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Abstract The neutrinoless double-beta (0ν2β) decay is
currently the only feasible process in particle and nuclear
physics to probe whether massive neutrinos are the Majo-
rana fermions. If they are of a Majorana nature and have a
normal mass ordering, the effective neutrino mass term 〈m〉ee
of a 0ν2β decay may suffer significant cancellations among
its three components and thus sink into a decline, resulting
in a “well” in the three-dimensional graph of |〈m〉ee| against
the smallest neutrino mass m1 and the relevant Majorana
phase ρ. We present a new and complete analytical under-
standing of the fine issues inside such a well, and identify a
novel threshold of |〈m〉ee| in terms of the neutrino masses and
flavor mixing angles: |〈m〉ee|∗ = m3 sin2 θ13 in connection
with tan θ12 = √

m1/m2 and ρ = π . This threshold point,
which links the localminimum and maximum of |〈m〉ee|, can
be used to signify observability or sensitivity of the future
0ν2β-decay experiments. Given current neutrino oscillation
data, the possibility of |〈m〉ee| < |〈m〉ee|∗ is found to be very
small.

Since Majorana first formulated a fermionic particle that
should be its own antiparticle in 1937 [1], a huge amount
of attention has been paid to the Majorana fermions in par-
ticle and nuclear physics and the Majorana zero modes in
solid-state physics [2]. In particular after the experimen-
tal discoveries of solar, atmospheric, reactor and accelera-
tor neutrino oscillations [3], whether massive neutrinos are
Majorana fermions becomes an especially burning question
among a number of fundamentally important questions in
neutrino physics and cosmology. If this is the case, then the
neutrinoless double-beta (0ν2β) decays of some even–even
nuclei are expected to take place [4]. Namely, N (A, Z) →
N (A, Z + 2) + 2e−, where the lepton number is violated by
two units. Given the fact that the neutrino masses are so small
that all the lepton-number-violating processes must be des-
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perately suppressed, currently the unique and only feasible
way to demonstrate the Majorana nature of massive neutri-
nos is to observe the 0ν2β decays. In this respect a number of
ambitious experiments are either under way or in preparation
[5–7].

In the standard scheme of three neutrino flavors the rate
of a 0ν2β decay is proportional to the squared modulus of
the effective Majorana neutrino mass term [8–10]1

〈m〉ee = m1|Ue1|2eiρ + m2|Ue2|2 + m3|Ue3|2eiσ , (1)

where mi denotes the i th neutrino mass (for i = 1, 2, 3),
Uei is the corresponding element of the 3 × 3 neutrino mix-
ing matrix U [14,15], and ρ and σ stand for the Majorana
phases. One often chooses to parametrize |Uei | as follows
[3]: |Ue1| = cos θ12 cos θ13, |Ue2| = sin θ12 cos θ13, and
|Ue3| = sin θ13. The three mixing angles θ12, θ13 and θ23
have been determined to a good degree of accuracy from
current neutrino oscillation data, so have been the value of
�m2

21 ≡ m2
2 −m2

1 and the modulus of �m2
31 ≡ m2

3 −m2
1 [3].

But the sign of �m2
31 and the two phase parameters in Eq. (1)

remain unknown, nor does the absolute neutrino mass scale.
That is why |〈m〉ee| is usually plotted as a function of m1 in
the normal mass ordering (NMO) case (�m2

31 > 0) or m3 in
the inverted mass ordering (IMO) case (�m2

31 < 0) by allow-
ing ρ and σ to vary from 0 to 2π [16]. In such a so-called
Vissani graph, a two-dimensional “well” can appear in the
NMO situation due to a significant cancellation among the
three components of 〈m〉ee. The bottom of the well signifies
the case of |〈m〉ee| → 0 [17–20], a disappointing possibility
which is definitely consistent with the present experimental
data.

