
Static Mapping of Functional Programs:
An Example in Signal Processing

JACK B. DENNIS
MIT Laboratory for Computer Science, Cambridge, MA 02139

ABSTRACT

Complex signal-processing problems are naturally described by compositions of pro­
gram modules that process streams of data. In this article we discuss how such composi­
tions may be analyzed and mapped onto multiprocessor computers to effectively exploit
the massive parallelism of these applications. The methods are illustrated with an exam­
ple of signal processing for an optical surveillance problem. Program transformation
and analysis are used to construct a program description tree that represents the given
computation as an acyclic interconnection of stream-processing modules. Each module
may be mapped to a set of threads run on a group of processing elements of a target
multiprocessor. Performance is considered for two forms of multiprocessor architecture,
one based on conventional DSP technology and the other on a multithreaded-processing
element design. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

An important goal toward making parallel comput­
ers more usable for practical computations is to
provide compiling technology that is able to con­
vert algorithms expressed directly and simply in a
high-level language into efficient machine code.
The parallelism implicit in the expression of the
algorithm must be identified and exploited by the
compiler. Complex signal-processing problems are
naturally described by compositions of program
modules that process streams of data. \Ve use an
example to illustrate how such compositions may
be analyzed and mapped onto multiprocessor
computers using extensions of methods used in

Received April 199S
Revised .lunt" 199.'i

© 1996 John Wilev & Sons. Inc.

Scientific Prof!ramminf!. \"ol. S. pp. 1:21-13;3 (1996)
CCC 1 OS8-92+t/CJ()/0201 :21-15

the Paradigm compiler designed and implemented
by the author [6].

We begin by discussing how the mapping of
compositions of stream-processing modules differs
from the application of data parallel principles in
mapping scientific computations onto massively
parallel computers. In the domain of high-perfor­
mance signal and image processing, applications
can exploit massively parallel computation, but the
form of parallelism present is not the data parallel
form encountered in scientific computations: (1)
Program modules often work together in producer/
consumer relationships, allowing concurrent oper­
ation; and (2) all modules of the program are con­
tinuously processing streams of data. The use of
stream data types plays a central role in expressing
such computations in a high level form that permits
automatic analysis. We illustrate an approach to
mapping such computation by analyzing a typical
processing computation for image data arriving
from a sensor array. We indicate how the computa­
tion (when expressed in the Sisal functional pro-

122 DE:--J:\118

gramming language) may be analyzed and its
structure represented in a program description tree
(PDT), and used to guide the construction of code
for a target multiprocessor. We discuss the prob­
lem of finding an optimal mapping, and discuss
the structure and performance of constructed code
for two choices of multiprocessor architecture.

2 STATIC MAPPING

The problem of implementing programs written in
high-level languages on parallel computers may be
approached in two fundamental ways according
to the philosophy of managing processing and
memory resources. One may strive to implement
a very general model of parallel computing and
implement it by a suitable combination of architec­
tural features and run-time services so that all
scheduling and memory allocation decisions are
performed during program execution. This general
approach is exemplified by the Monsoon multi­
processor [13], but the mechanisms have not
evolved to the level of efficiency required to attract
practical usage. The second approach is based on
making most memory management decisions at
compile time. This can yield very efficient exploita­
tion of multiprocessors built of conventional pro­
cessors for computations having a suitable regular
structure. This second approach has been the ba­
sis for the development of the data parallel model
and its implementation in such work as the Think­
ing Machines Fortran compiler [15], the definition
of high-performance Fortran, and advanced work
in Prof. Kennedy's group at Rice University.

The data parallel approach can also be followed
for programs expressed in functional programming
languages with significant advantages. It is simpler
to identify the program blocks that are suitable
for data parallel implementation, and the global
program analysis needed to determine optimum
alignment and mapping for the arrays of a program
is more readily accomplished. This is because
functional language programs do not make use of
side effects, and each use of any data definition
is readily identified. This has been done in the
Paradigm compiler [6] designed and built by the
author for the Sisal language and targeted for the
CM-2 Connection Machine.

2.1 Compiler Structure

The Paradigm compiler was designed to identify
the principal data structures constructed by a pro-

Sisal

Front
End

FIGURE 1 Structure of the Paradigm compiler.

gram through global compile-time analysis, and to
map these structures onto the processing elements
of the target machine. The structure of the com­
piler is shown in Figure 1. It consists of a conven­
tional front end that parses and checks source lan­
guage modules, an analyze module that identifies
code blocks in the program, and a code constructor
that implements each code block on the basis of
mapping specifications derived with optional ad­
vice from the user [5, 6].

Our goal requires some departure from the typi­
cal structure of programming language support
systems. Efficient machine code programs for
large-scale parallel computers can be generated
only if the compiler is able to consider the entire
collection of program modules involved in a job in
making decisions regarding how the computation
should be mapped onto the target machine. This
implies that the linking of program modules should
be accomplished prior to the compiler's analysis
and optimization decisions. A second change is
more fundamental: lnstead of carrying out optimi­
zation as a sequence of independent steps, each
of which supposedly leads to an "improvement"
of the code, we perform an analysis of the given
code, determine the best mapping strategy, then
synthesize machine code according to the speci­
fied mapping.

The functional programming language Sisal
[12] is particularly attractive for implementing this
approach. The absence of global variables and the
clear differentiation of arguments and results of
function modules make it easy for a compiler to
analyze source programs and identify the parts of
the code that define the major data structures. We
call these parts of the source language program
code blocks.

The data structures appropriate for scientific
computation are large multidimensional arrays of
numerical data. Each code block defines an array
value and represents a computation that may be
spread over the processing elements of the ma­
chine according to a chosen assignment (or map-

ping) of array elements to processing elements.
This is the essence of data parallel computation.
The parallel iteration expression of the Sisal lan­
guage provides a convenient high-level notation
for writing data parallel algorithms.

