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Abstract

We prove an analog of the Yomdin–Gromov lemma for p-adic definable sets and more broadly in
a non-Archimedean definable context. This analog keeps track of piecewise approximation by
Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result
to bound the number of rational points of bounded height on the transcendental part of p-adic
subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree
lying on an algebraic variety defined over C((t)), in analogy to results by Pila and Wilkie, and by
Bombieri and Pila, respectively. Along the way we prove, for definable functions in a general
context of non-Archimedean geometry, that local Lipschitz continuity implies piecewise global
Lipschitz continuity.

2010 Mathematics Subject Classification: 03C98, 11D88 (primary); 11G50, 14G05 (secondary)

1. Introduction

1.1. Outline. A very efficient tool in diophantine geometry is the so-
called determinant method, which was developed by Bombieri and Pila in the
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influential paper [2] about the number of integral points of bounded height
on affine algebraic and transcendental plane curves. Basically, the method
consists in using a determinant of a suitable set of monomials evaluated at the
integral points, in order to construct a family of auxiliary polynomials vanishing
at all integral points on the curve within a small enough box. Building on the
estimates in [2] for algebraic curves, Pila proved in [30] bounds on the number of
integral (respectively, rational) points of bounded height on affine (respectively,
projective) algebraic varieties of any dimension, improving on previous results
by Cohen using the large sieve method [16]. Important further improvements
going toward optimal bounds conjectured by Serre in [41, Section 13] have been
made since by Heath-Brown et al. [4, 23, 37].

In [35], Pila and Wilkie proved a general estimate for the number of rational
points on the transcendental part of sets definable in an o-minimal structure;
this has been used in a spectacular way by Pila to provide an unconditional
proof of some cases of the André-Oort conjecture [34] (see also [38–40, 44] for
surveys on applications in diophantine geometry of the Pila–Wilkie Theorem).
Lying at the heart of Pila and Wilkie’s approach is the possibility of having
uniform (in terms of number of parametrizations and in terms of bounds on the
partial derivatives) C k-parametrizations. These parametrizations are provided by
an o-minimal version of Gromov’s algebraic parametrization Lemma [21] (see
also [5]), itself a refinement of a previous result of Yomdin [42, 43]. Such C k-
parametrizations enter the determinant method via Taylor approximation.

The aim of this paper is to provide a version of the Yomdin–Gromov
Lemma in the non-Archimedean setting, notably for subanalytic sets over Qp

and C((t)), and to develop the determinant method in this context in order to
obtain non-Archimedean analogs of some of the results in diophantine geometry
mentioned above. At first sight one may have doubts about the realizability of
such a program, since, because of the totally disconnected character of non-
Archimedean spaces, it seems that there is no way for a global Taylor formula
to make sense in this framework. A first indication that the situation may not
be completely hopeless is provided by the fact that in previous work [10]
(see also [11]) we have been able to prove a version of first-order Taylor
approximation, piecewise globally, in the definable p-adic setting. In the present
paper, though we extend this first-order result to a much wider situation, we have
chosen not trying to generalize it to higher order, but instead we show directly the
existence of uniform C k-parametrizations that do satisfy Taylor approximation,
which is enough for our purpose. The existence of such parametrizations is
provided by Theorem 3.1.3, which is the main result of Section 3. In Section 4,
we deduce a p-adic analog of the Theorem of Pila and Wilkie in [35], in the
strengthened version given by Pila in [33] in terms of blocks. In Section 5, we
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Non-Archimedean parametrizations and points of bounded height 3

prove a geometric analog of results of Bombieri and Pila [2] and Pila [30] over
C((t)), where counting number of points is replaced by counting dimensions.

The diophantine applications we give in the p-adic case (concerning the
density of rational points on the transcendental part of definable sets) and the
motivic case (concerning the density of rational points on algebraic sets) are
quite different. One should notice that, in the algebraic case, working over Qp

instead of C((t)) would not provide better estimates than those following directly
from the Archimedean ones in [2, 30].

1.2. The p-adic setting. Let us spell out in some more detail basic versions
of three of our results for subanalytic p-adic sets.

One calls a set X ⊂ Qn
p semialgebraic if it is definable in the ring language

with parameters from Qp. By adding to the ring language symbols for analytic
functions, one obtains subanalytic sets (see Section 3 below, with L = Qp). The
dimension of a nonempty subanalytic set X ⊂ Qn

p is the largest integer m > 0
such that there exists a coordinate projection π : Qn

p → Qm
p such that π(X) has

nonempty interior. We will simply denote by |x | the p-adic norm of an element
x ∈ Qp, and when furthermore x ∈ Q, we will denote by |x |R the real norm of x .

For X a subset of Qn
p and T > 1 a real number, write X (Q, T ) for the set

consisting of points (x1, . . . , xn) in X ∩ Qn such that one can write xi as ai/bi ,
where ai and bi 6= 0 are integers with |ai |R 6 T and |bi |R 6 T .

For X a subset of Qn
p, write X alg for the subset of X consisting of points x such

that there exists an algebraic curve C ⊂ An
Qp

such that C(Qp) ∩ X is locally of
dimension 1 at x .

With this notation, the following statement is a particular case of
Theorem 4.2.4.

THEOREM A. Let X ⊂ Qn
p be a subanalytic set of dimension m with m < n. Let

ε > 0 be given. Then there exist an integer C = C(ε, X) > 0 and a semialgebraic
set W = W (ε, X) ⊂ Qn

p such that W ∩ X lies inside X alg, and such that, for each
T , one has

#(X \W )(Q, T ) 6 CT ε.

More generally, we also provide estimates for algebraic points of bounded
degree on X , as follows. For a rational number a, we define H0(a) as max(|r |R,
|s|R) when a = r/s, with r and s integers which are either relatively prime or
are such that s = 1. For nonrational a, H0(a) is defined to be +∞. We extend
H0 to tuples a = (ai) by putting H0(a) = maxi(H0(ai)). For an integer k >
1 and any x ∈ Qp, we define H poly

k (x) as mina(H0(a)), where the minimum
runs over all nonzero tuples a = (ai)i∈{0,...,k} such that

∑k
i=0 ai x k

= 0 if such
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tuple exists, and as +∞ otherwise. One extends H poly
k to x in Qn

p by taking the
maximum of the H poly

k (xi) for i = 1, . . . , n. For X a subset of Qn
p, k > 0 an

integer, and T > 1 a real number, we write X (k, T ) for the set consisting of x in
X satisfying that H poly

k (x) is at most equal to T . The following statement follows
from Theorem 4.2.3.

THEOREM B. Let X ⊂ Qn
p be a subanalytic set of dimension m with m < n. Let

ε > 0 and an integer k > 0 be given. Then there exist an integer C = C(ε, k,
X) > 0 and a semialgebraic set W = W (ε, k, X) ⊂ Qn

p such that W ∩ X lies
inside X alg, and such that, for each T , one has

#(X \W )(k, T ) 6 CT ε.

Our proofs of Theorems 4.2.3 and 4.2.4 rely on the existence of
reparametrizations provided by Theorem 3.1.3, where we prove the following.

THEOREM C. Let n > 0, m > 0 and r > 0 be integers, and let X ⊂ Zn
p

be a subanalytic set of dimension m. Then there exists a finite collection of
subanalytic functions gi : Pi ⊂ Zm

p → X such that the union of the gi(Pi) equals
X, the gi have Cr -norm bounded by 1, and the gi are approximated by their
Taylor polynomials of degree r − 1 with remainder of order r , globally on Pi .

For precise definitions of the Cr -norm and approximation by Taylor
polynomials of certain degree with controlled remainder, we refer to
Definition 3.1.1. Note that a key point in this non-Archimedean statement
is that the approximation holds globally on Pi , which represents a challenging
goal because of total disconnectedness. In contrast, in the real case, it is enough
to consider convex charts, since for such charts global Taylor approximation is
immediate. In the core of the paper all these results will be stated and proved
uniformly for definable families.

