
piler is shown in Figure 1. It consists of a conven­
tional front end that parses and checks source lan­
guage modules, an analyze module that identifies 
code blocks in the program, and a code constructor 
that implements each code block on the basis of 
mapping specifications derived with optional ad­
vice from the user [5, 6]. 

Our goal requires some departure from the typi­
cal structure of programming language support 
systems. Efficient machine code programs for 
large-scale parallel computers can be generated 
only if the compiler is able to consider the entire 
collection of program modules involved in a job in 
making decisions regarding how the computation 
should be mapped onto the target machine. This 
implies that the linking of program modules should 
be accomplished prior to the compiler's analysis 
and optimization decisions. A second change is 
more fundamental: lnstead of carrying out optimi­
zation as a sequence of independent steps, each 
of which supposedly leads to an "improvement" 
of the code, we perform an analysis of the given 
code, determine the best mapping strategy, then 
synthesize machine code according to the speci­
fied mapping. 

The functional programming language Sisal 
[ 12] is particularly attractive for implementing this 
approach. The absence of global variables and the 
clear differentiation of arguments and results of 
function modules make it easy for a compiler to 
analyze source programs and identify the parts of 
the code that define the major data structures. We 
call these parts of the source language program 
code blocks. 

The data structures appropriate for scientific 
computation are large multidimensional arrays of 
numerical data. Each code block defines an array 
value and represents a computation that may be 
spread over the processing elements of the ma­
chine according to a chosen assignment (or map-



ping) of array elements to processing elements. 
This is the essence of data parallel computation. 
The parallel iteration expression of the Sisal lan­
guage provides a convenient high-level notation 
for writing data parallel algorithms. 

2.2 Application to High-Performance 
Signal/Image Processing 

Another area that can exploit massively parallel 
computation is high-performance signal and im­
age processing. In these applications large 
amounts of parallelism exist, but it takes different 
forms: (1) producer/ consumer concurrency-the 
possibility of executing two program modules con­
currently when one (the consumer) processes a 
stream of data generated by the other (the pro­
ducer); and (2) simultaneous application of several 
instances of functions. The use of stream data 
types plays a central role in expressing such com­
putations in a high-level form that permits auto­
matic analysis. The rest of the article is devoted to 
describing this process, illustrating its application 
to a practical signal-processing problem, and con­
sidering performance tradeoffs for two multipro­
cessor architectures. 

3 AN EXAMPLE: OPTICAL SURVEILLANCE 

The computation chosen to illustrate the proposed 
mapping strategy is derived from a collection of 
procedures for processing information from a sky­
scanning optical surveillance device and detecting 
objects in its field of view. The application has 
similarities to radar signal processing. There are 
many sensors, several for each line of the scanned 
image. These signals are conditioned, smoothed, 
and downsampled before a two-dimensional filter 
is used to suppress unimportant detail. A peak 
detection algorithm identifies points in the image 
that should be analyzed further as potential objects 
to be reported. A block diagram of the computation 
is shown in Figure 2. 

Each module in the diagram may be characterized 
as a function that transforms a stream of input data 
into a stream of output data. Hence it is natural to 
specify them using a language (Sisal) that includes 
streams as standard data types and supports analytic 
and constructive operations on streams. 

In Sisal a stream is a sequence of values that 
may be infinite (unending). A stream of integers is 
a natural representation for a signal that has been 
converted into digital form. Interconnecting mod-
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ules that process streams of data is a powerful 
means for combining program parts to build larger 
modules and is well matched to the needs of signal­
processing tasks. Thus, the combination of pro­
cessing modules shown in Figure 2 may be ex­
pressed in Sisal as the composition of functions in 
Figure 3. The Sisal code for the five component 
functions is given in the Appendix of this article. 

This use of function composition for signal pro­
cessing has been discussed in [8], where we 
showed how to transform tail-recursive functions 
on streams into nonrecursive dataflow graphs that 
may be executed efficiently by suitable fine-grain 
parallel computers [7, 9]. The use of dataflow 
graphs as a natural means for specifying signal 
processing applications has also been studied in 
[1 OJ, and the idea of compiling signal-processing 
programs from block diagrams was described as 
earlyas[11]. 

This example shows that complete signal-pro­
cessing tasks may take the form of a set of process­
ing modules, each generating a stream of values 
that is passed to other modules for further process­
ing. Thus, the overall computation may be de­
scribed by a directed acyclic graph in which the 
nodes are stream-processing modules such as 
those of our example, and each link indicates a 
producer/ consumer relationship between a pair of 
modules. It is well known that such interconnec­
tions of modules may lead to deadlock if the graph 
contains (undirected) cycles and the temporary 
storage for stream elements in each link is bounded 
in capacity. For example, the function 

function DeadLock ( 
x: stream [integer] 
returns stream [integer] 

let y = fun-1 (x) 
in fun-2 (x, y) 

end let 
end function 

will deadlock if fun -1 produces two stream ele­
ments for each input element, and only a finite 
amount of storage is available for elements of 
stream y. Given the structure of stream-processing 
programs expressible in Sisal, a compiler can de­
tect such situations and warn the user of the dead­
lock possibility. 