2.2 Application to High-Performance
Signal/Image Processing

Another area that can exploit massively parallel
computation is high-performance signal and im­
age processing. In these applications large
amounts of parallelism exist, but it takes different
forms: (1) producer/ consumer concurrency-the
possibility of executing two program modules con­
currently when one (the consumer) processes a
stream of data generated by the other (the pro­
ducer); and (2) simultaneous application of several
instances of functions. The use of stream data
types plays a central role in expressing such com­
putations in a high-level form that permits auto­
matic analysis. The rest of the article is devoted to
describing this process, illustrating its application
to a practical signal-processing problem, and con­
sidering performance tradeoffs for two multipro­
cessor architectures.

3 AN EXAMPLE: OPTICAL SURVEILLANCE

The computation chosen to illustrate the proposed
mapping strategy is derived from a collection of
procedures for processing information from a sky­
scanning optical surveillance device and detecting
objects in its field of view. The application has
similarities to radar signal processing. There are
many sensors, several for each line of the scanned
image. These signals are conditioned, smoothed,
and downsampled before a two-dimensional filter
is used to suppress unimportant detail. A peak
detection algorithm identifies points in the image
that should be analyzed further as potential objects
to be reported. A block diagram of the computation
is shown in Figure 2.

Each module in the diagram may be characterized
as a function that transforms a stream of input data
into a stream of output data. Hence it is natural to
specify them using a language (Sisal) that includes
streams as standard data types and supports analytic
and constructive operations on streams.

In Sisal a stream is a sequence of values that
may be infinite (unending). A stream of integers is
a natural representation for a signal that has been
converted into digital form. Interconnecting mod-

STATIC MAPPI"JG FOR SIGNAL PROCESSING 123

ules that process streams of data is a powerful
means for combining program parts to build larger
modules and is well matched to the needs of signal­
processing tasks. Thus, the combination of pro­
cessing modules shown in Figure 2 may be ex­
pressed in Sisal as the composition of functions in
Figure 3. The Sisal code for the five component
functions is given in the Appendix of this article.

This use of function composition for signal pro­
cessing has been discussed in [8], where we
showed how to transform tail-recursive functions
on streams into nonrecursive dataflow graphs that
may be executed efficiently by suitable fine-grain
parallel computers [7, 9]. The use of dataflow
graphs as a natural means for specifying signal
processing applications has also been studied in
[1 OJ, and the idea of compiling signal-processing
programs from block diagrams was described as
earlyas[11].

This example shows that complete signal-pro­
cessing tasks may take the form of a set of process­
ing modules, each generating a stream of values
that is passed to other modules for further process­
ing. Thus, the overall computation may be de­
scribed by a directed acyclic graph in which the
nodes are stream-processing modules such as
those of our example, and each link indicates a
producer/ consumer relationship between a pair of
modules. It is well known that such interconnec­
tions of modules may lead to deadlock if the graph
contains (undirected) cycles and the temporary
storage for stream elements in each link is bounded
in capacity. For example, the function

function DeadLock (
x: stream [integer]
returns stream [integer]

let y = fun-1 (x)
in fun-2 (x, y)

end let
end function

will deadlock if fun -1 produces two stream ele­
ments for each input element, and only a finite
amount of storage is available for elements of
stream y. Given the structure of stream-processing
programs expressible in Sisal, a compiler can de­
tect such situations and warn the user of the dead­
lock possibility.

4 PROGRAM ANALYSIS

In this article only programs having an overall
structure that supports the continuous processing

124 DENNIS

TwoDimFilter PeakDetect

FIGURE 2 Structure of the optical surveillance data processing algorithms.

of streams of data are considered. In these pro­
grams, each module operates on data streams,
produces a data stream, and runs continuously
during program execution. The overall structure
of such programs is an acyclic interconnection of
such modules. This is in contrast to data parallel
scientific codes for which the original Paradigm
compiler was designed. There the top-level pro­
gram structure is a main loop in which the loop
body is an acyclic combination of code blocks that
define array values, as in the following program
segment.

type Signal= stream [integer];
type ImageStream =array [Signal];
type DataStream =array [array [Signal]];
type MarkStream =array [stream [boolean]];

function Process (
D: DataStream;
w: integer;
n: integer
returns MarkStream

let

in

R := for i in 1, w
returns array of

let S := for j in 1,n
returns array of

BaseRemove (D[i,j])
end for

in Nyquist (SpikeAdapt (S, n))
end let

end for

PeakDetect (TwoDimFilter (R, w))
end let

end function

FIGURE 3 Type declarations and the principal func­
tion Process for the optical surveillance computation,
written in Sisal as a composition of stream-processing
functions.

Z: array [real]
for i in 1, n

Y: real : =

if i = 1li n
then X[i]
else o. 5 * (X[i-1] + X[1+1]
end if

returns array of Y
end for

This parallel expression in Sisal defines an array
value Z, each (internal) element of which is the
average of the two adjacent elements of a given
vector X. The conditional expression provides for
special treatment of the boundary elements of Z.
All instances of the body expression may be evalu­
a ted concurrently. In general, data parallel code
blocks may be nested' 'for'' expressions that define
multidimensional arrays, and may include reduc­
tion operations that apply associative operators
over specified dimensions of the defined array. The
Paradigm compiler [6] can analyze and transform
programs having this structure into data parallel
programs for the CM-2 Connection Machine.

4.1 Stream-Processing Programs

The present study explores the prospects for static
analysis and mapping of continuous stream-pro­
cessing computations such as the optical surveil­
lance problem. Thus we envision a new version
of the Paradigm compiler that will transform and
analyze such programs and generate machine code
for multiprocessor computers. Given a program
that is amenable to static resource management,
the Analyze module of the rebuilt Paradigm com­
piler will provide program descriptions that may
be used to plan the mapping of the program onto
a parallel computer and to construct code in the
target machine language.