1.3. Results over C((t)). We end this introduction with a quick overview of
our results over the base field C((t)). In this case, the analog of Theorem 3.1.3
essentially still holds, except one has to replace ‘finite’ by ‘parametrized by a
constructible subset of Cs for some s’.

For each positive integer r , we denote by C[t]<r the set of complex
polynomials of degree < r . For any subset A of C((t))n , we denote by Ar

the set A ∩ (C[t]<r )
n and by nr (A) the dimension of the Zariski closure of Ar

in (C[t]<r )
n
' Cnr . When X is an algebraic subvariety of An

C((t)) of dimension
m, for every positive integer r one has the basic estimate nr (X) 6 rm (see
Lemma 5.1.1). Assume that X is irreducible of degree d. The main result of
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Non-Archimedean parametrizations and points of bounded height 5

Section 5, Theorem 5.1.3, states that, for every positive integer r , one has

nr (X) 6 r(m − 1)+
⌈

r
d

⌉
,

which is an improvement on the basic estimate as soon as X is not linear.
This result can be seen as an instance of motivic point counting, like in the

paper [6], where in a somewhat different context a detailed study of the motivic
height zeta function leads to asymptotic estimates for dimensions of spaces of
sections. It is a motivic analog of Pila’s results of [30]. As in [30], we reduce to
the case of plane curves by Lang–Weil type arguments. However, to prove the
result in this case, we do not follow the original method of Bombieri and Pila in
[2], which seems difficult to adapt in this setting. We follow instead a strategy
introduced by Marmon in [26], which relies on the Yomdin–Gromov lemma in
place of the elaborate analytic arguments used in [2].

1.4. Some shortcuts. Although the general results on Lipschitz continuity
of Theorems 2.1.7 and 2.2.3 are used to prove Theorems 3.1.3 and 3.1.6, as
far as our applications to points of bounded height are concerned, they are not
needed in full generality. First, in the p-adic setting of Section 4, Theorems 2.1.7
and 2.2.3 are not new, since they are proved in [10] and even appear in a slightly
sharper form in [11]. Second, in Section 5 when working over C((t)), only the
one-dimensional case of Theorem 3.1.3, namely with m = 1, is used. This case
of Theorem 3.1.3 only relies on the one-dimensional case of Theorem 2.1.7,
which can be proved similarly as the one-dimensional case of [10]. Such one-
dimensional cases require less work and are easier to prove than the general
cases. For example, for the case of general dimension for Theorems 2.1.7
and 2.2.3, one cannot use definable sections as in [10], and we had to find the
alternative approach via Theorem 2.1.8; in the one-dimensional case, definable
sections were not used in [10]. Another simplification, in the p-adic case, would
be to exploit the fact that the residue rings Zp/(pn) are finite. Indeed, this
finiteness allows one to zoom and scale as in the real case, and this can serve
as an alternative to the passage to the algebraic closure of L when proving
Theorems 3.1.3 and 3.1.6 for L = Qp. This zoom and scale technique would
not work in the case of K = C((t)), unless one is content in Theorem 5.1.3 with
a weakening of the upper bound to r(m − 1) + r/d + cd , for some constant
depending on d .

2. Piecewise Lipschitz continuity in tame non-Archimedean geometry

In this section, and in the next one, we prove non-Archimedean analogs of the
Yomdin–Gromov parametrization lemma. At the same time, we prove that our
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R. Cluckers et al. 6

parametrizations can be uniformly approximated by their Taylor polynomials.
The ability to approximate parametrizations by their Taylor polynomials with
small error terms is key for counting points of bounded height in the non-
Archimedean case, as well as in the real case, although in the real case this
approximation is classical when the domain is convex and bounded of order > 1
(see Theorem 3.1.3).

The Yomdin–Gromov parametrization lemma, as generalized by Pila and
Wilkie in [35], gives for any bounded definable set X of dimension m in Rn

(in an o-minimal structure on R) and any integer r > 0 a finite collection of
definable maps fi : [0, 1]m → X whose ranges together cover X and whose
Cr -norms are bounded by 1. By convexity of [0, 1]m , and techniques based on
the mean value theorem, one can control the error terms when approximating
fi by a Taylor polynomial of degree r − 1. Both convexity and the mean
value theorem do not carry to our context. For r > 1, we do not know, even
for p-adic semialgebraic functions f on Zm

p , whether having small Cr -norm
allows one to piecewise control the error term, globally on each piece, when
one approximates f by a Taylor polynomial of degree r − 1. In the case where
r = 1, the desired approximation coincides with Lipschitz continuity, and the
study of piecewise Lipschitz continuity, in a general non-Archimedean context,
is the content of Sections 2.1 and 2.2. From Section 3 on, we will place ourselves
in a more concrete framework of definable sets in complete, discretely valued
fields (possibly with extra restricted analytic functions in the language), to treat
Cr -parametrizations with good Taylor approximation when r > 1.

2.1. Lipschitz continuity in tame non-Archimedean geometry. In [10],
piecewise Lipschitz continuity for a semialgebraic or subanalytic function f :
X ⊂Qn

p→Qp is shown to hold whenever f is locally Lipschitz continuous with
a fixed Lipschitz constant. Moreover, the pieces can be taken to be definable. In
[11], the Lipschitz constants were further controlled in an optimal way when
going from local to global on each piece. In this section, we extend the result
of [10] in two ways, namely to many new structures with a non-Archimedean
geometry, including C((t)), and to other languages than the semialgebraic and
subanalytic ones, including some weaker languages without multiplication.
When the residue field is not finite, one is led to replace finite definable partitions
by definable families with parameters running over the residue field. Our study
of Lipschitz continuity is subdivided into two cases: equicharacteristic zero and
mixed characteristic. Both are axiomatically treated. In the mixed characteristic
case, residue rings, and not only the residue field, are used.

We first introduce the set-up adapted to the equicharacteristic zero case.
The typical example to have in mind is that of henselian valued field K
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Non-Archimedean parametrizations and points of bounded height 7

of equicharacteristic zero with (multiplicatively written) value group Γ × and
residue field k. Then in Section 2.2 we will consider the mixed characteristic
case.

Let Γ = Γ × ∪ {0} be the disjoint union of a nontrivial ordered abelian group
Γ × with a minimal element {0}, where the group operation on Γ × is written
multiplicatively, and where we put 0 · g = g · 0 = 0 for all g ∈ Γ . Recall
that an ordered abelian group is an abelian group with a total order < such that
a < b implies that ac < bc for all elements a, b, c of the group. Such a group is
automatically torsion free, and hence the order < has no endpoints. Let K be an
additively written abelian group, and suppose that we are given a surjective map
| · | : K → Γ : x 7→ |x | with the following properties for all x, y ∈ K :

• |x | = 0 if and only if x = 0;

• |x | = |−x |;

• |x + y| 6 max(|x |, |y|);

• if |x | > |y|, then |x + y| = |x |.

An open ball is by definition a subset B ⊂ K of the form {x ∈ K | |x−a| < γ }
for some γ ∈ Γ × and a ∈ K ; such γ is unique and is called the radius of the open
ball B (not to be confused with the radii of closed balls defined in Section 3).
Since Γ × has no endpoints, each open ball is an infinite set.

Consider a set k containing a special element 0, and write k× for k \ {0}.
Suppose that we are given a surjective map ac : K → k with ac −1(0) = {0} and
such that, for each ξ ∈ k× and γ ∈ Γ ×, the set

{t ∈ K | ac(t) = ξ, |t | = γ }

is an open ball of radius γ . Let us more generally introduce the notation

Aξ,γ := {t ∈ K | ac(t) = ξ, |t | = γ } for ξ ∈ k and γ ∈ Γ .

