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Abstract. We present experimental and theoretical evidence for the potential of the two-particle
spectroscopy to explore the electron-electron interaction in condensed matter. The experiment con-
sists of a single electron impinging onto a clean surface. Two electrons are then emitted simultane-
ously and their momentum vectors are resolved. The measured energy and angular pair correlations
within the pair carry direct information akin to the electron-electron interaction in the sample. We
also point out that the presence of the Fermi sea leads to a damping, and a suppression of the range
of the electron-electron interaction.
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INTRODUCTION

Electronic correlations result in a variety of physical phenomena such as superconduc-
tivity and magnetism. Yet, the overwhelming majority of methods for the study of the na-
ture of the electron-electron interaction in matter are based on an effective single-particle
picture where electronic correlations are manifested as subsidiary structures in the mea-
sured quantities [1, 2]. Here we explore the potential of the two-particle spectroscopy
for the study of the electron-electron interaction in matter, specifically a primary sin-
gle electron incident on a surface results in the emission of (time) correlated electron
pairs. We employ a novel time-of-flight coincidence set-up consisting of a small central
collector surrounded by a resistive anode.

Here we report two key observations. If the electrons’ energies E1 and E2 are tuned
such that the pair emission from the top of the valence band is possible, a zone of
reduced intensity with a diameter of 1.6 Å−1 is visible in the coincidence signal
whenever the escaping electrons momenta are comparable in magnitudes and directions.
This correlation and exchange induced hole disappears if the sample electron originates
from below the top of the valence band which indicates the sensitivity of the xc-hole
to inelastic, phase-breaking scattering processes. We comment on these findings from a
theoretical point of view.

THEORETICAL FORMULATION

Electronic correlation in anN particle system is described conventionally by the reduced
two-particle density matrixγ2(x1,x2,x′1,x

′
2). γ2 is expressible in terms of theN-particle
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wave functionΨ as

γ2
(
x1,x2,x

′
1,x

′
2

)
= N(N−1)

∫
Ψ(x1,x2,x3, · · · ,xN)Ψ∗ (x′1,x

′
2,x3, · · · ,xN

)
dx3 · · ·dxN. (1)

Herex j , j = 1· · ·N label the spin and the position coordinates. For fermions eq.(1) shows
that γ2(x1,x2,x′1,x

′
2) = −γ2(x2,x1,x′1,x

′
2). The two-particle density derives fromγ2 as

ρ2(x1,x2) = γ2(x1,x2,x1,x2). For fermionsρ2 vanishes ifx2 = x1 = x, i. e.ρ2(x,x) = 0.
For independent particlesρ2(x1,x2) is related to the single particle densityρ(x) via
ρ2(x1,x2) = ρ(x1)N−1

N ρ(x2). Thus, for overlapping fermions the antisymmetry ofΨ
implies a correlation among the particles that results in the existence of the (Fermi) hole
in the two-particle density forx1 = x2 and which we will expose in some details below.
The electrostatic Coulomb repulsion between the electrons also contribute to the hole
which is quantified conventionally by the xc hole [1, 3]hxc(x1,x2) = ρ2(x1,x2)

ρ(x1)
−ρ(x2).

The pair-correlation functiong, as defined in the literature, is given byg(x1,x2) =
hxc(x1,x2)/ρ(x2) +1 = ρ2(x1,x2)/[ρ(x1)ρ(x2)].

Role of exchange

To illustrate the role of exchange let us consider the two-particle probability density
g(r1, r2) (also called two-particle correlation function) associated with a two-particle
plane waveΨk1,k2 = exp[i(k1 · r1+k2 · r2)]. The electrons’ wave vectors are denoted by
k1,k2. Assuming the spin and spatial degrees of freedom to be decoupled we find thatg
is uniform for the singlet channel. For the triplet channel however it reads

g(r1, r2) = Ψ∗
k1,k2

Ψk1,k2 = 1−cos[(k1−k2) · (r1− r2)]. (2)

Assuming that the two electrons are immersed in a Fermi sea and if there areN distinct
k states occupied, we find for the ground-state average ofg that

〈g(r1, r2)〉 =
1

N2 ∑
i j

(1−ei(k i−k j )·R), (3)

= 1−F2(kFR), (4)

whereR = r2− r1, kF is the Fermi wave vector, and the functionF is given by

F(kFR) = 3
sin(kFR)− (kFR)cos(kFR)

(kFR)3 . (5)

From these equations we see that the result of exchange is the appearance inthe triplet
channelof a hole (the Fermi hole) atR= 0 with an undamped oscillations away from
R= 0. Averaging over the ground-state Fermi sea leads to a damping of the oscillations
and hence to a finite range of the hole. The period of the oscillations are directly
determined by the Fermi wave vector, as in the case of Friedel oscillations. In the
singlet channel there is no trace of exchange observable ing, however in a more realistic
description the Coulomb interaction will contribute additionally to the hole (correlation
hole). In a spin-resolved experiment these two contribution can be investigated (but not
disentangled).