4 PROGRAM ANALYSIS 

In this article only programs having an overall 
structure that supports the continuous processing 
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TwoDimFilter PeakDetect 

FIGURE 2 Structure of the optical surveillance data processing algorithms. 

of streams of data are considered. In these pro­
grams, each module operates on data streams, 
produces a data stream, and runs continuously 
during program execution. The overall structure 
of such programs is an acyclic interconnection of 
such modules. This is in contrast to data parallel 
scientific codes for which the original Paradigm 
compiler was designed. There the top-level pro­
gram structure is a main loop in which the loop 
body is an acyclic combination of code blocks that 
define array values, as in the following program 
segment. 

type Signal= stream [integer]; 
type ImageStream =array [Signal]; 
type DataStream =array [array [Signal]]; 
type MarkStream =array [stream [boolean] ]; 

function Process ( 
D: DataStream; 
w: integer; 
n: integer 
returns MarkStream 

let 

in 

R := for i in 1, w 
returns array of 

let S := for j in 1,n 
returns array of 

BaseRemove (D[i,j]) 
end for 

in Nyquist ( SpikeAdapt ( S, n ) ) 
end let 

end for 

PeakDetect ( TwoDimFilter ( R, w ) ) 
end let 

end function 

FIGURE 3 Type declarations and the principal func­
tion Process for the optical surveillance computation, 
written in Sisal as a composition of stream-processing 
functions. 

Z: array [real] 
for i in 1, n 

Y: real : = 

if i = 1li n 
then X[i] 
else o. 5 * ( X[i-1] + X[1+1] 
end if 

returns array of Y 
end for 

This parallel expression in Sisal defines an array 
value Z, each (internal) element of which is the 
average of the two adjacent elements of a given 
vector X. The conditional expression provides for 
special treatment of the boundary elements of Z. 
All instances of the body expression may be evalu­
a ted concurrently. In general, data parallel code 
blocks may be nested' 'for'' expressions that define 
multidimensional arrays, and may include reduc­
tion operations that apply associative operators 
over specified dimensions of the defined array. The 
Paradigm compiler [ 6] can analyze and transform 
programs having this structure into data parallel 
programs for the CM-2 Connection Machine. 

4.1 Stream-Processing Programs 

The present study explores the prospects for static 
analysis and mapping of continuous stream-pro­
cessing computations such as the optical surveil­
lance problem. Thus we envision a new version 
of the Paradigm compiler that will transform and 
analyze such programs and generate machine code 
for multiprocessor computers. Given a program 
that is amenable to static resource management, 
the Analyze module of the rebuilt Paradigm com­
piler will provide program descriptions that may 
be used to plan the mapping of the program onto 
a parallel computer and to construct code in the 
target machine language. 

The job of program analysis has several parts: 



1. Identify the program modules (code blocks) 
2. Check the conditions that permit static map­

ping to be used 
3. Extract parameters for each program mod­

ule for use in performance estimation 
4. Determine the relative computation rate for 

each module 
5. ·Construct a program description tree con­

taining the results of analysis 

4.2 Program Transformation 

The identification step includes examining recur­
sive function definitions to determine whether they 
are tail recursions and have equivalent iterative 
dataflow graphs. A method for doing this has been 
given in [8]. 

In the absence of conditional expressions in 
their bodies, the tail-recursive function definitions 
express functions that process input streams into 
output streams, and in each case the number of 
output elements emitted is related to the number 
of input elements absorbed as a ratio of integers, 
a rational number. If the bodies of these function 
definitions contain conditional expressions, it may 
be that the module does not have a fixed ratio of 
output elements emitted to input elements ab­
sorbed, and only a range of values for the ratio 
can be determined through static analysis. Such 
situations appear to be rare in practical signal­
processing computations, for their existence would 
imply a nonuniform sampling rate. For example, 
the BaseRemove function contains a conditional, 
but has a fixed input/ output ratio of unity. Given 
these ratios (or bounds on relative rates) a rate (or 
range of rates) can be calculated for every module. 

Figure 4 illustrates the results of program trans­
formation performed by the compiler. It is a da­
taflow graph that represents the continuous itera­
tive processing of a stream of data arrays by the 
TwoDimFi l ter module. The Group operator at 
the top of the figure extracts successive groups of 
three elements from the input stream. Each of 
these elements is a w-element array. On the next 
cycle of operation, the selected group starts with 
the element one position later in the input stream. 
Between the square brackets is the conventional 
dataflow graph of the body of the ArrayProducer 
code block. It is not presented in fine-grain form 
to avoid confusing detail. The brackets themselves 
represent the For All code block that defines each 
array element of the output stream. The opening 
(top) bracket is labeled with the range of indices 
for elements in the generated array. The Emit-
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D: array[stream[int]] 

I -1 
I Group (3,1) 

, 
I in 2,w-1 

I B[i,-1] B[i,O] B[i,+l] I 

n := a * B[i,O] + b * t1 + c * t2 

Do 

array[stream[int]] 

EmitStreamEiement 

FIGURE 4 Transformed program module for the 
TwoDimFil ter function. 

StreamElement operator simply appends its in­
put array onto the output stream. 