Note that the family of sets Aξ,γ is a disjoint family whose union equals K when
ξ varies in k and γ in Γ . Clearly A0,0 equals {0}, and both A0,γ and Aξ,0 are
empty for nonzero γ and nonzero ξ .

We put on K the valuation topology, that is, the topology with the collection
of open balls as base, and the product topology on Cartesian powers of K . Note
that K thus becomes a topological group. For a tuple x = (x1, . . . , xn) ∈ K n , |x |
stands for maxi∈{1,...,n} |xi |.

Next, we recall the definition of Lipschitz continuity, and we define a special
variant of continuity, called s-continuity.
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R. Cluckers et al. 8

DEFINITION 2.1.1. Let a function f : X → K be given, with X ⊂ K n . For
γ ∈ Γ ×, the function f : X ⊂ K n

→ K is called γ -Lipschitz (globally on X )
if, for all x and y in X ,

| f (x)− f (y)| 6 γ |x − y|.

The function f is called locally γ -Lipschitz if every point of X has a
neighborhood on which f is γ -Lipschitz.

DEFINITION 2.1.2 (s-continuity). Let F : A → K be a function for some set
A ⊂ K . Say that F is s-continuous if for each open ball B ⊂ A the set F(B) is
either a singleton or an open ball, and there exists γ = γ (B) ∈ Γ such that

|F(x)− F(y)| = γ |x − y| for all x, y ∈ B. (2.1.1)

If a function g : U ⊂ K n
→ K on an open U is s-continuous in, say, the

variable xn , by which we mean that g(a, ·) is s-continuous for each choice
of a = (x1, . . . , xn−1), then we write |∂g/∂xn(a, xn)| for the element γ ∈ Γ
witnessing the s-continuity of g(a, ·) locally at xn; namely, γ satisfies (2.1.1) for
the function F(·) = g(a, ·), where x, y run over some ball B containing xn such
that {a} × B ⊂ U .

Note that for an s-continuous function F : A ⊂ K → K on an open A
such that F is moreover 1-Lipschitz, one has |∂F(x)/∂x | 6 1 for all x ∈
A. Hence, for such F , for x ∈ A with |∂F(x)/∂x | > 0, and for any ball
B ⊂ A containing x , say, of radius rB , the set F(B) is a ball of radius 6 rB .
Moreover, for compositions of s-continuous functions one has a certain form of
the chain rule which corresponds to the classical chain rule for differentiation;
see Lemma 2.1.14 and its proof.

Let LBasic be the first-order language with the sorts K , k, and Γ , and symbols
for addition on K , for ac : K → k, | · | : K → Γ , and for the order and the
multiplication on Γ . Let L be any expansion of LBasic. By L-definable we mean
∅-definable in the language L, and likewise for other languages than L. Write
K 0
= {0}, k0

= {0}, and Γ 0
= {0}, with a slight abuse of notation. Note that L

may have more sorts than LBasic, since it is an arbitrary expansion.

EXAMPLE 2.1.3. This language LBasic is very basic (since it does not have
multiplication), and can be interpreted in many structures. We give an example of
a triple (K , k, Γ ) with LBasic-structure. Let K be the Laurent series field Fp((t)),
seen as a group for addition, put Γ × := 2Z, let | · | be the t-adic norm with
|t | = 2−1 on K , k the finite field Fp, and let ac send a nonzero Laurent series a(t)
to the coefficient of its lowest degree nonzero term. A more natural example of
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Non-Archimedean parametrizations and points of bounded height 9

an L-structure with L being LBasic together with multiplication on K is for the
field K = C((t)) with t-adic norm and ac defined as for Fp((t)).

DEFINITION 2.1.4 (Tame configurations). Given integers a > 0, b > 0, a set

T ⊂ K × ka
× Γ b,

and some c ∈ K , say that T is in c-config if there is ξ ∈ k such that T equals the
union over γ ∈ Γ of sets

(c + Aξ,γ )×Uγ

for some Uγ ⊂ ka
× Γ b. If moreover ξ 6= 0, we speak of an open c-config, and

if ξ = 0 we speak of a graph c-config. If T is nonempty and in c-config, then ξ
and the sets Uγ such that Aξ,γ is nonempty are uniquely determined by T and c.

Say that T ⊂ K × ka
× Γ b is in L-tame config if there exist s > 0 and L-

definable functions

g : K → ks and c : ks
→ K

such that the range of c contains no open ball, and, for each η ∈ ks , the set

T ∩ (g−1(η)× ka
× Γ b)

is in c(η)-config.

By the aforementioned uniqueness in the nonempty case, one sees that, for an
L-definable set T which is in c-config, the collection of sets Uγ can be taken to
be an L-definable family. The functions g and c used in a L-tame config are in
general not unique, but still one often calls c the center (of the configuration).

DEFINITION 2.1.5. For any L-structure M which is elementarily equivalent to
(K ,L), and for any language L which is obtained from L by adding some
elements of M (of any sort) as constant symbols, call (M, L) a test pair for
(K ,L).

DEFINITION 2.1.6 (Tameness). Say that (K ,L) is weakly tame if the following
conditions hold.

(1) Each L-definable set T ⊂ K × ka
× Γ b with a > 0, b > 0 is in L-tame

config.

(2) For any L-definable function F : X ⊂ K → K there exist s > 0 and an
L-definable function g : X → ks such that, for each η ∈ ks , the restriction
of F to g−1(η) is s-continuous.

Say that (K ,L) is tame when each test pair (M, L) for (K ,L) is weakly tame.
Call an L-theory T tame if, for each model M of T , the pair (M,L) is tame.
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R. Cluckers et al. 10

Condition (2) is a substitute for the so-called Jacobian property which
holds for henselian valued fields in equicharacteristic zero equipped with the
Denef–Pas language. We refer to [12, Theorem 6.3.7] for a closely related
Jacobian property; it can be adapted to the Denef–Pas language using [28,
Theorem 4.1] on elimination of valued field quantifiers. For henselian valued
fields in mixed characteristic equipped with the generalized Denef–Pas language,
see Section 2.2. In Definition 2.19 and Theorem 5.12 of [22], one will find a
version of the Jacobian property in higher dimensions. Some examples of tame
structures are provided in Section 2.3.

We can now state our first main result on Lipschitz continuity, going from
local to piecewise global on parts parametrized by variables running over k.

THEOREM 2.1.7. Suppose that (K ,L) is tame. Let f : X ⊂ K n
→ K be an L-

definable function which is locally 1-Lipschitz. Then there exists an L-definable
function

g : X → ks

for some s > 0 such that, for each η ∈ ks , the restriction of f to g−1(η) is
1-Lipschitz.

Theorem 2.1.7 is complemented by Theorem 2.1.8 about simultaneous
partitions of domain and range into parts with 1-Lipschitz centers. This is an
improvement of [10, Proposition 2.4], where this is done for the domain only,
and only in the p-adic case.

For h : D ⊂ A × B → C any function between sets, and for a ∈ A, write Da

for the set {b ∈ B | (a, b) ∈ D}, and write h(a, ·) or ha for the function which
sends b ∈ Da to h(a, b). We use similar notation Da and h(a, ·) or ha when D
is a Cartesian product

∏n
i=1 Ai and a ∈ p(D) for some coordinate projection

p : D→
∏

i∈I⊂{1,...,n} Ai .