1 The phase convention taken here is highly advantageous when con-
sidering the interesting and experimentally allowed neutrino mass limit
m1 → 0 (or m3 → 0), in which ρ (or σ ) automatically disappears
[11–13].
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Fig. 1 Three-dimensional illustration of the upper (orange) and lower
(blue) bounds of |〈m〉ee| as functions of m1 and ρ in the NMO
case, where the best-fit values �m2

21 = 7.54 × 10−5 eV2, �m2
31 =

2.47 × 10−3 eV2, sin2 θ12 = 0.308 and sin2 θ13 = 0.0234 [24–27]
have typically been input

Two immediate questions are in order: (1) how possible
for the three neutrinos to have a NMO; (2) how possible for
the actual value of |〈m〉ee| to fall into the well and become
unobservable in any realistic 0ν2β experiments. A combi-
nation of current atmospheric (Super-Kamiokande [21]) and
accelerator-based (T2K [22] and NOνA [23]) neutrino oscil-
lation data preliminarily favors the NMO at the 2σ level. If
this turns out to be the case, an answer to the second ques-
tion will be highly desirable because it can help interpret the
discovery or null result of a 0ν2β experiment in the standard
three-flavor scheme, although some kind of hypothetical (ad
hoc) new physics may also contribute to |〈m〉ee|.

The present work aims to answer the second question by
giving a new and complete analytical understanding of the
fine structure of the three-dimensional well of |〈m〉ee| against
m1 and ρ, as illustrated in Fig. 1, where the best-fit values
�m2

21 = 7.54 × 10−5 eV2, �m2
31 = 2.47 × 10−3 eV2,

sin2 θ12 = 0.308 and sin2 θ13 = 0.0234 [24–27] have been
taken as the typical inputs. We identify a novel threshold of
|〈m〉ee| which is located at the center of the well: |〈m〉ee|∗ =
m3 sin2 θ13 in connection with tan θ12 = √

m1/m2 and
ρ = π . This threshold point links the local minimum and
maximum of |〈m〉ee|, and it can be used to signify the observ-
ability or sensitivity of the future 0ν2β-decay experiments.
Given current neutrino oscillation data, the possibility of
|〈m〉ee| < |〈m〉ee|∗ is found to be very small.

Figure 1 shows that the depth of the well of |〈m〉ee| is
mainly sensitive to a narrow parameter space of m1 and ρ,
while the other Majorana phase, σ , plays an important role
in shaping the bottom of the well [28]. The latter point can
be seen in an analytical way as follows. Taking ∂|〈m〉ee|

∂σ
= 0,

we obtain

tan σ = m1 sin ρ

m1 cos ρ + m2 tan2 θ12
, (2)

so as to maximize or minimize |〈m〉ee| for the given values of
m1 and ρ. Substituting Eq. (2) into the expression of |〈m〉ee|
in Eq. (1), one arrives at the following upper (“U”) and lower
(“L”) bounds:

|〈m〉ee|U,L = |m12 cos2 θ13 ± m3 sin2 θ13|, (3)

where the sign “+” (or “−”) corresponds to “U” (or “L”),
and

m12 ≡
√

m2
1 cos4 θ12+ 1

2
m1m2 sin2 2θ12 cos ρ+m2

2 sin4 θ12.

(4)

It is easy to understand this result in an intuitive way: for any
given values of m1 and ρ, the maximum of |〈m〉ee| comes
out when the sum of the first two components of 〈m〉ee has
the same phase as the third one (i.e., σ ); and the minimum of
|〈m〉ee| arises when the difference between these two phases
is equal to ±π . The bottom of the well shown in Fig. 1 cor-
responds to |〈m〉ee|L = 0, or equivalently

m12 = m3 tan2 θ13. (5)

Given the expressions m2 =
√
m2

1 + �m2
21 and m3 =

√
m2

1 + �m2
31 in the NMO case, Eq. (5) allows us to fix

how the two free parameters m1 and ρ are correlated with
each other. Using the same best-fit inputs of �m2

21, �m2
31,

sin2 θ12 and sin2 θ13 as those used in plotting Fig. 1, we illus-
trate the numerical correlation between m1 and ρ dictated
by Eq. (5) in Fig. 2—the red curve. Such a correlation curve
roughly looks like an ellipse, but a careful analytical check
shows that it does not really obey the standard equation of
an ellipse. Figure 2 tells us that touching the bottom of the
well (i.e., |〈m〉ee| → 0) is not a highly probable event at
all, because it requires m1 and ρ to lie in the narrow regions
2 meV � m1 � 7 meV and 0.86 � ρ/π � 1.14, respec-
tively [29].