The job of program analysis has several parts:

1. Identify the program modules (code blocks)
2. Check the conditions that permit static map­

ping to be used
3. Extract parameters for each program mod­

ule for use in performance estimation
4. Determine the relative computation rate for

each module
5. ·Construct a program description tree con­

taining the results of analysis

4.2 Program Transformation

The identification step includes examining recur­
sive function definitions to determine whether they
are tail recursions and have equivalent iterative
dataflow graphs. A method for doing this has been
given in [8].

In the absence of conditional expressions in
their bodies, the tail-recursive function definitions
express functions that process input streams into
output streams, and in each case the number of
output elements emitted is related to the number
of input elements absorbed as a ratio of integers,
a rational number. If the bodies of these function
definitions contain conditional expressions, it may
be that the module does not have a fixed ratio of
output elements emitted to input elements ab­
sorbed, and only a range of values for the ratio
can be determined through static analysis. Such
situations appear to be rare in practical signal­
processing computations, for their existence would
imply a nonuniform sampling rate. For example,
the BaseRemove function contains a conditional,
but has a fixed input/ output ratio of unity. Given
these ratios (or bounds on relative rates) a rate (or
range of rates) can be calculated for every module.

Figure 4 illustrates the results of program trans­
formation performed by the compiler. It is a da­
taflow graph that represents the continuous itera­
tive processing of a stream of data arrays by the
TwoDimFi l ter module. The Group operator at
the top of the figure extracts successive groups of
three elements from the input stream. Each of
these elements is a w-element array. On the next
cycle of operation, the selected group starts with
the element one position later in the input stream.
Between the square brackets is the conventional
dataflow graph of the body of the ArrayProducer
code block. It is not presented in fine-grain form
to avoid confusing detail. The brackets themselves
represent the For All code block that defines each
array element of the output stream. The opening
(top) bracket is labeled with the range of indices
for elements in the generated array. The Emit-

STATIC MAPPING FOR SIGNAL PROCESSING 125

D: array[stream[int]]

I -1
I Group (3,1)

,
I in 2,w-1

I B[i,-1] B[i,O] B[i,+l] I

n := a * B[i,O] + b * t1 + c * t2

Do

array[stream[int]]

EmitStreamEiement

FIGURE 4 Transformed program module for the
TwoDimFil ter function.

StreamElement operator simply appends its in­
put array onto the output stream.

We assume that the usual architecture-inde­
pendent optimization steps-constant folding,
common subexpression elimination, etc.-have
been performed. Also, and this is especially im­
portant in signal-processing applications, shift op­
erations are used to implement multiplication by
known constants whenever this is more efficient
(although this depends on the detailed design of
the arithmetic units of the processor).

4.3 The Program Description Tree

The objective of program transformation and anal­
ysis is to provide information on which the choice
of a good mapping of program modules and data
structures onto a target multiprocessor may be
made. We represent the results of analysis as a
Program Description Tree (PDT). Each node of
the PDT corresponds to a syntactic element of the
program analyzed. The node types include Graph
nodes that represent acyclic interconnections of
primitive operators and code blocks, and node
types that represent the several kinds of code

126 DENNIS

blocks. A For All node describes a code block that
determines an array value each time it is executed.
A StreamProducer node describes a code block
that produces an endless stream of simple scalar
elements, and an ArrayProducer node describes
a code block that produces an endless stream of
array values. The nodes of the PDT contain data
type information and the index ranges for con­
structed arrays. Graph nodes contain counts of
operators of various kinds, and could also contain
information about the degree of parallelism such
as the critical path length of the graph.

4.4 Analysis of the Example

The optical surveillance program satisfies the con­
ditions for static mapping. Each recursive function
definition is tail recursive and may be transformed
into an iterative dataflow graph with a fixed mem­
ory requirement for each top-level invocation.
Moreover, each of the resulting transformed mod­
ules maps one or more input streams into an output
data stream, and the program in entirety is an
acyclic composition of these modules, as specified
by the top-level function Process (Figure 3). The
PDT for the optical surveillance example is shown
in Figure 5. This is simplified in that the parallel
for-loops within modules SpikeAdapt, TwoDim­
Fi 1 ter, and PeakDetect are not represented ex­
plicitly.

4.5 Computation Rate and Load Estimate

The PDT contains sufficient information to deter­
mine the relative computation rate for each pro­
gram module, and the approximate fraction of the
total computation load each module is responsible
for. These data are calculated for the optical sur­
veillance problem in Table 1. We (arbitrarily) take
the processing of one array of data by TwoDim­
Fi 1 ter (or by PeakDetect) as the basic compute
cycle of the computation. For each program mod­
ule, Table 1 shows the number of operations per­
formed in each execution of a module, the width
of the data stream processed by the module, and
the number of instances of execution of the module
for one compute cycle. These data yield the opera­
tion count per cycle and the load fraction for each
module. For example, there are w instances of the
SpikeAdapt function, each of which processes a
single input stream (of array values). The (relative)
rate of execution is 4 because the Nyquist module
consumes four elements of its input stream for each
element it delivers to TwoDimF i 1 ter. From the

code for SpikeAdapt given in the Appendix, we
see that three parallel for-loops are applied to the
data, for a total of 39 operations per input stream.
The total operation count for one basic cycle of
operation is

TspikeAdapt = 4 X 39 X 1 X w = 4 X 39 X 256 = 39936

or 0.403 of the total operation count of 99202 for
all five function modules.

These data are used in Section 6 to discuss the
computation rate and latency for selected map­
pings of the example.

5 MAPPING PLANS AND STRATEGIES

In this section we discuss reasonable choices for
mapping continuous processing applications to
multiprocessor computers, and discuss the prob­
lem of finding the best mapping plan.

5.1 Mapping Plans

In contrast to data parallel scientific computing,
the strategy of letting one program code block
at a time utilize the whole machine appears
to be a poor choice for continuous processing
applications. Rather, in many cases the best
approach is to structure the machine code so all
program modules are executing concurrently at
a rate that meets exactly the computation re­
quirement.*

Given an estimate of the load to be handled
by each code module, we must decide how many
processing elements should be actively executing
each module. For each program module, two rea­
sonable mapping possibilities are apparent:

1. Allocate: Assign to the program module
the exact number of processing elements
needed to achieve the overall computation
rate the module requires.