THEOREM 2.1.8 (Lipschitz continuous centers in domain and range). Suppose
that (K ,L) is tame. Let f : A ⊂ K n

→ K be an L-definable function which
is locally 1-Lipschitz. Then, for a finite partition of A into definable parts, the
following holds for each part X. There exist s > 0, a coordinate projection p :
K n
→ K n−1, and L-definable functions

g : X → ks, c : ks
× K n−1

→ K and d : ks
× K n−1

→ K

such that, for each η ∈ ks , the restrictions of c(η, ·) and d(η, ·) to p(g−1(η)) are
1-Lipschitz and, for each w in p(K n), the set g−1(η)w is in c(η,w)-config and
the image of g−1(η)w under fw is in d(η,w)-config.
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Non-Archimedean parametrizations and points of bounded height 11

Note that the projection p in Theorem 2.1.8 a priori depends on the part
X . Theorems 2.1.7 and 2.1.8 are proved by a joint induction on n. By the
improvement of [10, Proposition 2.4] given by Theorem 2.1.8, we can avoid the
usage of definable sections (Skolem functions), which were heavily used in [10].
This is especially helpful, since one does not have definable Skolem functions
in the general context of tameness. Let us first explain the general strategy of
the proofs. We first prove some general, although easy, results about sets and
functions in tame structures, from statement 2.1.9 up to 2.1.13. An analog of
the chain rule for derivation can be used, based on s-continuity. The Lipschitz
continuity of c in Theorem 2.1.8 is proved as in [10], as well as the case when
n = 1 of Theorem 2.1.7. What is new here is that d in Theorem 2.1.8 can be
required to be Lipschitz continuous as well. Working piecewise in the proof of
Theorem 2.1.7, one may, after some triangular transformation, assume that the
centers of domain and of range are both zero. In such a case, the comparison of
distances in domain and in range becomes easier.

We prove preliminary statements in view of Theorems 2.1.7 and 2.1.8.

LEMMA 2.1.9. Suppose that (K ,L) is tame. If h : ka
×Γ b

→ K is L-definable
for some a, b > 0, then the image of h contains no open ball.

Proof. Let h : ka
× Γ b

→ K be L-definable, and let T ⊂ K × ka
× Γ b be the

graph of h, with the natural identification. Now take g : K → ks and c : ks
→ K

such that the range of c contains no open ball, and such that Tη := T ∩ (g−1(η)×

ka
× Γ b) is in c(η)-config, for any η ∈ ks . By Definition 2.1.4, there exist sets

Uγ,η ⊂ ka
× Γ b such that Tη equals the union of

(c(η)+ Aξ,γ )×Uγ,η

over γ ∈ G. From this description as a Cartesian product, together with the
fact that T is the graph of h, it follows that Uγ,η is empty whenever Aξ,γ
contains more than one element. Moreover, whenever Aξ,γ is a singleton, one
has Aξ,γ = {0}. Hence, the range of h is contained in the range of c, which
contains no open ball.

The next proposition has to be compared with the real monotonicity theorem
(see [20, (1.2) Ch. 3]).

PROPOSITION 2.1.10 (Injectivity versus constancy). Suppose that (K ,L) is
tame. Let F : X ⊂ K → K be L-definable. Then there exist s > 0 and an
L-definable function g : X → ks such that for each η ∈ ks the restriction of F
to g−1(η) is injective or constant.
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Proof. By tameness, compactness, and by going to a test pair, it suffices to
treat the case where F is s-continuous and moreover locally injective or locally
constant. Indeed, by tameness there exists an L-definable function g00 : X → ks0

such that F is s-continuous on each fiber of g00, and such that each fiber of
g00 is either a singleton or open in K . If we can prove the statement for each
restriction of F to g−1

00 (ξ) for any ξ ∈ ks0 , then we are done by compactness,
since (K ,L) is arbitrary in the proposition, and, since such a restriction is L(ξ)-
definable and lives thus in the test pair (K ,L(ξ)), also a tame structure. Note
that such compactness yields finitely many candidate definable functions gi out
of infinitely many ones, but these gi can be combined to a single one by putting
g(x) := gi(x) for the minimal i such that F is either injective or constant on
g−1

i (η), which is an L-definable condition.
Let us first suppose that F is locally injective. Let G(F) ⊂ K 2 be the graph of

F . By compactness and tameness, there exist s > 0 and definable functions

g0 : G(F)→ ks and c : ks
× F(X)→ K

such that, for each value (η, t) ∈ ks
× F(X), the set g−1

0 (η)t ⊂ K is in c(η, t)-
config. (Logical compactness will be used like in this proof but without extra
explanation to go from the one-variable setting in any model and with any
constants added, to the family version.) Indeed, for each value y in F(X) ,and
by tameness of the test pair (K ,L(y)), there exist L(y)-definable maps gy from
G(F) ∩ K × {y} to ksy and cy : ksy → K such that, for each value η ∈ ksy , the
set g−1

y (η), considered as a subset of K , is in cy(η)-config. Compactness yields
again finitely many gi and ci out of these possibly infinitely many gy and cy ,
and these can again be combined by defining g0(x, t) as gi(x, t) and c(η, t) as
ci(η, t) for the minimal i such that g−1

i (η)t is in ci(η, t)-config. Set

g :
{

X → ks,

x 7→ g0(x, F(x)).

By the local injectivity of F , and by the definition of being in c(η, t)-config,
it follows that F−1(t) is contained in the range of c(·, t). Fix η ∈ g(X). Then
y 7→ c(η, y) is the inverse function of the restriction of F to g−1(η), which is
thus injective.

Let us finally suppose that F is locally constant. By tameness, s-continuity,
and local constancy of F , there exist a, b > 0 and

h : X → ka
× Γ b
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Non-Archimedean parametrizations and points of bounded height 13

such that F is constant on each fiber of h. By Lemma 2.1.9, F(X) contains no
open ball. By tameness, there exist definable functions

g1 : F(X)→ ks and c : ks
→ K

such that g−1
1 (η) ∩ F(X) is in c(η)-config, meaning that F(X) is contained in

the range of c. Now define g : X → ks as sending x to the unique η with c(η) =
F(x). It is clear that F is constant on g−1(η) for any η ∈ ks .

By the following corollary, tameness appears as a special variant of
b-minimality as defined in [15], but tameness has a more geometrical flavor. Note
that for us the sorts k and Γ play a rather different role, while in b-minimality all
sorts other than K are treated on the same footing. In particular, parameters in k
play a special role for us, defining the splitting of a space into parts parametrized
by the residue field in Theorem 2.1.7 and elsewhere.

COROLLARY 2.1.11 (b-minimality). Suppose that (K ,L) is tame. Let T be the
theory of the restriction of (K ,L) to the sorts K , k, Γ ; that is, T is the theory of
the structure on these sorts having as definable sets the L-definable sets. Then
T is b-minimal, with main sort K , and where the role of balls is played by open
balls.

Proof. The proof is immediate from [15, Definition 2.1], Lemma 2.1.9, and
Proposition 2.1.10.

In particular, the dimension theory for b-minimal structures of [15] applies to
tame structures.

PROPOSITION 2.1.12 (Continuity). Let f : X ⊂ K n
→ K be L-definable. Then

there exists an L-definable function

g : X → ks

for some s > 0 such that, for each η ∈ ks , the restriction of f to g−1(η) is
continuous. Further, for given T ⊂ X × ka

× Γ b with a > 0, b > 0, one can
moreover take g such that the fibers Tx are locally independent of x ∈ g−1(η) for
each η ∈ ks . Moreover, if n = 1, one can ensure that, for any ball B contained
in X, Tx = Tx ′ for any x, x ′ which lie in B. Finally, if X is open and f is locally
1-Lipschitz in each variable separately, then one can moreover take g such that
the restriction of f to g−1(η) is locally 1-Lipschitz for any η ∈ ks .