We assume that the usual architecture-inde­
pendent optimization steps-constant folding, 
common subexpression elimination, etc.-have 
been performed. Also, and this is especially im­
portant in signal-processing applications, shift op­
erations are used to implement multiplication by 
known constants whenever this is more efficient 
(although this depends on the detailed design of 
the arithmetic units of the processor). 

4.3 The Program Description Tree 

The objective of program transformation and anal­
ysis is to provide information on which the choice 
of a good mapping of program modules and data 
structures onto a target multiprocessor may be 
made. We represent the results of analysis as a 
Program Description Tree (PDT). Each node of 
the PDT corresponds to a syntactic element of the 
program analyzed. The node types include Graph 
nodes that represent acyclic interconnections of 
primitive operators and code blocks, and node 
types that represent the several kinds of code 
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blocks. A For All node describes a code block that 
determines an array value each time it is executed. 
A StreamProducer node describes a code block 
that produces an endless stream of simple scalar 
elements, and an ArrayProducer node describes 
a code block that produces an endless stream of 
array values. The nodes of the PDT contain data 
type information and the index ranges for con­
structed arrays. Graph nodes contain counts of 
operators of various kinds, and could also contain 
information about the degree of parallelism such 
as the critical path length of the graph. 

4.4 Analysis of the Example 

The optical surveillance program satisfies the con­
ditions for static mapping. Each recursive function 
definition is tail recursive and may be transformed 
into an iterative dataflow graph with a fixed mem­
ory requirement for each top-level invocation. 
Moreover, each of the resulting transformed mod­
ules maps one or more input streams into an output 
data stream, and the program in entirety is an 
acyclic composition of these modules, as specified 
by the top-level function Process (Figure 3). The 
PDT for the optical surveillance example is shown 
in Figure 5. This is simplified in that the parallel 
for-loops within modules SpikeAdapt, TwoDim­
Fi 1 ter, and PeakDetect are not represented ex­
plicitly. 

4.5 Computation Rate and Load Estimate 

The PDT contains sufficient information to deter­
mine the relative computation rate for each pro­
gram module, and the approximate fraction of the 
total computation load each module is responsible 
for. These data are calculated for the optical sur­
veillance problem in Table 1. We (arbitrarily) take 
the processing of one array of data by TwoDim­
Fi 1 ter (or by PeakDetect) as the basic compute 
cycle of the computation. For each program mod­
ule, Table 1 shows the number of operations per­
formed in each execution of a module, the width 
of the data stream processed by the module, and 
the number of instances of execution of the module 
for one compute cycle. These data yield the opera­
tion count per cycle and the load fraction for each 
module. For example, there are w instances of the 
SpikeAdapt function, each of which processes a 
single input stream (of array values). The (relative) 
rate of execution is 4 because the Nyquist module 
consumes four elements of its input stream for each 
element it delivers to TwoDimF i 1 ter. From the 

code for SpikeAdapt given in the Appendix, we 
see that three parallel for-loops are applied to the 
data, for a total of 39 operations per input stream. 
The total operation count for one basic cycle of 
operation is 

TspikeAdapt = 4 X 39 X 1 X w = 4 X 39 X 256 = 39936 

or 0.403 of the total operation count of 99202 for 
all five function modules. 

These data are used in Section 6 to discuss the 
computation rate and latency for selected map­
pings of the example. 

5 MAPPING PLANS AND STRATEGIES 

In this section we discuss reasonable choices for 
mapping continuous processing applications to 
multiprocessor computers, and discuss the prob­
lem of finding the best mapping plan. 

5.1 Mapping Plans 

In contrast to data parallel scientific computing, 
the strategy of letting one program code block 
at a time utilize the whole machine appears 
to be a poor choice for continuous processing 
applications. Rather, in many cases the best 
approach is to structure the machine code so all 
program modules are executing concurrently at 
a rate that meets exactly the computation re­
quirement.* 

Given an estimate of the load to be handled 
by each code module, we must decide how many 
processing elements should be actively executing 
each module. For each program module, two rea­
sonable mapping possibilities are apparent: 

1. Allocate: Assign to the program module 
the exact number of processing elements 
needed to achieve the overall computation 
rate the module requires. 

* In current practice. a single processor is often multiplexed 
among program modules for different stages of processing, but 
because coarse-grain processing must be used to attain eco­
nomical performance with conventional processors, large buff­
ers for intermediate data must be used and high latency of 
results occurs. With multiprocessing. assigning different mod­
ules to distinct processors will often yield better resource utili­
zation. 
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StreamProducer 

Elements int 
Inputs 

name D 
type stream[int] 
ratio 1 

Bod 

Operations 
add 2 
shift 1 
compare 2 
test 1 

BaseRemove 
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TwoDimFilter 

Arra Producer 

Range 2,w-1 
Elements int 
Inputs 

name D 
type array[stream[int]] 
ratio 1 

Bod 

StreamProducer 

Elements int 
Inputs 

name D 
type array[stream[int]] 
range 1,n 
ratio 1 

Operations 
add 30 
test 8 
divide 1 

SpikeAdapt 

Peak.Detect 

Range 
Elements 
Inputs 

name D 
type array[stream[int]] 
ratio 1 

Bod 

Operations 
add 
shift 

8 
1 

compare 9 
logic 8 

StreamProducer 

Elements int 
Inputs 

name D 
type stream[int] 
ratio 4 

Bod 

Nyquist 

FIGURE 5 PDT for the signal-processing example. 