* In current practice. a single processor is often multiplexed
among program modules for different stages of processing, but
because coarse-grain processing must be used to attain eco­
nomical performance with conventional processors, large buff­
ers for intermediate data must be used and high latency of
results occurs. With multiprocessing. assigning different mod­
ules to distinct processors will often yield better resource utili­
zation.

Process

StreamProducer

Elements int
Inputs

name D
type stream[int]
ratio 1

Bod

Operations
add 2
shift 1
compare 2
test 1

BaseRemove

STATIC MAPPI:'-JG FOR SIGNAL PROCESSING 127

TwoDimFilter

Arra Producer

Range 2,w-1
Elements int
Inputs

name D
type array[stream[int]]
ratio 1

Bod

StreamProducer

Elements int
Inputs

name D
type array[stream[int]]
range 1,n
ratio 1

Operations
add 30
test 8
divide 1

SpikeAdapt

Peak.Detect

Range
Elements
Inputs

name D
type array[stream[int]]
ratio 1

Bod

Operations
add
shift

8
1

compare 9
logic 8

StreamProducer

Elements int
Inputs

name D
type stream[int]
ratio 4

Bod

Nyquist

FIGURE 5 PDT for the signal-processing example.

2. Distribute: Spread the computation load
of the module uniformly over all process­
ing elements

The choice between the allocate and dis­
tribute strategies may be made independently
for each module, but those processing elements
dedicated to program modules for which the all o­
cate strategy is chosen are not in the set over

which the work of the remaining modules may be
spread. Which choices lead to better performance
depends on the relative amounts of intermodule
communication and intramodule communication,
and on how well the loads match up with process­
ing element capacities.

1\'ote that if the computation rate demanded by
some program module requires the performance
of several processing elements, then the program

Table 1. Calculation of Load Fraction for Each Program Module From Data in the PDT

Module Rate Operations Width Count Total Fraction

BaseRemove 4 6 1 nw 49152 0.495
SpikeAdapt 4 39 1 w 39936 0.403
1\'yquist 1 3 1 w 768 0.008
TwoDimFilter 1 11 w- 2 1 2794 0.028
PeakDetect 1 26 w-4 1 6552 0.066

Total 99202 1.000

Note: Total operations and load fractions are calculated for w = 256 and n = 8.

128 DENNIS

Table 2. Three Mapping Plans for the Optical Surveillance Problem

Module Plan A Plan B Plan C

BaseRemove Group 1
SpikeAdapt Group 1
Nyquist Group 1
TwoDimFilter Group 1
PeakDetect Group 1

module must offer sufficient opportunities for con­
currency that the processing elements can be fully
utillized. Otherwise the computation is not feasible
on the target multiprocessor.

Where the input of a module is an array of
streams, a plan in which the modules producing
the individual streams are executed by the same
processing element as that assigned to the corre­
sponding part of the array-processing module is
likely to perform better by avoiding some connnu­
nication cost.

An advantage of assigning a limited number of
processors to chosen modules is that it is then not
necessary to load all program modules into (or
make them accessible from) every processor.

In data parallel scientific computation, a major
issue is aligning the distribution of various data
arravs so as to minimize communication. In con­
tinuous processing computations, this issue has
less impact. On the other hand, it is beneficial
to distribute the work of the TwoDimFil ter and
PeakDetect modules over processing elements in
aligned fashion.

5.2 Mapping Plans

On the basis of the above considerations, we pro­
pose the following class of mapping plans for con­
tinuous processing programs: A mapping plan is
a specification for each node of the PDT as to
whether execution of the program section de­
scribed bv the subtree is to be evenly distributed . .
over all processing elements (distribute), or is
to be executed by a group of dedicated processing
elements (allocate) sized to accommodate the
estimated load of that program section.

Table 2 gives three reasonable proposals for
mapping the optical surveillance computation.
Under Plan A, the entire machine is treated as a
single group of processors and the work of each of
the five program modules is distributed over all
processing elements. This choice is attractive be­
cause it eliminates all interprocessor communica-

Group 1
Group 1
Group 1
Group 2
Group 2

Group 1
Group 1
Group 1
Group 2
Group 3

tion except that due to boundary exchange in algo­
rithms TwoDimFil ter and PeakDetect. In Plan
B, the processors are divided into two groups; one
is dedicated to the work of algorithms TwoDim­
Fil ter and PeakDetect, and the work of each
of these modules is distributed across its group to
avoid communication costs for passing data be­
tween them. The second group of processors is
applied to the remaining program modules. In Plan
C, a finer allocation using three groups of process­
ing elements is specified. The relative merits of
these plans are discussed in the following section.

5.3 Finding the Optimal Mapping Plan

Given a mapping plan and characteristics of the
target multiprocessor including the number of pro­
cessing elements, it is straightforward to estimate
performance parameters for the mapping plan.
Given the total operation count, the number of
processors, and their speed, the rate of computa­
tion may be estimated. The costs of process syn­
chronization may be approximated from charac­
teristics of the target architecture and program
structure information in the description tree. The
mapping plan induces a communication load from
which it can be estimated whether the computation
is compute or communication bound.

Thus, the following approach should help find
the optimum mapping plan:

1. Determine computation rates and load pa­
rameters for each node of the graph.

2. Generate several plausible mapping plans
based on the given PDT and estimates of
perfonnance parameters.

3. Evaluate each proposed mapping plan by
constructing target rnachine code and deter­
ruining accurate processor and comrnunica­
tion loads.

4. Select the best mapping plan for the user's
objective.

c). Construct the final machine code.

6 MULTIPROCESSOR PERFORMANCE

Given the three mapping plans proposed above,
let us consider their use in code construction for
multiprocessor computers. First, the two processor
architectures considered as contrasting targets for
parallel computing are introduced. The machine
code structures appropriate for implementing con­
tinuous processing applications, such as the opti­
cal surveillance computations, are discussed. The
performance differences among the three plans
and the tradeoffs possible among throughput,
memory, and latency of output data are also dis­
cussed.