Pair emission and the two-particle density

The measured coincidence cross sections in the present experiment can be related to
ρ2. To show this we remark that the probabilityPi f for the reaction under consideration
is given asPi f = Si f S∗i f . Here the S matrix elements are given bySi f = 〈ΨEf |ΨEi〉 and
ΨEi (ΨEf ) is the normalized wave function describing the system in the initial (final)
state with the appropriate boundary conditions. The initial state with energyEi consists
of the incident electron interacting with an electron in the valence band in the presences
of all other particles in the system (over which we will average eventually). The two
vacuum electrons have the energyEf = E1 +E2.

Assuming the surrounding medium is not affected while the incident and the valence
band electron are interacting and during the emission of the two electrons (i.e. within a
frozen-core picture) we find thatΨEi ≈ ψEi(x1,x2)χ(x3, · · · ,xN). ψEi is the electron pair
wave function in the initial state. The functionχ describes the surrounding medium. The
reduced density matrix (1) takes on the formγ2(x1,x2,x′1,x

′
2) ≈ 2ψ (x1,x2)ψ∗ (x′1,x

′
2).

For a further progress we assume the emitted electron pair stateψEf to be described
by plane waves. Under these conditions the measured, spin (σ j ) unresolved probability
readsPi f ∝ ∑σ1,σ2,σ ′1,σ

′
2
ψ̃Ei(σ1k1,σ2k2)ψ̃∗

Ei
(σ ′1k1,σ ′2k2), whereψ̃Ei is the double Fourier

transform ofψEi .
From the above relations we conclude that the present experiment measures the spin-

averaged diagonal elements of the reduced density matrix in momentum space which is
the spin-averaged, momentum-space two-particle probability densityρ2, a quantity that
we discussed above.

EXPERIMENTAL DETAILS

The experiments were conducted under UHV conditions featuring a novel time-of-flight
spectrometer depicted in fig.1. The sample was a LiF(100) single crystal which was
cleaned and annealed. During the measurements the sample was kept at a temperature
of ∼ 400 K, this avoids the charging up of the sample. Primary electrons delivered from
a pulsed electron gun hit the sample with an angle of∼80 degree with respect to the
surface normal. Ejected electrons can move towards the spectrometer, where a pair of
hemispherical grids ensure a field free region between the sample and a multi-channel
plate. The resulting electron avalanches hit two detectors. A central collector accepts
electrons only within a solid angle of∼0.1 sr, this detected electrons we refer to as
"e1". A resistive anode is the second detector which allows for a spatial resolution of the
impact position. Electrons registered within a solid angle of∼1 sr are termed in what
follows as "e2".

Using fast timing signals and an electronic coincidence set-up allow for the determi-
nation of the flight times, which then can be converted into the energies E1, E2 when
considering the flight path of∼58 mm. The impact position on the resistive anode can
now be converted into momentum space. In this way we map out the energy and mo-
mentum dependence of the electron pair correlation. The time resolution of the set-up is
better than 1 ns as determined by the width of the elastic peak in the time-of-flight spec-
trum. Thus, the energy resolution depends on the kinetic energy, which for the results
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FIGURE 1. Electron pair detection technique. Two electrons with momentak1, k2 and energies E1 and
E2 are detected in coincidence by a resistive anode and central collector. The polar angleΘ denotes the
angle between the surface normal and the central axis of the spectrometer.

presented here is 0.5 eV. The accuracy of the momentum resolution of the coincidence
events is primarily determined by the acceptance angle of the central collector and the
specific momenta under consideration, a typical value is 0.1 Å−1, respectively.