Proof. The statements for n = 1 follow from tameness. Indeed, the statement
about continuity follows from s-continuity when n = 1, and the statement
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about T follows from existence of tame configurations. Note that one can
preserve continuity of f while controlling Tx , since it is possible to combine
two maps gi : X → ksi into a single map g = (g1, g2) refining both g1 and g2, in
the sense that each fiber of g is included in a fiber of g1 and of g2. The statements
for general n follow from tameness, induction on n, and compactness (used in
the same way as in the proof of Proposition 2.1.10).

We shall illustrate this by giving now full details for the proof of the statement
about the continuity of f in the case when n = 2. The proof for n > 2 and the
proof of the statement about Tx are natural adaptations that are left to the reader;
some indications are provided at the end of the proof.

By compactness, by the case when n = 1, and by going to a test pair, we
may suppose that f (x1, ·) and f (·, x2) are continuous for each x1 and x2 in
K . Likewise, we may suppose that X x1 is in c(x1)-config, for some definable
function c and for each x1 in K , and that p1(X) is in d-config for some d ∈ K ,
where p1 : K 2

→ K is the projection (x1, x2) 7→ x1. Similarly, we may further
suppose that c is continuous on p1(X). Again for similar reasons, we may assume
that the definable family of sets Ux1,γ locally does not depend on x1 ∈ p1(X),
where the Ux1,γ are such that, for some ξ ∈ k, and for each x1 in K ,

X x1 =

⋃
γ∈Γ

(c(x1)+ Aξ,γ )×Ux1,γ .

Furthermore, we can also assume that, for each x1,

X x1 is in open c(x1)-config and p1(X) is in open d-config. (2.1.2)

Indeed, after partitioning, the only case left is when X x1 or p1(X) are in graph
config for each x1, which, by continuity of c, reduces to the case when n = 1.

For any function h : A ⊂ X → K and any a ∈ A, let∆(h, a) be the set of pairs
(δ, ε) in (Γ ×)2 such that, for any b in A, if |b − a| < δ, then |h(b)− h(a)| < ε.

For each x1, x2 in K , consider the sets

∆( f (x1, ·), x2) and ∆( f (·, x2), x1). (2.1.3)

They form definable families of subsets of (Γ ×)2 with parameters (x1, x2) in
K 2. Moreover, by the statement of the proposition about T when n = 1, and by
compactness, we may assume, for any x1 and any ball B contained in X x1 , that
∆( f (x1, ·), x2) is independent of x2 ∈ B. But then ∆( f (x1, ·), x2) only depends
on x1 and γ for x2 ∈ (c(x1) + Aξ,γ ) × Ux1,γ . Again by the statement of the
proposition about T when n = 1, we may thus assume, for any ball B1 contained
in p1(X) and any γ , that the sets Ux1,γ and ∆( f (x1, ·), x2) are independent of
the choice of (x1, x2) in

{(x1, x2) ∈ B1 × K | x2 ∈ (c(x1)+ Aξ,γ )×Ux1,γ }. (2.1.4)
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Non-Archimedean parametrizations and points of bounded height 15

Likewise, we may suppose for any ball B1 contained in p1(X) and any γ that
the set ∆( f (·, x2), x1) is independent of the choice of (x1, x2) in the set given
by (2.1.4).

Now choose (x1, x2) in X and ε in Γ ×. Choose also δ ∈ Γ × such that (δ, ε) lies
in the intersection of the two sets in (2.1.3). Such a δ exists, since f (x1, ·) and
f (·, x2) are assumed to be continuous. Using the continuity of c, the fact that the
sets Ux1,γ can be taken locally independent of x1 in controlled neighborhoods as
specified above, and the openness assumption in (2.1.2), we get that, for δ small
enough, and for any (v,w) in X with |(x1, x2)−(v,w)| < δ, one has that (x1, w)

lies in X .
Now, for any (v,w) in X with |(x1, x2)− (v,w)| < δ, we have

| f (x1, x2)− f (v,w)| = | f (x1, x2)− f (x1, w)+ f (x1, w)− f (v,w)|
6 max(| f (x1, x2)− f (x1, w)|, | f (x1, w)− f (v,w)|)
6 ε,

which yields the continuity of f . Note that | f (x1, w) − f (v,w)| 6 ε follows
from the assumption that ∆( f (·, x2), x1) does not depend on (x1, x2) varying in
sets given by (2.1.4). This finishes the proof of the continuity of f when n = 2.
For n > 2, instead of x1 one considers the (n − 1)-tuple (x1, . . . , xn−1), and one
replaces x2 by xn . With these changes, the above reasoning and notation can be
easily adapted to deal with n variables.

LEMMA 2.1.13 (Inverses). Let c : X ⊂ K → K be L-definable. Then there
exists an L-definable function

g : X → ks

for some s > 0 such that, for each η ∈ ks , either c is locally 1-Lipschitz on
g−1(η), or the restriction of c to g−1(η) is injective, and its inverse function is
locally 1-Lipschitz.

Proof. The statement is clear, by Proposition 2.1.10 and the definitions of
tameness and s-continuity.

Combining Lemma 2.1.13 with a form of the chain rule for differentiation, we
find the following several-variable result.

COROLLARY 2.1.14. Let X ⊂ K n be L-definable and of dimension d < n. Then
there exist an L-definable function

g : X → ks
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for some integer s, a finite partition of the graph G(g) of g into L-definable
parts Ai , and for each i an injective coordinate projection pi : Ai → K d

× ks

and L-definable functions

hi : pi(Ai)→ K n−d

such that the union over i of the graphs G(hi) equals G(g), and such that the
functions hi,η are locally 1-Lipschitz for each η ∈ ks .

Proof. By compactness, working piecewise, and going to a test pair, we may
assume that X is already the graph of a function

h : U ⊂ K d
→ K n−d,

which is s-continuous in each variable separately. By induction on d we may
suppose that U is open. We will treat the case d = n − 1, the general case being
similar. After reordering the variables x1, . . . , xd , working piecewise, we may
suppose that |∂h/∂xd | is maximal among the |∂h/∂xi | on the whole of U for
i = 1, . . . , d , and that |∂h/∂xd | > 1 on U . Moreover, by Proposition 2.1.10
and compactness, we may suppose for any a = (x1, . . . , xd−1) that h(a, ·) is
injective on Ua . Now we can reverse the role of xn = xd+1 and xd , by reordering
the coordinates. This way h is replaced by a function ĥ sending (x1, . . . , xd−1, t)
to the compositional inverse

h(x1, . . . , xd−1, ·)
−1(t).

By s-continuity, with the notation from just below Definition 2.1.2, we have, for
each i = 1, . . . , d − 1, and for x, t with h(x) = (x1, . . . , xd−1, t), that∣∣∣∂ ĥ(x1, . . . , xd−1, t)

∂xi

∣∣∣ = ∣∣∣∂h(x)
∂xi

∣∣∣ · ∣∣∣∂h(x)
∂xd

∣∣∣−1
,

which is at most one by our assumption that |∂h/∂xd | is maximal among the
|∂h/∂xi |.

Now we come to the proof of our main results on Lipschitz continuity.