6.1 Architectures

Two contrasting multiprocessor architectures are
discussed. One uses processing elements of con­
ventional architecture with features intended to
support efficient multiprocessor computation.
This is designated the conventional architecture
(CVA) machine. A commercial example of such
a processing element is the Texas Instruments
TMS320C3x digital signal processor. This ma­
chine has high single-thread performance, but
makes only modest concessions to supporting fine­
grain synchronization and communication for ef­
ficient parallel computing. In this architecture, a
thread is created by a fork command or a parallel
function call interpreted by run-time software, and
may terminate at a join command or by execution
of a quit command. A thread may be suspended
to wait for some event to occur, and it may be
preempted to allow the processor to handle inter­
rupt events or to schedule a thread having a
higher priority.

The second architecture uses a hypothetical
processing element having an interleaved multi­
threading architecture, as proposed in [7, 9]. This
is designated the multithreaded architecture
(MTA) machine. In this processor, there may be
four active threads that share resources (functional
units, registers, and access to local memory).
Threads are non-preemptible, so execution of a
ready thread is delayed until one of the four pipe­
line slots is released by termination of an active
thread. A thread becomes ready for execution
when it is signaled from other threads, or when a
message arrives from another processor. A thread
uses a small number of registers to pass results
from one instruction to a later instruction of the
thread; registers are undefined when a thread be­
comes active and are not saved at thread termina-

STATIC MAPPING FOR SIGNAL PROCESSING 129

tion. A typical thread will either send signals to
activate other threads, or send an interprocessor
message just before terminating by executing a
quit instruction. In the MT A, a thread is a se­
quence of instructions fixed at compile time and
is short enough that other threads may be executed
soon enough to meet performance requirements.

Other MT As have supported eight active threads
to allow tolerance of long memory accesses. For
the present discussion we assume that multiplex­
ing four threads in the computation pipeline is suf­
ficient to tolerate the latency of accesses to local
memory and to fill pipeline gaps due to intrathread
dependencies.

To compare the two architectures, it is assumed
that both are able to achieve the same total instruc­
tion processing rate. This means that one thread
on the MT A will run one fourth as fast as a single
thread on the CV A. (This is unfair to the MT A
because the CV A will be slowed more by pipe­
line hazards.)

With respect to implementing the mapping
plans for the optical surveillance problem, the dif­
ferences that affect the code structure needed to
get best performance include the following:

1. A CV A processor can be fully utilized by a
single thread. For the proposed MTA ma­
chine, four threads are needed to fully utilize
the processor.

2. Switching between threads is more expen­
sive for the CV A, so long threads are favored.
The fast switching of the MT A processor
allows short threads to be used, permitting
greater parallelism to be exploited.

3. Sending and receiving overhead is very low
in the MT A machine, so very short messages
may be handled efficiently.

6.2 Machine Code Structure

In the MTA, the low cost of threads allows the
machine-level program structure to reflect the con­
currency structure of the algorithm being imple­
mented. In the case of the CV A, it will be advanta­
geous for high throughput to unroll loops to obtain
long threads, and to block data into long messages
to amortize message passing overhead.

In general, it is better to run long threads be­
cause starting and terminating threads has a non­
zero cost in both processors. Because local memory
accesses do not cause pipeline gaps, the only
events that benefit from thread switching are syn­
chronizations with data arriving in messages from

130 DENNIS

other processors. Thread switching also provides
sufficient multiplexing of module operation to meet
latency and throughput requirements of the appli­
cation.

6.3 The Example

First, determine the number of processors needed
to perform the computation at the desired rate.
To do this, estimate the number of instructions
needed to perform one compute cycle, multiply by
the desired rate, and divide by the performance of
the processing element.

Table 1 shows that 99202 operations per com­
pute cycle are needed. Allowing an equal number
of data movement and miscellaneous insuuctions,
and allowing an additional 25% for overhead of
scheduling and communication, the total instruc­
tions per cycle will be about

(_wde = 99202 X 2 X 1.25 = 248005

Using the desired rate of2.5 kHz, the total instruc­
tion rate must be at least

R,.,str = 620 MIPS

This rate could be met by 14 processors at 50
MIPS each, so to be generous, assume a machine
having 20 processors.

Of the proposed mapping plans, Plan C has the
greatest communication load because communi­
cation is needed to pass the entire data stream
between each of two pairs of program modules
(Nyquist toTwoDimFi1 ter and TwoDimFi1 ter
to Peak:Detect). There will also be a small amount
of intramodule communication in the operation of
TwoDimFil ter and Peak:Detect. The commu­
nication rate required will be a bit more than
2w = 512 words per compute cycle, or 1. 28 million
words per second. This is about 0.2% of the re­
quired instruction rate and is far below the capacity
of typical interconnection networks. This is indeed
an embarrassingly parallel computation, and is
compute bound for all three mapping plans.

There is one more issue to discuss before the
mapping plans are considered separately. A major
challenge for this computation is handling the large
number of high-volume input data streams. In
each case, we assume input data from the sensors
are made available to the multiprocessor in blocks
of eight values for each "channel" of data process­
ing. This means processing one interrupt by the
CVA or one synchronization event for the MT A for

each channel on every minor cycle of operation.
Similarly, the results of processing are delivered to
the user as blocks of sixteen 16-bit words contain­
ing the (Boolean) peak data for one cycle of pro­
cessing. Handling the output stream is a minor
problem, but the rate of the input data stream
events is

R,"P == 4 X w X 2500 = 2.56 MHz

or 128000 input events per second for each pro­
cessing element. If each input event is handled in
the CV A machine by proce;;;;ing an interrupt and
scheduling a thread, the overhead cost will be high.
In the :\iTA machine, the corresponding cost is
that of synchronizing thread initiation with an in­
put event, which requires just a few processor
cycles.