2. Distribute: Spread the computation load 
of the module uniformly over all process­
ing elements 

The choice between the allocate and dis­
tribute strategies may be made independently 
for each module, but those processing elements 
dedicated to program modules for which the all o­
cate strategy is chosen are not in the set over 

which the work of the remaining modules may be 
spread. Which choices lead to better performance 
depends on the relative amounts of intermodule 
communication and intramodule communication, 
and on how well the loads match up with process­
ing element capacities. 

1\'ote that if the computation rate demanded by 
some program module requires the performance 
of several processing elements, then the program 

Table 1. Calculation of Load Fraction for Each Program Module From Data in the PDT 

Module Rate Operations Width Count Total Fraction 

BaseRemove 4 6 1 nw 49152 0.495 
SpikeAdapt 4 39 1 w 39936 0.403 
1\'yquist 1 3 1 w 768 0.008 
TwoDimFilter 1 11 w- 2 1 2794 0.028 
PeakDetect 1 26 w-4 1 6552 0.066 

Total 99202 1.000 

Note: Total operations and load fractions are calculated for w = 256 and n = 8. 
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Table 2. Three Mapping Plans for the Optical Surveillance Problem 

Module Plan A Plan B Plan C 

BaseRemove Group 1 
SpikeAdapt Group 1 
Nyquist Group 1 
TwoDimFilter Group 1 
PeakDetect Group 1 

module must offer sufficient opportunities for con­
currency that the processing elements can be fully 
utillized. Otherwise the computation is not feasible 
on the target multiprocessor. 

Where the input of a module is an array of 
streams, a plan in which the modules producing 
the individual streams are executed by the same 
processing element as that assigned to the corre­
sponding part of the array-processing module is 
likely to perform better by avoiding some connnu­
nication cost. 

An advantage of assigning a limited number of 
processors to chosen modules is that it is then not 
necessary to load all program modules into (or 
make them accessible from) every processor. 

In data parallel scientific computation, a major 
issue is aligning the distribution of various data 
arravs so as to minimize communication. In con­
tinuous processing computations, this issue has 
less impact. On the other hand, it is beneficial 
to distribute the work of the TwoDimFil ter and 
PeakDetect modules over processing elements in 
aligned fashion. 

5.2 Mapping Plans 

On the basis of the above considerations, we pro­
pose the following class of mapping plans for con­
tinuous processing programs: A mapping plan is 
a specification for each node of the PDT as to 
whether execution of the program section de­
scribed bv the subtree is to be evenly distributed . . 
over all processing elements (distribute), or is 
to be executed by a group of dedicated processing 
elements (allocate) sized to accommodate the 
estimated load of that program section. 

Table 2 gives three reasonable proposals for 
mapping the optical surveillance computation. 
Under Plan A, the entire machine is treated as a 
single group of processors and the work of each of 
the five program modules is distributed over all 
processing elements. This choice is attractive be­
cause it eliminates all interprocessor communica-

Group 1 
Group 1 
Group 1 
Group 2 
Group 2 

Group 1 
Group 1 
Group 1 
Group 2 
Group 3 

tion except that due to boundary exchange in algo­
rithms TwoDimFil ter and PeakDetect. In Plan 
B, the processors are divided into two groups; one 
is dedicated to the work of algorithms TwoDim­
Fil ter and PeakDetect, and the work of each 
of these modules is distributed across its group to 
avoid communication costs for passing data be­
tween them. The second group of processors is 
applied to the remaining program modules. In Plan 
C, a finer allocation using three groups of process­
ing elements is specified. The relative merits of 
these plans are discussed in the following section. 

5.3 Finding the Optimal Mapping Plan 

Given a mapping plan and characteristics of the 
target multiprocessor including the number of pro­
cessing elements, it is straightforward to estimate 
performance parameters for the mapping plan. 
Given the total operation count, the number of 
processors, and their speed, the rate of computa­
tion may be estimated. The costs of process syn­
chronization may be approximated from charac­
teristics of the target architecture and program 
structure information in the description tree. The 
mapping plan induces a communication load from 
which it can be estimated whether the computation 
is compute or communication bound. 

Thus, the following approach should help find 
the optimum mapping plan: 

1. Determine computation rates and load pa­
rameters for each node of the graph. 

2. Generate several plausible mapping plans 
based on the given PDT and estimates of 
perfonnance parameters. 

3. Evaluate each proposed mapping plan by 
constructing target rnachine code and deter­
ruining accurate processor and comrnunica­
tion loads. 

4. Select the best mapping plan for the user's 
objective. 

c). Construct the final machine code. 



6 MULTIPROCESSOR PERFORMANCE 

Given the three mapping plans proposed above, 
let us consider their use in code construction for 
multiprocessor computers. First, the two processor 
architectures considered as contrasting targets for 
parallel computing are introduced. The machine 
code structures appropriate for implementing con­
tinuous processing applications, such as the opti­
cal surveillance computations, are discussed. The 
performance differences among the three plans 
and the tradeoffs possible among throughput, 
memory, and latency of output data are also dis­
cussed. 