Another salient feature of the well is the “bullet”-like
structure of |〈m〉ee|L as shown in Fig. 1, corresponding to
the parameter space of m12 ≤ m3 tan2 θ13. In other words,
the surface of this bullet is described by

|〈m〉ee|L = m3 sin2 θ13 − m12 cos2 θ13. (6)

The extremum of |〈m〉ee|L in this inner region of the well is
supposed to be located at a point fixed by the following two
conditions:

∂
∣∣〈m〉ee

∣∣
L

∂ρ
= m1m2 sin2 2θ12 cos2 θ13

4m12
sin ρ = 0,

∂
∣∣〈m〉ee

∣∣
L

∂m1
= m1

m3
sin2 θ13
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Fig. 2 The numerical correlation between m1 and ρ in three typi-
cal cases: a |〈m〉ee|L = 0 (the red curve); b |〈m〉ee|L = |〈m〉ee|∗ =
m3 sin2 θ13 (the black dot and the blue curve); and c |〈m〉ee|L =
n|〈m〉ee|∗ with n ≥ 2 (the black curves). Here the best-fit values of
�m2

21, �m2
31, sin2 θ12 and sin2 θ13 used in plotting Fig. 1 have been

input

− m2m
2
12−�m2

21 sin2 θ12(m2 sin2 θ12+m1 cos2 θ12 cos ρ)

m1m2m12

× cos2 θ13 = 0. (7)

The first condition definitely leads us toρ = 0 or π . But Fig. 2
clearly shows that ρ should only take a value around π inside
the well, and thus it is appropriate to take ρ = π instead of
ρ = 0. In this case m12 = |m1 cos2 θ12 −m2 sin2 θ12| holds,
and the second condition in Eq. (7) is simplified to

∂|〈m〉ee|L
∂m1

= m1

m3
sin2 θ13

±
(

cos2 θ12 − m1

m2
sin2 θ12

)
cos2 θ13 = 0, (8)

where “±” correspond to the prerequisites m1 < m2 tan2 θ12
and m1 > m2 tan2 θ12, respectively. But in reality Eq. (8)
can never be fulfilled since its second term is much larger
than its first term as a result of (a) 2.50 × 10−1 ≤ sin2 θ12 ≤
3.54 × 10−1 and 1.85 × 10−2 ≤ sin2 θ13 ≤ 2.46 × 10−2

at the 3σ level [24–27] and (b) m1/m3 ≤ m1/m2 in the
NMO case. Nevertheless, Eq. (8) can at least allow us to
draw a conclusion that is absolutely consistent with current
experimental data:

∂|〈m〉ee|L
∂m1

> 0 for m1 < m2 tan2 θ12,

∂|〈m〉ee|L
∂m1

< 0 for m1 > m2 tan2 θ12. (9)

This observation means that |〈m〉ee|L increases when m1 <

m2 tan2 θ12 holds, and it decreases when m1 > m2 tan2 θ12
holds. Hence there must be a local maximum for |〈m〉ee|L,
denoted

|〈m〉ee|∗ = m3 sin2 θ13 =
√
m2

1 + �m2
31 sin2 θ13 (10)

at the position fixed by ρ = π and

m1 = m2 tan2 θ12 =
√
m2

1 + �m2
21 tan2 θ12

	⇒ m1 =
√

�m2
21

sin2 θ12√
cos 2θ12

. (11)

In Fig. 1 this point is exactly the tip of the bullet inside the
well! In other words, the local maximum of |〈m〉ee|L arises
from Eq. (6) at m12 = 0. Given the best-fit values of �m2

21,
�m2

31, sin2 θ12 and sin2 θ13 that have been used in plotting
Fig. 1, the numerical location of the tip of the bullet turns out
to be (m1, ρ, |〈m〉ee|∗) � (4 meV, 180◦, 1 meV).

The above analysis explains why the bottom of the well
does not converge to a single point and why it is not flat either.
In a similar way one can understand why there is a local
minimum for |〈m〉ee|U, as shown in Fig. 1. The extremum of
|〈m〉ee|U is expected to be located at a position determined
by

∂|〈m〉ee|U
∂ρ

= m1m2 sin2 2θ12 cos2 θ13

4m12
sin ρ = 0,

∂|〈m〉ee|U
∂m1

= m1

m3
sin2 θ13

+ m2m
2
12 − �m2

21 sin2 θ12(m2 sin2 θ12 + m1 cos2 θ12 cos ρ)

m1m2m12

× cos2 θ13 = 0. (12)