PlanA

Cnder Plan A, computation by each of the five
program modules is distributed over all 20 pro­
cessing elements. If each processor performs the
work associated with 256/20 = 13 channels of
data, the only interprocessor communication will
be to support the boundary references in the
TwoDimFi 1 ter and Peak:Detect modules. As we
have already noted, this communication load is
very smalL

In the CVA machine, a single high-priority
thread may perform the 32 executions ofBaseRe­
move, 4 executions of SpikeAdapt, and 1 execu­
tion of NyquistFil ter for each data stream in
eah compute cycle. There will be a substantial cost
associated with synchronizing the start of this
thread with the arrival of 4 X 13 == 52 blocks
of sensor data for each compute cycle. Separate
lower-priority threads may be used to perform the
TwoDimFi 1 ter and Peak:Detect computations
when signaled by arrival of messages containing
boundary data.

In the MT A machine, many threads may be em­
ployed without thread switching overhead becom­
ing significant. One attractive structure is to use a
separate thread to perform the work of the three
frontend modules for each data channel. Each of
these threads would contain 351 operations, which
is sufficiently short that responsiveness of process­
ingwill not be affected. One thread apiece will serve
to perform the TwoDimF:i 1 ter and PeakDetect
computations after synchronizing "'ith interpro­
cessor messages.

The latency of processing is the time interval

between arrival of input data and the availability
of output data that depend on it. Some of the pro­
cessing steps of the optical surveillance example
have a built-in delay of from one to three operation
cycles. Additional latency is introduced in the ma­
chine program by overhead costs and because
once operations are performed, additional work is
done before the consumer of results is scheduled
or signaled to begin operation. ln this respect, the
MT A machine has the advantage because its finer
granularity of processing allows successor threads
to be signaled sooner than it is feasible to schedule
them in the CVA machine. This is partially com­
pensated by the property that a single thread exe­
cutes four times faster in the CV A.

PlanS

In Plan B, two processors would perform all com­
putation for TwoDimFi l ter and PeakDetect.
Because there would be only two sections of the
data stream, message traffic for intramodule com­
munication would be smaller. Instead, the entire
data stream passing from Nyquist to TwoDim­
Fi l ter would have to be carried in interprocessor
messages. Handling this data stream on a word­
by-word basis would involve a large overhead for
the CV A machine (more cycles than needed to exe­
cute the TwoDimFil ter algorithm), but would be
a relatively minor amount for the MTA (10% or
less). Although the higher communication load for
this plan would not overload a typical network,
there is no compensating saving because the intra­
module communication need is so low, and the
plan has the disadvantage of introducing unbal­
anced use of parts of the network. Under this map­
ping plan, there would be good opportunity to im­
prove performance of the CV A by passing data in
large blocks between stages of the computation;
however, this would increase the latency of results
and require large data buffers.

Plan C

Plan C takes the further step of executing TwoDim­
Fil ter and PeakDetect algorithms on separate
groups of processors, further increasing the com­
munication load without compensating benefits.

6.4 Discussion

The principal difference between the two architec­
tures is the cost of synchronization, which also
reflects a difference in the handling of global mem­
ory access. (One may regard the communication

STATIC MAPPING FOR SIGNAL PROCESSING 131

performed to implement access to boundary values
of the data array in TwoDimFil ter and Peak­
Detect as instances of a general mechanism for
global memory access.) The effect is greater in
computations that can benefit from short threads.

The impact of this cost on performance of the
CVA may be mitigated by several standard tech­
niques, namely breaking the data stream up into
blocks of sufficient length that the start-up cost
for sending and receiving messages is acceptably
small. The penalty is longer latency of results and
increased amounts of memory needed to buffer
blocks of data between processing stages.

In the calculation of performance, it is also nec­
essary to check that the performance is actually
achievable, i.e., that there is sufficient parallelism
that no processing element is ever starved for work.
This may be done using Petri nets to represent the
dynamic behavior of the scheduling of threads, but
is beyond the scope of this article.

7 CONCLUSION

This article discussed how signal/ image process­
ing programs written in the Sisal functional pro­
gramming language can be transformed and
mapped onto multiprocessor computers. Our ap­
proach to program analysis and mapping involves
the following steps:

1. Transform the program into an acyclic graph
of stream-processing program modules.

2. Determine relative computation rates and
load parameters for each program module.

3. Choose plausible mapping plans.
4. Determine performance characteristics for

each mapping plan and select the best for
the user's objective.

5. Construct the machine code.

Application of the method to an optical surveil­
lance problem was discussed in this article, as was
the program mapping plans suitable for two target
multiprocessor architectures: A multiprocessor
built of conventional processing elements and a
hypothetical multiprocessor built of multithreaded
processing elements. By offering lower scheduling
and synchronization costs, the MT A has the ability
to support efficient fine-grain computation, lead­
ing to lower end-to-end latency and decreased
memory requirement for intermediate data for the
studied application. Another architectural variant
that offers an intermediate choice for multipro-

132 DENNIS

cessing between conventional processors and the
MT A machine discussed here is the threaded ab­
stract machine [3] .

In the computation studied in this article, there
is plenty of parallelism to be exploited. Hence,
there would be no benefit to increase processing
element cost by adding features designed only to
increase single-thread performance.

Writing a program as a collection of stream­
processing functions permits easy characterization
of the modules and exploration of a variety of
choices for mapping the modules onto a parallel
processing computer. Other work relating to static
mapping of programs for multiprocessor execution
includes many published results on resource man­
agement for real-time computation. A summary of
work in that area appears in [2]. Others have also
noted the tradeoff between throughput and la­
tency. The work presented here is distinctive in
relating the mapping problem to program structure
within a functional programming framework, and
in dealing with multirate signal-processing prob­
lems. The work closest in spirit to ours is the Ptol­
emy Project of Prof. Lee at Berkeley [14].