6.1 Architectures 

Two contrasting multiprocessor architectures are 
discussed. One uses processing elements of con­
ventional architecture with features intended to 
support efficient multiprocessor computation. 
This is designated the conventional architecture 
(CVA) machine. A commercial example of such 
a processing element is the Texas Instruments 
TMS320C3x digital signal processor. This ma­
chine has high single-thread performance, but 
makes only modest concessions to supporting fine­
grain synchronization and communication for ef­
ficient parallel computing. In this architecture, a 
thread is created by a fork command or a parallel 
function call interpreted by run-time software, and 
may terminate at a join command or by execution 
of a quit command. A thread may be suspended 
to wait for some event to occur, and it may be 
preempted to allow the processor to handle inter­
rupt events or to schedule a thread having a 
higher priority. 

The second architecture uses a hypothetical 
processing element having an interleaved multi­
threading architecture, as proposed in [7, 9]. This 
is designated the multithreaded architecture 
(MTA) machine. In this processor, there may be 
four active threads that share resources (functional 
units, registers, and access to local memory). 
Threads are non-preemptible, so execution of a 
ready thread is delayed until one of the four pipe­
line slots is released by termination of an active 
thread. A thread becomes ready for execution 
when it is signaled from other threads, or when a 
message arrives from another processor. A thread 
uses a small number of registers to pass results 
from one instruction to a later instruction of the 
thread; registers are undefined when a thread be­
comes active and are not saved at thread termina-
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tion. A typical thread will either send signals to 
activate other threads, or send an interprocessor 
message just before terminating by executing a 
quit instruction. In the MT A, a thread is a se­
quence of instructions fixed at compile time and 
is short enough that other threads may be executed 
soon enough to meet performance requirements. 

Other MT As have supported eight active threads 
to allow tolerance of long memory accesses. For 
the present discussion we assume that multiplex­
ing four threads in the computation pipeline is suf­
ficient to tolerate the latency of accesses to local 
memory and to fill pipeline gaps due to intrathread 
dependencies. 

To compare the two architectures, it is assumed 
that both are able to achieve the same total instruc­
tion processing rate. This means that one thread 
on the MT A will run one fourth as fast as a single 
thread on the CV A. (This is unfair to the MT A 
because the CV A will be slowed more by pipe­
line hazards.) 

With respect to implementing the mapping 
plans for the optical surveillance problem, the dif­
ferences that affect the code structure needed to 
get best performance include the following: 

1. A CV A processor can be fully utilized by a 
single thread. For the proposed MTA ma­
chine, four threads are needed to fully utilize 
the processor. 

2. Switching between threads is more expen­
sive for the CV A, so long threads are favored. 
The fast switching of the MT A processor 
allows short threads to be used, permitting 
greater parallelism to be exploited. 

3. Sending and receiving overhead is very low 
in the MT A machine, so very short messages 
may be handled efficiently. 

6.2 Machine Code Structure 

In the MTA, the low cost of threads allows the 
machine-level program structure to reflect the con­
currency structure of the algorithm being imple­
mented. In the case of the CV A, it will be advanta­
geous for high throughput to unroll loops to obtain 
long threads, and to block data into long messages 
to amortize message passing overhead. 

In general, it is better to run long threads be­
cause starting and terminating threads has a non­
zero cost in both processors. Because local memory 
accesses do not cause pipeline gaps, the only 
events that benefit from thread switching are syn­
chronizations with data arriving in messages from 
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other processors. Thread switching also provides 
sufficient multiplexing of module operation to meet 
latency and throughput requirements of the appli­
cation. 

6.3 The Example 

First, determine the number of processors needed 
to perform the computation at the desired rate. 
To do this, estimate the number of instructions 
needed to perform one compute cycle, multiply by 
the desired rate, and divide by the performance of 
the processing element. 

Table 1 shows that 99202 operations per com­
pute cycle are needed. Allowing an equal number 
of data movement and miscellaneous insuuctions, 
and allowing an additional 25% for overhead of 
scheduling and communication, the total instruc­
tions per cycle will be about 

(_wde = 99202 X 2 X 1.25 = 248005 

Using the desired rate of2.5 kHz, the total instruc­
tion rate must be at least 

R,.,str = 620 MIPS 

This rate could be met by 14 processors at 50 
MIPS each, so to be generous, assume a machine 
having 20 processors. 

Of the proposed mapping plans, Plan C has the 
greatest communication load because communi­
cation is needed to pass the entire data stream 
between each of two pairs of program modules 
(Nyquist toTwoDimFi1 ter and TwoDimFi1 ter 
to Peak:Detect ). There will also be a small amount 
of intramodule communication in the operation of 
TwoDimFil ter and Peak:Detect. The commu­
nication rate required will be a bit more than 
2w = 512 words per compute cycle, or 1. 28 million 
words per second. This is about 0.2% of the re­
quired instruction rate and is far below the capacity 
of typical interconnection networks. This is indeed 
an embarrassingly parallel computation, and is 
compute bound for all three mapping plans. 