REMARK 2.1.15. As the proof of Theorem 2.1.8 for n = 1 will show, the
hypothesis that f is locally 1-Lipschitz is not needed at all when n = 1.
Hence, Theorem 2.1.8 for n = 1 holds even when f is not locally 1-Lipschitz.
Furthermore, when n = 1 and f is moreover assumed to be injective and
s-continuous, then, for any g as given by Theorem 2.1.8, the function f
automatically gives a correspondence between the maximal balls included in
g−1(η) and the maximal balls included in f (g−1(η)).
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Non-Archimedean parametrizations and points of bounded height 17

Proof of Theorem 2.1.8 for n = 1. First suppose that f is injective and s-
continuous, and that X equals an open ball c0 + Aξ,γ for some L-definable
c0 ∈ K , ξ ∈ k, and γ ∈ Γ . Write Y for f (X). It follows from the case
assumptions that Y is an open ball. By tameness, there exist s0 > 0 and
L-definable functions

h : Y → ks0 and d : ks0 → K

such that h−1(η) is in d(η)-config for each η ∈ ks0 . Define

g :
{

X → ks0,

x 7→ h( f (x)),

and define c(η) as c0 when d(η) lies outside Y and as f −1(d(η)) when d(η)
belongs to Y . It follows by s-continuity and injectivity of f that g−1(η) is in c(η)-
config. The slightly more general case where f is injective and s-continuous,
and where X is in c0-config for some L-definable c0 ∈ K , is treated similarly,
by choosing h and defining g and c as in the above construction. Finally, we
consider the general case. By tameness and Proposition 2.1.10, there exist L-
definable functions g0 : X → ks0 and c : ks0 → K such that, for each η ∈ ks0 ,
the restriction of f to g−1

0 (η) is s-continuous and either injective or constant,
and such that the set g−1

0 (η) is in c(η)-config. Now we finish the proof by noting
that the above construction, applied to the restrictions of f to g−1

0 (η), works
definably and uniformly in η ∈ g0(X).

Proof of Theorem 2.1.8 for general n. We proceed by induction on n, assuming
that Theorems 2.1.7 and 2.1.8 hold for integers up to n − 1. The case when
n = 1 of Theorem 2.1.8 is already proved, so we may assume that n > 1. By the
induction hypothesis, and by compactness, we may suppose that f (·, xi , ·) is 1-
Lipschitz (on its natural domain) for any choice of xi in K and i with 1 6 i 6 n.

By Theorem 2.1.8 in the case when n = 1 that we just proved, and then by
compactness, it is enough to consider the case of an L-definable part X ⊂ A
such that, for some coordinate projection p : K n

→ K n−1 and some L-definable
functions c : p(X)→ K and d : p(X)→ K , Xw is in c(w)-config, and fw(Xw)

is in d(w)-config for each w ∈ p(X). Again by Theorem 2.1.8 in the case
when n = 1 and compactness (we keep for simplicity the notation X for the
part of A we have now to work on), we may assume that, for some coordinate
projection p1 : p(X) → K n−2, there are L-definable functions b, c′, d ′ :
p1(p(X))→ K such that p(X)v is in b(v)-config, cv(p(X)v) is in c′(v)-config,
and dv(p(X)v) is in d ′(v)-config, for each v ∈ p1(p(X)). Whenever a further
partition of X is taken (typically in order to ensure some extra assumptions), the
assumed existence and properties of b, c′, d ′ will be either preserved or easily
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restored (while maintaining the extra assumptions). By Corollary 2.1.14, and
by Theorems 2.1.7 and 2.1.8 for n − 1, we may suppose that X is open. The
reduction to the case where c is 1-Lipschitz continuous is done as in [10], using
s-continuity instead of the norm of the partial derivatives. Let us now describe
the strategy used in [10] to make c become 1-Lipschitz continuous, referring
to the proof of Proposition 2.4 in [10] for the explicit ultrametric calculations.
We shall proceed by induction on the number of variables on which c depends
nontrivially, the case when there is no such variable being clear. By compactness
and tameness we may assume that c is s-continuous in each variable separately.
After reordering the variables x1, . . . , xn−1, we may suppose that |∂c/∂xn−1| is
maximal among the |∂c/∂xi | on the whole of p(X) for i = 1, . . . , n − 1. If
|∂c/∂xn−1| 6 1 on the whole of p(X), then we are done, by Theorem 2.1.7
for n − 1. Hence, we may further assume that 1 < |∂c/∂xn−1| on the whole
of p(X). Now we subdivide into two cases (possibly involving a further finite
partitioning), where for the complete details we refer to the two cases in the
proof of Proposition 2.4 of [10]: either also Xw is in c′(v)-config for each v and
each w with p1(w) = v, in which case we are done by induction on the number
of variables on which c depends nontrivially, or the graph of c is included in
X . In the latter case, one can finish by taking the inverse function of cv and by
reversing the roles of xn and xn−1, using that p(X)v is in b(v)-config, and that
cv is s-continuous and injective, as in [10]. In this case one concludes similarly
as in [10], using the chain rule as in the proof of Corollary 2.1.14. Thus we may
suppose that c is 1-Lipschitz.

Let us now show that we can reduce further to the case where d is 1-Lipschitz
as well, as required by the theorem. The argument is by induction on the number
of variables on which d depends.

Let us summarize the relevant current assumptions. The set Xw is in c(w)-
config, fw(Xw) is in d(w)-config, dv(p(X)v) is in d ′(v)-config, and fw and dv
are s-continuous for eachw ∈ p(X) and for each v ∈ p1(p(X)). Furthermore, we
may assume that c is 1-Lipschitz, X is open, fw is injective for each w ∈ p(X),
and f (·, xn) is 1-Lipschitz for each xn . Define Y as the image of X under the
function X → K n sending x to (x1, . . . , xn−1, f (x)). We may suppose that there
are ξ1, ξ2 ∈ k such that, for each w ∈ p(X), one has

Xw = {xn ∈ K | ac(xn − c(w)) = ξ1, |xn − c(w)| ∈ G1(w)} and
Yw = fw(Xw) = {z ∈ K | ac(z − d(w)) = ξ2, |z − d(w)| ∈ G2(w)}

for some sets G i(w) ⊂ Γ . By Proposition 2.1.12 for n = 1, and by compactness,
we may suppose that, for each v ∈ p1(p(X)) and each open ball B contained in
p(X)v, these sets G i(v, t) do not depend on the choice of t ∈ B.
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Non-Archimedean parametrizations and points of bounded height 19

Case 1. The function w 7→ f (w, z+ c(w)) is 1-Lipschitz continuous for each z,
where z and w are such that (w, z + c(w)) ∈ X .

In this case, we may perform the bi-1-Lipschitz transformation (w, z) 7→ (w,

z+c(w)), and assume that c is identically zero. This transformation preserves the
assumptions summarized above. If d is locally 1-Lipschitz continuous in each
variable separately, we are done, by Proposition 2.1.12 and by Theorem 2.1.7
for n − 1. Hence, we may suppose that d is not locally 1-Lipschitz in at least
one variable. By working piecewise, we may suppose that d is nowhere locally
1-Lipschitz in at least one specific variable. Up to reordering the variables
x1, . . . , xn−1 if necessary, we may thus suppose for any v that dv is nowhere
locally 1-Lipschitz. By Proposition 2.1.10, and by compactness, we may thus
also suppose that dv is injective.

Suppose that there is v ∈ p1(p(X)) and that there is an open ball B contained
in p(X)v such that

Yv,t1 6= Yv,t2 (2.1.5)

for some t1, t2 ∈ B. Then this violates the 1-Lipschitz continuity of f in
the variable xn−1 as follows. Fix t1, t2 ∈ B satisfying (2.1.5). Choose γ0 in
G2(v, t1) = G2(v, t2) such that the sets A1 and A2 are disjoint balls, with

Ai := {y ∈ K | ac(y − d(v, ti)) = ξ2, |y − d(v, ti)| = γ0}.

By Remark 2.1.15 on the correspondence of maximal balls in domain and range
of the functions fv,ti , and by the case n = 1 of Proposition 2.1.12 for the
variable xn−1 to control radii of the corresponding maximal balls (where the other
variables are dealt with by compactness), we can take γ in G1(v, t1) = G1(v, t2),
and xn with

ac(xn) = ξ1, |xn| = γ

such that f (v, ti , xn) lies in Ai for i = 1, 2. By s-continuity of dv and the
fact that dv is nowhere locally 1-Lipschitz continuous, and the note below
Definition 2.1.2, one has

|d(v, t1)− d(v, t2)| > |t1 − t2|.