Of course, only ρ = π is allowed with respect to the first
condition in Eq. (12). The second condition in Eq. (12)
can never be satisfied for the same realistic reasons given
below Eq. (8). An analogous and straightforward analysis
tells us that the local minimum of |〈m〉ee|U exactly coin-
cides with the local maximum of |〈m〉ee|L, and thus both of
them are described by Eqs. (10) and (11). This interesting
result explains why the upper (in orange) and lower (in blue)
bounds of |〈m〉ee| connect with each other in Fig. 1 when

m1 =
√
m2

1 + �m2
21 tan2 θ12 and ρ = π hold. Note that

the overlap of the local maximum of |〈m〉ee|L and the local
minimum of |〈m〉ee|U can also be understood from Eq. (3)

itself. At m1 =
√
m2

1 + �m2
21 tan2 θ12 and ρ = π , one sim-

ply has |〈m〉ee|L = |〈m〉ee|U = m3 sin2 θ13 as a consequence
of m12 = 0. So |〈m〉ee|∗ = m3 sin2 θ13 � 1 meV stands for
a threshold of |〈m〉ee| in the NMO case.

To visualize the steepness of the slope of |〈m〉ee|L around
the well in Fig. 1, let us project its contour onto the m1–ρ

plane by taking |〈m〉ee|L = n|〈m〉ee|∗ (for n = 0, 1, 2, . . .)
in Fig. 2. It is especially interesting to compare between the
contours of the well at its bottom with |〈m〉ee|L = 0 (the red
curve) and at its threshold height with |〈m〉ee|L = |〈m〉ee|∗
(the blue curve and the black point). They clearly show how
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Fig. 3 The parameter space of m1, ρ and σ allowed for |〈m〉ee| <

|〈m〉ee|∗ to hold, where the best-fit values of �m2
21, �m2

31, sin2 θ12
and sin2 θ13 used in plotting Fig. 1 have been input. The intersecting
surfaces for m1 = 1, 2, 4 and 6 meV on the ρ–σ plane are explicitly
shown in the figure

the well becomes narrower when the value of |〈m〉ee|L goes
down. The profile of |〈m〉ee|L will be partially open and thus
lose its “well” feature as |〈m〉ee|L ≥ 2|〈m〉ee|∗ is taken into
account. Now that |〈m〉ee|L > |〈m〉ee|∗ always holds outside
the blue curve in Fig. 2, we argue that the parameter space
of |〈m〉ee|L ≤ |〈m〉ee|∗ (i.e., 0.4 meV � m1 � 10 meV and
0.66 � ρ/π � 1.34) is a simple measure of the chance for
|〈m〉ee| to fall into the well and become completely unob-
servable.

In general, |〈m〉ee| depends on all the three unknown
parameters m1, ρ and σ . To illustrate how probable or
improbable for |〈m〉ee| to have a value smaller than |〈m〉ee|∗
in a more explicit way, we plot the three-dimensional param-
eter space of m1, ρ and σ in Fig. 3, where the best-fit values
of �m2

21, �m2
31, sin2 θ12 and sin2 θ13 used in plotting Figs. 1

and 2 have been input. For clarity, the intersecting surfaces on
the ρ–σ plane corresponding to m1 = 1, 2, 4 and 6 meV are
specified in the figure. One can see that this parameter space
is very small as compared with the whole cubic space (i.e., the
whole regions of m1, ρ and σ allowed by current experimen-
tal constraints). In comparison with m1 and ρ, the phase σ is
only weakly constrained in Fig. 3. When the first two compo-
nents of 〈m〉ee in Eq. (1) essentially cancel each other out (i.e.,
2 meV � m1 � 7 meV and 0.86 � ρ/π � 1.14), a large
part of the range of σ is allowed (e.g., the black intersecting
surface corresponding to m1 = 4 meV in Fig. 3). But when
the value of m1 decreases, the value of σ should approach
π , such as the green intersecting surface corresponding to
m1 = 1 meV in Fig. 3. In this case the second component
of 〈m〉ee in Eq. (1) can be canceled by the other two compo-

nents to a maximal level. For a similar reason, the value of
σ should approach 0 or 2π when the value of m1 increases
(e.g., the blue intersecting surface corresponding to m1 = 6
meV in Fig. 3). In any case we conclude that the possibility of
|〈m〉ee| < |〈m〉ee|∗ involves significant cancellations among
its three components and is really small.