The combination of functional programming
with multithreaded processing elements can lead

type Signal= stream [integer];
type ImageStream =array [Signal];
type DataStream =array [array [Signal]];
type MarkStream =array [stream [boolean]];

function Process (
D: DataStream;
v: integer;
n: integer
returns MarkStream

let

in

R := for i in 1, v
returns array of

let S := for j in 1,n
returns array of

BaseRemove (D[i,j])
end for

in Nyquist (SpikeAdapt (S, n))
end let

end for

PeakDetect (TvoDimFilter (R, v))
end let

end function

FIGURE 6 The surveillance process as a composition
of stream-processing functions in Sisal.

function BaseRemove
D: Signal
returns Signal

AdaptiveBase (
D, stream_first(D), false, stream_first(D))

end function

function AdaptiveBase
D: stream [integer];
Th: integer;
Sv: boolean;
B: integer
returns stream [integer])

let

in

ThO := 32;
Df := stream_first(D);
Dr := stream_rest(D);
B_nev :=

if Sv then Df else B end if;
Th_nev := max (ThO, Th +

if Sv then (Th I 4)
else - (Th I 16)
end if);

Sv_nev := (Df- B_nev >ThO);

stream [Df - B_nev] I I
AdaptiveBase (Dr, Th_nev, Sv_nev, B_nev)

end let
end function

FIGURE 7 The BaseRemove function.

to significantly easier programming of applications
in the domains of signal/image processing. Similar
results are anticipated for other application areas
that can benefit from the use of stream data types,
such as real-time embedded systems and certain
industrial process control problems. For applica­
tions that require dynamic management of re­
sources during program execution, further devel­
opment of methods of scheduling and load
balancing is needed together with architectural
features that permit efficient implementation. Fur­
ther developments in this exciting area are antici­
pated.

ACKNOWLEDGMENTS

The work reported here applies the results of re­
search conducted by the Computation Structures
Group of the MIT Laboratory for Computer Sci­
ence to practical signal-processing algorithms. The
work is an extension of the original Paradigm com-

function SpikeAdapt (
D: array [Signal]];
n: integer
returns Signal)

let

in

Th2 := 24;

Df := for i in 1, n
returns array of stream_first (D[i])
end for;

Dt := for i in 1, n
returns array of stream_rest (D[i])
end for;

L := for i in 1, n
returns value of least (Df[i])
end for;

Sm := for i in 1, n
returns value of sum

if Df[i] < (L + Th2) then Df[i]
else 0
end if

end for;

Nc := for i in 1, n
returns value of sum

if Df[i] < (L + Th2) then 1
else 0
end if

end for;

stream [Sm I Nc] I I
SpikeAdapt (Dt, n)

end let
end function

FIGURE 8 The SpikeAdapt function.

piler begun by the author during his appointment
as Visiting Scientist at RIACS from Ylay 1988
through April 1989.

The optical surveillance example is based on
simplified algorithms taken from a large-scale de­
fense application studied by the Boeing Company.
The complete original algorithms were expressed
in a variant of the Val language [1] in a study
performed by Dataflow Computer Corporation un­
der contract to Boeing. The report of this work [4]
included a suggested multithreaded proces­
sor design, manually derived machine code, and
performance calculations for the Boeing appli­
cation.

STATIC MAPPING FOR SIGNAL PROCESSING 133

Sisal is a functional programming language de­
veloped at the Lawrence Livermore Laboratory for
use in high-performance scientific applications
[12]. Sisal evolved from the Val language devel­
oped by the Computation Structures Group at the
MIT Laboratory for Computer Science [1].

This article was prepared using facilities of the
MIT Laboratory for Computer Science.

APPENDIX

Sisal Functions for the Optical
Surveillance Example

As presented in the text, the overall computation
of this illustration is structured as the composition
of functions given in Figure 6. The overall compu­
tation processes signals from a collection of sen­
sors that are swept over the region under surveil­
lance. These signals are conditioned, averaged,
and filtered before a peak detection criterion is
applied.

Baseline Removal

The first step is a procedure designed to ignore a
slowly varying base component of the signal from
each sensor. This is defined by the program Base­
Remove shown in Figure 7.

function
NyquistFilter (D: Signal
returns Signal)

let

in

Df, Dfr, Dfrr, Drrrr :=
stream_first(D),
stream_first(stream_rest(D)),
stream_first(stream_rest

(stream_rest(D))),
stream_rest(stream_rest

(stream_rest(stream_rest(D))));
D_new :=

(2 • Dfr + Df + Dfrr);

stream [D_new II
NyquistFilter (Drrrr

end let
end function

FIGURE 9 The Nyquist function.

134 DENNIS

function TwoDimFilter (

let

in

D: ImageStream; w: integer
returns ImageStream)

a := 4; b := 2; c ·= 1;

Bf := for i in 1, w
returns array of array [-1:

stream_first(D[i]),
stream_first(stream_rest(D[i])),
stream_first(stream_rest

(stream_rest(D[i])))]
end for;

Dt := for i in 1, w
returns array of

stream_rest(D[i]
end for;

Dn := for i in 2, w-1
returns array of

a * Bf [i, 0] +
b * (Bf[i, -1] + Bf[i-1, 0] +

Bf[i+1, 0] + Bf[i, +1]) +
c * (Bf[i-1, -1] + Bf[i-1, +1] +

Bf[i+1, -1] + Bf[i+1, +1])
end for;

Dr := TwoDimFilter (Dt, w)

for i in 2, w-1
returns array of

stream [Dn [i]] II Dr [i]
end for

end let

end function

FIGURE 10 The TwoDimFil ter function.

Spike Adaptive Averaging

The second module (Fig. 8) combines signals from
groups of n sensors, rejecting data that exceed a
threshhold.

Nyquist Filter

This module (Fig. 9) reduces the sampling rate
of the data stream by combining groups of four
samples using weights designed to provide a good
approximation to the input.

Two-Dimension Filter

The function TwoDimFi 1 ter (Fig. 10) represents
a two-dimension filter by a single Sisal function.