Since A1 and A2 are disjoint, it follows from their description that one has, for
any yi ∈ Ai for i = 1, 2, that

|y1 − y2| > |d(v, t1)− d(v, t2)|.

Combining these inequalities with yi = f (v, ti , xn), one finds

| f (v, t1, xn)− f (v, t2, xn)| > |d(v, t1)− d(v, t2)| > |t1 − t2|,
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R. Cluckers et al. 20

which indeed violates the 1-Lipschitz continuity of f in the variable xn−1. Hence,
we may suppose that, for each v ∈ K n−2 and each open ball B contained in
p(X)v, the set Yv,t is independent of the choice of t ∈ B. Since dv is assumed to
be injective, it then follows that Yv,t is in d ′(v)-config, as we wanted to prove.
Case 2. The graph of c is contained in X and f (w, c(w)) = d(w).

In this case we may assume, by Theorem 2.1.7 for n − 1 and compactness,
that w 7→ f (w, c(w)) is 1-Lipschitz as well. But then it follows from the case
assumption, namely from f (w, c(w)) = d(w), that d is 1-Lipschitz, and we are
done also for this case.

We now explain how one can deduce the general case from Cases 1 and 2. Let
us write

X (0)
= {(w, z) ∈ p(X)× K | (w, z + c(w)) ∈ X},

so that
X (0)
= {(w, z) ∈ p(X)× K | ac(z) = ξ1, |z| ∈ G1(w)}

and f (0) : X (0)
→ K for the function sending (w, z) to f (w, z + c(w)).

Take an L-definable function

g : X (0)
→ ks

for some s such that, for each η ∈ ks and each (w, z) ∈ X (0), the function
f (0)(·, z) is 1-Lipschitz on K n−1

× {z} ∩ g−1(η). In general, g−1(η)w may not
be in 0-config. However, we may assume that g−1(η)w is in c̃(η,w)-config for
some L-definable function c̃. We may also assume that the graph of c̃ is either
disjoint from X (0) or is included in X (0). In the first case, one notes that g−1(η)w
is in fact in 0-config, and one falls in Case 1. In the remaining case when the
graph of c̃ is included in X (0), we may suppose that d(w) = f (w, c̃(w)) by
the proof of Theorem 2.1.8 for n = 1. If c̃ is 1-Lipschitz, then we fall in Case
2, and we are done. If c̃ is not 1-Lipschitz, after performing a permutation of
the variables as we did at the beginning of this proof for c, and transforming d
accordingly, we may assume that c̃ is 1-Lipschitz, and one falls again in a case
already treated.

REMARK 2.1.16. We amend [10, 11], more precisely their proofs of the
piecewise Lipschitz continuity results. The explanation of the reduction to the
Cases 1 and 2 as in the proof of Theorem 2.1.8 is not given in the proof of
[10, Theorem 2.3], and only Case 1 is treated in [10], namely by assuming (*)
on [10, page 83]. Either one adds a Case 2 and a reduction to Cases 1 and 2,
or one uses the simplified approach of this paper. If one uses the approach of
the present paper, one should adapt [11] accordingly, and use the monomial
approximation result of [11] to get rid of the constant |1/N | as created in the
proof of Theorem 2.2.3 below for the analogs of (2.1.7) and (2.1.8).
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Non-Archimedean parametrizations and points of bounded height 21

Proof of Theorem 2.1.7. We proceed by induction on n, assuming that
Theorem 2.1.8 holds for integers up to n. For n = 0 there is nothing to
prove concerning the statement of Theorem 2.1.7. Write p : X → K n−1 for
the coordinate projection sending x := (x1, . . . , xn) to x̂ := (x1, . . . , xn−1), and
define Y as the image of X under the function X → K n sending x to (x̂, f (x)).

Clearly, by induction on the number of variables on which f depends,
Lemma 2.1.13, Corollary 2.1.14, Theorem 2.1.8, tameness, compactness, and
by going to a test pair, we may assume that the following basic assumptions
hold.

Basic assumptions.

(0) X is open in K n .

(1) f (x̂, ·) is s-continuous for each x̂ in p(X).

(2) f (·, xn) is 1-Lipschitz continuous for each xn .

(3) For each x̂ in p(X), the set X x̂ is in c(x̂)-config, where c is an L-definable
function.

(4) For each x̂ in p(X), the set Yx̂ is in d(x̂)-config, where d is an L-definable
function.

(5) c and d are 1-Lipschitz on p(X).

We prove that, under these basic assumptions, f is globally 1-Lipschitz. By
replacing f by f − d , we may suppose that d = 0. We may also assume that

|xn − c(x̂)| 6 |xn| for each x ∈ X . (2.1.6)

Indeed, one can replace c by 0 on the piece where one has |xn − c(x̂)| > |xn|.
Consider x, y ∈ X . If xn and yn lie in the same open ball B which is included

in X x̂ with x̂ = p(x), then one derives from the assumptions that

| f (x)− f (y)| = | f (x)− f (x̂, yn)+ f (x̂, yn)− f (y)|
6 max(| f (x)− f (x̂, yn)|, | f (x̂, yn)− f (y)|)
6 max(|xn − yn|, |x̂ − ŷ|)
= |x − y|,

which ends the proof in this case.
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R. Cluckers et al. 22

Now suppose that xn and yn do not lie in any open ball included in X x̂ with
x̂ = p(x), and, by symmetry, that xn and yn do not lie in any open ball which is
included in X ŷ with ŷ = p(y). Note that this implies that

|xn − c(x̂)| 6 |xn − yn| and |yn − c(ŷ)| 6 |xn − yn|. (2.1.7)

We also have

| f (x)| 6 |xn − c(x̂)| and | f (y)| 6 |yn − c(ŷ)|, (2.1.8)

by s-continuity as given by (1), since f is locally 1-Lipschitz and d = 0.
Combining (2.1.6), (2.1.7), and (2.1.8), one gets

| f (x)− f (y)| 6 max(|xn − c(x̂)|, |yn − c(ŷ)|) 6 |xn − yn| 6 |x − y|,

and we are done.

2.2. Lipschitz continuity in mixed characteristic tame geometry. Recall
that the generalized Denef–Pas language LDP consists of the sorts VF for valued
field, the Rn for n > 1 for the residue rings modulo the product ideal of the ideal
(n) and the maximal ideal, and VG for the union of {0} with the multiplicatively
written value group VG×, and having as symbols the ring language on VF, the
ring language on the Rn , the language of ordered multiplicative groups (·, <)
on VG×, the norm map from VF to VG, and angular component maps acn :

VF → Rn for all n > 1. An angular component map acn : VF → Rn is just a
multiplicative map acn : VF× → R×n , extended by zero on zero, that coincides
with the natural projection on the units of the valuation ring to Rn . The maps
acn are required to form a compatible system; that is, the composition of the
projection Rn → Rm with acn has to equal acm whenever m divides n.

Let L+ be this generalized language of Denef and Pas (LDP), but without
multiplication on VF and on the Rn . Let L be any first-order language with the
same sorts as L+ and such that L contains all the symbols of L+. Let K be an L+
structure, where we write Γ for VG(K ), Γ × for VG×(K ), and Kn for Rn(K ).
Call a set S auxiliary if it is a subset of a Cartesian product of some copies of Γ
and the Kn .

Let us use the notation

Aξ,γ := {t ∈ K | acn(t) = ξ, |t | = γ } for ξ ∈ Kn and γ ∈ Γ .

Furthermore, let (Ks)
s when s = 0 be shorthand for {0}.