There is one more issue to discuss before the 
mapping plans are considered separately. A major 
challenge for this computation is handling the large 
number of high-volume input data streams. In 
each case, we assume input data from the sensors 
are made available to the multiprocessor in blocks 
of eight values for each "channel" of data process­
ing. This means processing one interrupt by the 
CVA or one synchronization event for the MT A for 

each channel on every minor cycle of operation. 
Similarly, the results of processing are delivered to 
the user as blocks of sixteen 16-bit words contain­
ing the (Boolean) peak data for one cycle of pro­
cessing. Handling the output stream is a minor 
problem, but the rate of the input data stream 
events is 

R,"P == 4 X w X 2500 = 2.56 MHz 

or 128000 input events per second for each pro­
cessing element. If each input event is handled in 
the CV A machine by proce;;;;ing an interrupt and 
scheduling a thread, the overhead cost will be high. 
In the :\iTA machine, the corresponding cost is 
that of synchronizing thread initiation with an in­
put event, which requires just a few processor 
cycles. 

PlanA 

Cnder Plan A, computation by each of the five 
program modules is distributed over all 20 pro­
cessing elements. If each processor performs the 
work associated with 256/20 = 13 channels of 
data, the only interprocessor communication will 
be to support the boundary references in the 
TwoDimFi 1 ter and Peak:Detect modules. As we 
have already noted, this communication load is 
very smalL 

In the CVA machine, a single high-priority 
thread may perform the 32 executions ofBaseRe­
move, 4 executions of SpikeAdapt, and 1 execu­
tion of NyquistFil ter for each data stream in 
eah compute cycle. There will be a substantial cost 
associated with synchronizing the start of this 
thread with the arrival of 4 X 13 == 52 blocks 
of sensor data for each compute cycle. Separate 
lower-priority threads may be used to perform the 
TwoDimFi 1 ter and Peak:Detect computations 
when signaled by arrival of messages containing 
boundary data. 

In the MT A machine, many threads may be em­
ployed without thread switching overhead becom­
ing significant. One attractive structure is to use a 
separate thread to perform the work of the three 
frontend modules for each data channel. Each of 
these threads would contain 351 operations, which 
is sufficiently short that responsiveness of process­
ingwill not be affected. One thread apiece will serve 
to perform the TwoDimF:i 1 ter and PeakDetect 
computations after synchronizing "'ith interpro­
cessor messages. 

The latency of processing is the time interval 



between arrival of input data and the availability 
of output data that depend on it. Some of the pro­
cessing steps of the optical surveillance example 
have a built-in delay of from one to three operation 
cycles. Additional latency is introduced in the ma­
chine program by overhead costs and because 
once operations are performed, additional work is 
done before the consumer of results is scheduled 
or signaled to begin operation. ln this respect, the 
MT A machine has the advantage because its finer 
granularity of processing allows successor threads 
to be signaled sooner than it is feasible to schedule 
them in the CVA machine. This is partially com­
pensated by the property that a single thread exe­
cutes four times faster in the CV A. 

PlanS 

In Plan B, two processors would perform all com­
putation for TwoDimFi l ter and PeakDetect. 
Because there would be only two sections of the 
data stream, message traffic for intramodule com­
munication would be smaller. Instead, the entire 
data stream passing from Nyquist to TwoDim­
Fi l ter would have to be carried in interprocessor 
messages. Handling this data stream on a word­
by-word basis would involve a large overhead for 
the CV A machine (more cycles than needed to exe­
cute the TwoDimFil ter algorithm), but would be 
a relatively minor amount for the MTA (10% or 
less). Although the higher communication load for 
this plan would not overload a typical network, 
there is no compensating saving because the intra­
module communication need is so low, and the 
plan has the disadvantage of introducing unbal­
anced use of parts of the network. Under this map­
ping plan, there would be good opportunity to im­
prove performance of the CV A by passing data in 
large blocks between stages of the computation; 
however, this would increase the latency of results 
and require large data buffers. 

Plan C 

Plan C takes the further step of executing TwoDim­
Fil ter and PeakDetect algorithms on separate 
groups of processors, further increasing the com­
munication load without compensating benefits. 

6.4 Discussion 

The principal difference between the two architec­
tures is the cost of synchronization, which also 
reflects a difference in the handling of global mem­
ory access. (One may regard the communication 
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performed to implement access to boundary values 
of the data array in TwoDimFil ter and Peak­
Detect as instances of a general mechanism for 
global memory access.) The effect is greater in 
computations that can benefit from short threads. 

The impact of this cost on performance of the 
CVA may be mitigated by several standard tech­
niques, namely breaking the data stream up into 
blocks of sufficient length that the start-up cost 
for sending and receiving messages is acceptably 
small. The penalty is longer latency of results and 
increased amounts of memory needed to buffer 
blocks of data between processing stages. 

In the calculation of performance, it is also nec­
essary to check that the performance is actually 
achievable, i.e., that there is sufficient parallelism 
that no processing element is ever starved for work. 
This may be done using Petri nets to represent the 
dynamic behavior of the scheduling of threads, but 
is beyond the scope of this article. 

7 CONCLUSION 

This article discussed how signal/ image process­
ing programs written in the Sisal functional pro­
gramming language can be transformed and 
mapped onto multiprocessor computers. Our ap­
proach to program analysis and mapping involves 
the following steps: 

1. Transform the program into an acyclic graph 
of stream-processing program modules. 

2. Determine relative computation rates and 
load parameters for each program module. 

3. Choose plausible mapping plans. 
4. Determine performance characteristics for 

each mapping plan and select the best for 
the user's objective. 