The filter is defined by the three coefficients, a,
b, and c, which are the center, side, and comer
elements of a three-by-three array. The filter is
applied at each position in the image data for which

function PeakDetect (
D: ImageStream; w: integer
returns MarkStream)

let

in

Th := 0;

B := for i in 2, w-1
returns array of array [-1:

stream_first(D[i]),
stream_first(stream_rest(D[i])),
stream_first(stream_rest

(stream_rest(D[i])))]
end for;

Dt := for i in 2, w-1
returns array of

stream_rest(D[i]
end for;

Pk := for i in 3, w-2

P ·= B[i, 0];

C := B[i-1, -1] <= P &
B[i-1, 0] <= P &
B[i-1, +1] <= P &
B[i, -1] <= P &
B[i, +1] <= P &
B[i+1, -1] <= P &
B[i+1, 0] <= P &
B[i+1, +1] <= P;

S := B[i-1, -1] + B[i-1, 0] + B[i-1, +1] +
B[i, -1] + B[i, +1] +
B[i+1, -1] + B[i+1, 0] + B[i+1, +1];

returns array of C & (8 * P > S + 8 * Th
end for;

Dr ·= PeakDetect (Dt, w);

for i in 3, w-2
returns array of

stream [Pk [i]] I I Dr [i]
end for

end let

end function

FIGURE 11 The PeakDetect algorithm.

an output value is desired. The input is an array
of streams indexed from 1 to w. The output is an
array of streams indexed from 2 to w - 1. (The
boundary elements are omitted from the result
data to avoid applying the filter function to nonex­
isting array positions.)

A Peak Detector Algorithm

Figure 11 shows a PeakDetect function that
identifies all elements of the (image) data that have
a value that is at least equal to the values of all
immediate neighbors and exceeds their average by
a given threshold Th. The two conditions are tested
separately and combined to determine the result.
The input is an array of integer streams indexed
from 2 to w - 1. The output stream is an array of
Boolean streams indexed from 3 to w - 2. The
peak detection function is similar in structure to
the filter function; each element of the result is
true if (and only if) the data surrounding the corre­
sponding input pixel satisfy the specified condi­
tions.

REFERENCES

[1] W. B. Ackerman and J. B. Dennis, "VAL-A
value-oriented algorithmic language," Laboratory
for Computer Science, MIT, Cambridge, :VIA,
Tech. Rep. 218, 1979.

[2] V. Chaudhary and J. K. Aggarwal, "A generalized
scheme for mapping parallel algorithms," IEEE
Trans. Parallel Distrib. Systems, vol. 4, pp. 328-
346, March 1993.

[3] D. E. Culler, A. Sah, K. E. Schauser, T. von
Eicken, and J. Wawrzynek, "Fine-grain parallel­
ism with minimal hardware support: A compiler­
controlled threaded abstract machine," in Pro­
ceedings of the Fourth International Conference
on Architectural Support for Programming Lan­
guages and Operating Systems, Santa Clara, CA,
April1991,pp. 164-175.

[4] Dataflow Computer Corporation, "Time depen­
dent signal processing algorithms for optical sur­
veillance," Final Report for Contract HA4176 to
Boeing Aerospace, Dataflow Computer Corpora­
tion, Belmont, MA 02178, November 1988.

[5] J. B. Dennis, "Mapping array computations for a

STATIC MAPPI!\G FOR SIGNAL PROCESSING 135

dataflow multiprocessor,'' in Proceedings of Map­
con IV: Multiprocessor and Array Processor Con­
ference, Society for Computer Simulation, 1988,
pp. 71-76.

[6; J. B. Dennis, "The Paradigm compiler: Mapping
a functional language for the Connection Ma­
chine,'' in Scientific Applications of the Connec­
tion Machine, H. Simon, Ed. Singapore: World
Scientific Publishing Company, 1989, pp.
301-315.

[7] J. B. Dennis, "The evolution of 'static' data-flow
architecture," in Advanced Topics in Data-Flow
Computing, J.-L. Gaudiot and L. Bic, Eds. Engle­
wood Cliffs, NJ: Prentice-Hall, 1991, pp. 35-91,
Chapter 2.

[8] J. B. Dennis, "Stream data types for signal pro­
cessing," in Advances in Dataflow Architecture
and Multithreading, J.-L. Gaudiot and L. Bic,
Eds. New York: IEEE Computer Society Press,
1995.

[9] J. B. Dennis and G. R. Gao, "Multithreaded archi­
tectures: Principles, projects, and issues," in Ad­
vances in Multithreaded Computer Architecture,
R. A. Ianucci, Ed. Kluwer, 1994, Chapter 2.

[10] W. H. Ho, E. A. Lee, and D. G. Messerschmitt,
''High level data flow programming for signal pro­
cessing," in VLSI Signal Processing, III, R. W.
Broderson and H. S. Muscovitz, Eds. New York:
IEEE Press, 1988, pp. 385-395.

[11] .T. Kelly, C. Lochbaum, and V. Vyssotsky, "A block
diagram compiler." Bell System Technical]., vol.
40, May 1961.

[12] J. McGraw, S. Skedzielewski, S. Allan, R. Olde­
hoeft, J. Glauert, C. Kirkham, B. Noyce, and R.
Thomas, "Sisal: Streams and iteration in a single
assignment language (Reference Manual Version
1.2)," Lawrence Livermore National Laboratory,
Livermore, CA, 1985, Tech. Rep. M-146, Rev. 1.

[13] G. M. Papadopoulos and D. E. Culler, "Monsoon:
An explicit token-store architecture," in Proceed­
ings of the 17th Annual International Symposium
on Computer Architecture, Seattle, Washington,
May1990,pp. 82-91.

[14] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck,
"Software synthesis for DSP using Ptolemy,"].
VLSI Signal Processing, vol. 9, pp. 7-21, Jan.
1995.

[15] G. Sabot, "A compilerfor a massively parallel dis­
tributed memory MIMD computer, in Proceedings
of the Fourth Symposium on the Frontiers of Mas­
sively Parallel Computation, ACM and IEEE,
1992, pp. 4-11.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