EXPERIMENTAL RESULTS

In fig.2 we plot the 2D energy distribution of the coincidence electron pairs upon
excitation with 32.7 eV electrons. We observe the onset of pair emission when the
sum energy E1+E2 equals∼19 eV, which is indicated by the dashed diagonal line. This
position can be easily understood when considering the bandstructure of LiF. The energy
required to excite an electron from the top of the valence band to the vacuum level is
∼ 14eV, hence the maximum sum energy of the scattered electron and the valence band
electron is expected to be 32.7-14=18.7 eV in agreement with the experiment.

More insight can be obtained if we take advantage of the lateral resolution of the
set-up. In a first step we select only those coincidences for which the energies E1 and
E2 are fixed. In other words we focus on a small region in the 2D energy distribution,
as indicated in fig.2. In order to obtain sufficient statistics we actually select an energy
window of ∼ 1.6 eV around the respective energies. This has been indicated by the
square boxes in fig.2 labelled a)-c). We can now proceed and plot the coincidence
intensity as a function of the in-plane momentum k‖ of the electron "e2". We have
selected three different regimes within the 2D energy distribution highlighted in fig.2 by
the black squares a)-c). In the case a) and b) we are right at the onset of pair emission, in
other words we move along the dashed diagonal line. Case c) describes the situation if
emission below the highest occupied level is possible. In fig.3 we display the resulting
momentum distributions. We would like to point out that all momentum plots display
a zero intensity at a position where the central collector is positioned. The position
and size of this "blind spot" depends on the polar angleΘ and the momentum of the



20

15

10

5

0

E
2(

eV
)

20151050
E1(eV)

4

6
8
100

2

4

6
8

a)

b)

c)

FIGURE 2. The 2D energy distribution for coincident pairs is shown for which the primary energy
was 32.7 eV and the polar angleΘ=0◦. The energies E1 and E2 refer to the electrone1 ande2 electron,
respectively, as displayed ion fig.1. The dashed diagonal line indicates the onset of the pair emission.
The square boxes (width of 1.6 eV) indicate narrow regions which were chosen to map the coincidence
intensity in momentum space, see fig.3

electron "e2". For the plots shown in fig.3 this "blind spot" is centered at k‖=0 and has
diameter of∼0.3 Å−1. In fig.3 a) the energies are E1=6 eV and E2=13 eV (box a) in
fig.2), respectively. We clearly observe that the region k‖=0 (outside the "blind spot")
is surrounded by a region of diminished intensity. The intensity increases for larger
k‖ values and reaches a maximum for k‖= 0.8Å−1. It should be stressed however that
these pictures do not conclusively provide information on the size of the exchange and
correlation hole because the fall-off of the intensity at large momenta is experimentally
inevitable due to the finite size of the detectors.

Fig. (3c) (in which E1=4 eV and E1=13 eV) demonstrates a new aspect of the cor-
related electron-pair emission: Here we observe that the ring of enhanced intensity is
essentially filled up. Energetically the sum energy E1+E2 has been reduced from 19 eV
to 17 eV. This energy difference allows for the excitation of other modes of the sample
and opens thus the channel of inelastic scattering processes that lead to a decoherence
of the escaping electrons’ wave [4]. The influence of these phase-breaking processes on
the correlation within the electron pair is illustrated in fig.3 a) and b).

We have also performed experiments where the polar angle was varied. The results
are displayed in fig.3 for excitation with 30.7 eV electrons. The energies are selected
to be at the onset of pair emission (E1=6 eV, E2=11 eV). For a polar angle of 0◦ the
momentum distribution is equivalent to fig.3 a) and b). Changing the polar angle to 10◦
and then to 20◦ moves the ring of enhanced intensity with it such that it surrounds the
"fixed" electron. This shows that the intensity enhancement is associated with the fixed
electron.

We may summarize our observations obtained also with different primary energies
as follows: (i) if we select the energies E1 and E2 such that the sum energy E1+E2 has
the largest possible value for pair emission, the 2D momentum plots display an ring of
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FIGURE 3. Left panel shows the 2D k‖ distribution of the coincidence intensity (Θ=0◦)for different
regions in the 2D energy plane, which refer to the boxes a)-c) of fig.2.Right panel shows 2D k‖ plots
obtained upon excitation with 30.7 eV primary electrons. The energies are E1=6 eV and E2= 11 eV,
respectively. Different polar anglesΘ (see fig.1) have been used which are a) 0◦, b) 10◦ , c) 20◦.

enhanced intensity which is centered around the "fixed" electron. (ii) if the sum energy
is below the maximum value a more or less uniform momentum distribution is the result.
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