5. Construct the machine code. 

Application of the method to an optical surveil­
lance problem was discussed in this article, as was 
the program mapping plans suitable for two target 
multiprocessor architectures: A multiprocessor 
built of conventional processing elements and a 
hypothetical multiprocessor built of multithreaded 
processing elements. By offering lower scheduling 
and synchronization costs, the MT A has the ability 
to support efficient fine-grain computation, lead­
ing to lower end-to-end latency and decreased 
memory requirement for intermediate data for the 
studied application. Another architectural variant 
that offers an intermediate choice for multipro-
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cessing between conventional processors and the 
MT A machine discussed here is the threaded ab­
stract machine [ 3] . 

In the computation studied in this article, there 
is plenty of parallelism to be exploited. Hence, 
there would be no benefit to increase processing 
element cost by adding features designed only to 
increase single-thread performance. 

Writing a program as a collection of stream­
processing functions permits easy characterization 
of the modules and exploration of a variety of 
choices for mapping the modules onto a parallel 
processing computer. Other work relating to static 
mapping of programs for multiprocessor execution 
includes many published results on resource man­
agement for real-time computation. A summary of 
work in that area appears in [2]. Others have also 
noted the tradeoff between throughput and la­
tency. The work presented here is distinctive in 
relating the mapping problem to program structure 
within a functional programming framework, and 
in dealing with multirate signal-processing prob­
lems. The work closest in spirit to ours is the Ptol­
emy Project of Prof. Lee at Berkeley [ 14]. 

The combination of functional programming 
with multithreaded processing elements can lead 

type Signal= stream [integer]; 
type ImageStream =array [Signal]; 
type DataStream =array [array [Signal] ]; 
type MarkStream =array [stream [boolean] ]; 

function Process ( 
D: DataStream; 
v: integer; 
n: integer 
returns MarkStream 

let 

in 

R := for i in 1, v 
returns array of 

let S := for j in 1,n 
returns array of 

BaseRemove (D[i,j]) 
end for 

in Nyquist ( SpikeAdapt ( S, n ) ) 
end let 

end for 

PeakDetect ( TvoDimFilter ( R, v ) ) 
end let 

end function 

FIGURE 6 The surveillance process as a composition 
of stream-processing functions in Sisal. 

function BaseRemove 
D: Signal 
returns Signal 

AdaptiveBase ( 
D, stream_first(D), false, stream_first(D) ) 

end function 

function AdaptiveBase 
D: stream [integer]; 
Th: integer; 
Sv: boolean; 
B: integer 
returns stream [integer] ) 

let 

in 

ThO := 32; 
Df := stream_first(D); 
Dr := stream_rest(D); 
B_nev := 

if Sv then Df else B end if; 
Th_nev := max ( ThO, Th + 

if Sv then ( Th I 4) 
else - ( Th I 16 ) 
end if); 

Sv_nev := ( Df- B_nev >ThO); 

stream [ Df - B_nev ] I I 
AdaptiveBase (Dr, Th_nev, Sv_nev, B_nev) 

end let 
end function 

FIGURE 7 The BaseRemove function. 

to significantly easier programming of applications 
in the domains of signal/image processing. Similar 
results are anticipated for other application areas 
that can benefit from the use of stream data types, 
such as real-time embedded systems and certain 
industrial process control problems. For applica­
tions that require dynamic management of re­
sources during program execution, further devel­
opment of methods of scheduling and load 
balancing is needed together with architectural 
features that permit efficient implementation. Fur­
ther developments in this exciting area are antici­
pated. 
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function SpikeAdapt ( 
D: array [Signal]]; 
n: integer 
returns Signal ) 

let 

in 

Th2 := 24; 

Df := for i in 1, n 
returns array of stream_first ( D[i] ) 
end for; 

Dt := for i in 1, n 
returns array of stream_rest ( D[i] ) 
end for; 

L := for i in 1, n 
returns value of least ( Df[i] ) 
end for; 

Sm := for i in 1, n 
returns value of sum 

if Df[i] < ( L + Th2 ) then Df[i] 
else 0 
end if 

end for; 

Nc := for i in 1, n 
returns value of sum 

if Df[i] < ( L + Th2 ) then 1 
else 0 
end if 

end for; 

stream [ Sm I Nc ] I I 
SpikeAdapt ( Dt, n ) 

end let 
end function 

FIGURE 8 The SpikeAdapt function. 

piler begun by the author during his appointment 
as Visiting Scientist at RIACS from Ylay 1988 
through April 1989. 

The optical surveillance example is based on 
simplified algorithms taken from a large-scale de­
fense application studied by the Boeing Company. 
The complete original algorithms were expressed 
in a variant of the Val language [ 1] in a study 
performed by Dataflow Computer Corporation un­
der contract to Boeing. The report of this work [ 4] 
included a suggested multithreaded proces­
sor design, manually derived machine code, and 
performance calculations for the Boeing appli­
cation. 
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Sisal is a functional programming language de­
veloped at the Lawrence Livermore Laboratory for 
use in high-performance scientific applications 
[ 12]. Sisal evolved from the Val language devel­
oped by the Computation Structures Group at the 
MIT Laboratory for Computer Science [ 1]. 