From an experimental point of view, the threshold |〈m〉ee|∗
should signify an ultimate limit of the reachable sensitivity
to |〈m〉ee| in the foreseeable future. At present the most sen-
sitive 0ν2β-decay experiments can only set an upper limit
of |〈m〉ee| around 165 meV [30], which depends on some
theoretical uncertainties in calculating the relevant nuclear
matrix elements [31]. The most ambitious next-generation
high-sensitivity 0ν2β-decay experiments (e.g., nEXO [32])
are likely to probe |〈m〉ee| at the level of a few tens of meV2

[5–7], a sensitivity still much larger than the threshold value
|〈m〉ee|∗ � 1 meV.3 In this sense there would be no hope
to observe any 0ν2β-decay signal if |〈m〉ee| were unfortu-
nately around or below the value of |〈m〉ee|∗ in the standard
three-flavor scheme.

Before ending our discussions as regards 〈m〉ee and its
possible parameter space in the NMO case, let us briefly
comment on the relationship tan θ12 = √

m1/m2 from a
model-building point of view. This condition, together with
ρ = π , allows for |〈m〉ee| = |〈m〉ee|∗ = m3 sin2 θ13 as
a remarkable threshold. It is well known that the Cabibbo
angle θC of quark flavor mixing can be related to the ratio
of quark masses md and ms in a class of models [35–40]:
tan θC � √

md/ms , which is consistent with the experi-
mental data to a good degree of accuracy. In comparison,
the possibility of tan θ12 � √

m1/m2 is also interesting, in
particular when the NMO is true for the three mass eigen-
states of νe, νμ and ντ neutrinos. For example, we find that
an effective Majorana neutrino mass matrix of the form

Mν =
⎛

⎝
0 A A
A B C
A C B

⎞

⎠

−m3
sin θ13√

2

⎛

⎝

√
2 sin θ13 +i −i

+i 0 0
−i 0 0

⎞

⎠ , (13)

where A, B and C are all real, can essentially predict
|〈m〉ee| = m3 sin2 θ13 and tan θ12 = √

m1/m2 together with

2 Note that the accuracy of a prediction for the experimental sensitivity
crucially depends on our knowledge of the relevant nuclear physics. In
the worst possible scenario, uncertainties from nuclear physics might
even weaken the expected experimental sensitivities by a factor as large
as 5 [5–7].
3 In Ref. [33] a purely statistical analysis of the possibility of |〈m〉ee| �
1 meV has been done to see to what extent the Majorana phases ρ and
σ can be constrained for a given value of m1. While in Ref. [34] the
conditions for |〈m〉ee| > 1 meV are analyzed in the special case of
m1 → 0 or θ13 → 0.
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θ23 = π/4, δ = −π/2, ρ = π and σ = 0 in the standard
parametrization of U . Because Mν possesses the exact μ–τ

reflection symmetry, which can easily be simplified to the μ–
τ permutation symmetry in the θ13 → 0 limit, one may take
it as a starting point to build a phenomenological neutrino
mass model in this connection [41].

In summary, we have achieved some new and important
insights into the effective neutrino mass 〈m〉ee of the 0ν2β

decays in the NMO case – a case which seems to be more
likely than the IMO case according to today’s preliminary
experimental data. Because |〈m〉ee| depends not only on the
unknown neutrino mass m1 but also on the free Majorana
phases ρ and σ , a novel three-dimensional presentation of
|〈m〉ee| against m1 and ρ reveals an intriguing “well” struc-
ture in the NMO case. The present work provides a new and
complete analytical understanding of the fine issues inside
such a well. We find a particularly interesting threshold of
|〈m〉ee| in terms of the neutrino masses and flavor mixing
angles: |〈m〉ee|∗ = m3 sin2 θ13 in connection with tan θ12 =√
m1/m2 and ρ = π . We suggest that this threshold point,

which links the local minimum and maximum of |〈m〉ee|, be
used to signify observability or sensitivity of the future 0ν2β-
decay experiments. In view of current neutrino oscillation
data, we conclude that the possibility of |〈m〉ee| < |〈m〉ee|∗
must be very small. In other words, it should be very promis-
ing to detect a signal of the 0ν2β decays and verify the Majo-
rana nature of massive neutrinos in a foreseeable future, even
if they have a normal mass spectrum.
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