This article was prepared using facilities of the 
MIT Laboratory for Computer Science. 

APPENDIX 

Sisal Functions for the Optical 
Surveillance Example 

As presented in the text, the overall computation 
of this illustration is structured as the composition 
of functions given in Figure 6. The overall compu­
tation processes signals from a collection of sen­
sors that are swept over the region under surveil­
lance. These signals are conditioned, averaged, 
and filtered before a peak detection criterion is 
applied. 

Baseline Removal 

The first step is a procedure designed to ignore a 
slowly varying base component of the signal from 
each sensor. This is defined by the program Base­
Remove shown in Figure 7. 

function 
NyquistFilter ( D: Signal 
returns Signal ) 

let 

in 

Df, Dfr, Dfrr, Drrrr := 
stream_first(D), 
stream_first( stream_rest(D) ), 
stream_first( stream_rest 

(stream_rest(D) ) ), 
stream_rest(stream_rest 

(stream_rest(stream_rest(D) ) ) ); 
D_new := 

( 2 • Dfr + Df + Dfrr ); 

stream [ D_new II 
NyquistFilter ( Drrrr 

end let 
end function 

FIGURE 9 The Nyquist function. 
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function TwoDimFilter ( 

let 

in 

D: ImageStream; w: integer 
returns ImageStream ) 

a := 4; b := 2; c ·= 1; 

Bf := for i in 1, w 
returns array of array [-1: 

stream_first(D[i]), 
stream_first(stream_rest(D[i])), 
stream_first(stream_rest 

(stream_rest(D[i])))] 
end for; 

Dt := for i in 1, w 
returns array of 

stream_rest( D[i] 
end for; 

Dn := for i in 2, w-1 
returns array of 

a * Bf [i, 0] + 
b * ( Bf[i, -1] + Bf[i-1, 0] + 

Bf[i+1, 0] + Bf[i, +1] ) + 
c * ( Bf[i-1, -1] + Bf[i-1, +1] + 

Bf[i+1, -1] + Bf[i+1, +1] ) 
end for; 

Dr := TwoDimFilter ( Dt, w ) 

for i in 2, w-1 
returns array of 

stream [ Dn [i] ] II Dr [i] 
end for 

end let 

end function 

FIGURE 10 The TwoDimFil ter function. 

Spike Adaptive Averaging 

The second module (Fig. 8) combines signals from 
groups of n sensors, rejecting data that exceed a 
threshhold. 

Nyquist Filter 

This module (Fig. 9) reduces the sampling rate 
of the data stream by combining groups of four 
samples using weights designed to provide a good 
approximation to the input. 

Two-Dimension Filter 

The function TwoDimFi 1 ter (Fig. 10) represents 
a two-dimension filter by a single Sisal function. 

The filter is defined by the three coefficients, a, 
b, and c, which are the center, side, and comer 
elements of a three-by-three array. The filter is 
applied at each position in the image data for which 

function PeakDetect ( 
D: ImageStream; w: integer 
returns MarkStream ) 

let 

in 

Th := 0; 

B := for i in 2, w-1 
returns array of array [-1: 

stream_first(D[i]), 
stream_first(stream_rest(D[i])), 
stream_first(stream_rest 

(stream_rest(D[i])))] 
end for; 

Dt := for i in 2, w-1 
returns array of 

stream_rest( D[i] 
end for; 

Pk := for i in 3, w-2 

P ·= B[i, 0]; 

C := B[i-1, -1] <= P & 
B[i-1, 0] <= P & 
B[i-1, +1] <= P & 
B[i, -1] <= P & 
B[i, +1] <= P & 
B[i+1, -1] <= P & 
B[i+1, 0] <= P & 
B[i+1, +1] <= P; 

S := B[i-1, -1] + B[i-1, 0] + B[i-1, +1] + 
B[i, -1] + B[i, +1] + 
B[i+1, -1] + B[i+1, 0] + B[i+1, +1]; 

returns array of C & ( 8 * P > S + 8 * Th 
end for; 

Dr ·= PeakDetect ( Dt, w ); 

for i in 3, w-2 
returns array of 

stream [ Pk [i] ] I I Dr [i] 
end for 

end let 

end function 

FIGURE 11 The PeakDetect algorithm. 



an output value is desired. The input is an array 
of streams indexed from 1 to w. The output is an 
array of streams indexed from 2 to w - 1. (The 
boundary elements are omitted from the result 
data to avoid applying the filter function to nonex­
isting array positions.) 

A Peak Detector Algorithm 

Figure 11 shows a PeakDetect function that 
identifies all elements of the (image) data that have 
a value that is at least equal to the values of all 
immediate neighbors and exceeds their average by 
a given threshold Th. The two conditions are tested 
separately and combined to determine the result. 
The input is an array of integer streams indexed 
from 2 to w - 1. The output stream is an array of 
Boolean streams indexed from 3 to w - 2. The 
peak detection function is similar in structure to 
the filter function; each element of the result is 
true if (and only if) the data surrounding the corre­
sponding input pixel satisfy the specified condi­
tions. 
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