DEFINITION 2.2.1 (Configurations). Given a set T ⊂ K × S with S auxiliary,
say that T is in c-config with depth n if there exists ξ ∈ Kn such that T equals
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the union over γ ∈ Γ of sets (c + Aξ,γ ) × Uγ for some Uγ ⊂ S. Again, if T is
nonempty and in c-config, then n, ξ , and the Uγ , where γ is such that ∅ 6= Aξ,γ ,
are uniquely determined by T and c.

Say that T is in L-tame config if there exist n > 0, s > 0, and L-definable
functions

g : K → K s
s and c : K s

s → K

such that the range of c contains no open ball, and such that T ∩ (g−1(η)× S) is
in c(η)-config with depth n for each η ∈ K s

s .

One could as well have used (Ks)
t instead of K s

s for some independent s and
t , but this would create heavier notation.

Suppose that the L+ structure on K can be expanded to be a structure for the
generalized Denef–Pas language. This condition is a simplification that replaces
some of the conditions of Section 2.1, which would otherwise have become
more cumbersome in the mixed case. We maintain this condition throughout
this section. Suppose moreover that K is an L-structure.

Consider an L-structure M which is elementarily equivalent to (K ,L). If L is
a language which is obtained from L by adding constants from M , then we call
(M, L) a test pair for (K ,L).

DEFINITION 2.2.2 (Mixed tameness). Say that (K ,L) is weakly mixed tame if
the following hold.

(1) Each L-definable set T ⊂ K × S with S an auxiliary set is in L-tame config.

(2) If F : X ⊂ K → K is L-definable, then there exists an L-definable function
g : X → K s

s for some s > 0 such that, for each η ∈ K s
s , the restriction of F

to g−1(η) is s-continuous.

Say that (K ,L) is mixed tame if each test pair (M, L) for (K ,L) is weakly
tame.

More generally, call an L-theory T mixed tame if, for each model M of T ,
the pair (M,L) is mixed tame.

By essentially the same proof as that of Theorem 2.1.7, we obtain our final
result on Lipschitz continuity.

THEOREM 2.2.3. Suppose that (K ,L) is mixed tame. Let f : X ⊂ K n
→ K be

an L-definable function which is locally 1-Lipschitz. Then there exist an integer
N > 0 and an L-definable function

g : X → K s
s
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R. Cluckers et al. 24

for some s > 0 such that, for each η ∈ K s
s , the restriction of f to g−1(η) is

|1/N |-Lipschitz.

Proof. Adapt the proof of Theorem 2.1.7, and all its auxiliary results and their
proofs, by replacing any occurrence of (the residue field) k by a residue ring
Ks for some s, and each occurrence of ac by acs for some s. (See for example
Proposition 2.2.5 for the adaptation of Proposition 2.1.10.) In this process, a
constant of the form |1/N | shows up in the upper bound in Equations (2.1.7)
and (2.1.8), where N can be bounded in terms of the depths of the occurring
configurations.

REMARK 2.2.4. The natural analog with |1/N |-Lipschitz centers for some
integer N > 0 of Theorem 2.1.8 in mixed characteristic also holds. We leave its
proof to the reader. Instead, we make explicit the analog of Proposition 2.1.10,
as Proposition 2.2.5.

PROPOSITION 2.2.5 (Injectivity versus constancy). Suppose that (K ,L) is
mixed tame. Let F : X ⊂ K → K be L-definable. Then there exist an integer
s > 0 and an L-definable function

g : X → K s
s

such that for each η ∈ K s
s the restriction of F to g−1(η) is injective or constant.

Proof. The proof is done by similar adaptation of the proof of Proposition 2.1.10
as explained in the proof of Theorem 2.2.3.

2.3. Examples and some corollaries. The following proposition provides
examples of (mixed) tame structures.

PROPOSITION 2.3.1 [12, Theorem 6.3.7]. Let LDP be the generalized Denef–
Pas language. Suppose that K is a valued field of characteristic zero, equipped
with angular component maps acn , and a separated analytic A-structure as in
[12, Definition 4.1.6], where A is a Weierstrass system as in [12, Definition
4.1.5], and write L to denote the corresponding expansion of LDP. Then (K ,L)
is tame (respectively, mixed tame) if K is of equicharacteristic zero (respectively,
of mixed characteristic).

Proof. One readily derives this statement from the version of [12, Theorem
6.3.7] which is formulated with sorts for quotients K×/1 + nMK with MK
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Non-Archimedean parametrizations and points of bounded height 25

the maximal ideal of the valuation ring of K , instead of with the sorts Rn . Note
that K is automatically henselian because it has a separated analytic A-structure
with A a Weierstrass system.

In some specific cases Proposition 2.3.1 follows, alternatively, by results from
[9, 14, 18, 28, 29]; see also [27] for a related, one-sorted result in the p-adic
subanalytic case.

All the structures that we will use in Section 3 are tame or mixed tame, by [12,
Examples 4.4(1) and 4.4(13)], [13, Section 3.4], and by Proposition 2.3.1.

Note that, by compactness, family versions of Theorems 2.1.7, 2.2.3, and
2.1.8 follow naturally. Uniform versions in all models of a tame theory follow
likewise.

3. Non-Archimedean Yomdin–Gromov parametrizations with Taylor
approximation

In Section 2, piecewise Lipschitz continuity was obtained for a definable
function with bounded first partial derivatives. In this section, we will show
that one can parametrize any definable set by a small set of maps with bounded
partial derivatives up to any given finite order. In the previous sentence, a small
set of maps means a set of maps indexed definably by the residue field, or,
more generally, some residue rings L N for some N > 0. We will use piecewise
Lipschitz continuity from the previous section, together with new techniques
using a strong kind of analyticity. We will furthermore define a property Tr

for approximation by Taylor polynomial of degree r − 1 with remainder term
of degree r , and the property Tr will be required in our parametrizations (see
Theorem 3.1.3). To distinguish from the more abstract setting of Section 2, we
will write L , instead of K , in this section, where L will be a valued field.

3.1. Main statements of the section. Let L be a complete, discretely valued
field of characteristic zero such that, for each integer n > 0, the set Pn(L) of the
nth powers in L× has finite index in L×. Write OL for the valuation ring of L
with maximal ideal ML and residue field kL . Let us choose a uniformizer$L of
OL , and let us write pL > 0 for the characteristic of kL . Write ord : L× → Z
for the (surjective) valuation map, and write | · | for the multiplicative norm on L
with normalization |$L | = eL for some real number eL < 1. When kL is finite,
we set eL = |kL |

−1. As usual, the norm |x | of a tuple x = (x1, . . . , xn) is set to be
the maximum of |xi | for i = 1, . . . , n, and, in the case where L is a p-adic field,
eL is taken to be the inverse of the number of elements in kL .
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Further, for each n > 1, write Ln for OL mod nML , and write acn : L → Ln

for the function which sends zero to zero and nonzero x ∈ L to x$− ord x
L mod

nML . Note that, if kL has characteristic zero, then one has Ln = L1 and acn =

ac1 for all n > 1. We also write ac for ac1.
Let LL

DP be the first-order language having sorts for L , the Ln for n > 1, and
Z, and having as symbols the ring language with parameters from L on L , the
ring language on kL , the Presburger language (0, 1+,−,6, {≡n}n>1) on Z, the
valuation map ord : L×→ Z, and the maps acn : L → Ln for all n > 1.

A function
f : Ln

→ L

which satisfies f (x) = 0 whenever x ∈ Ln
\ On

L is called a restricted analytic
function if there is a power series

∑
i∈Nn ai X i in OL[[X1, . . . , Xn]], converging on

On
L , such that f (x) =

∑
i∈Nn ai x i for x ∈ On

L . Let LL
an be the language consisting

of LL
DP and all the restricted analytic functions Ln

→ L for all n > 0. An LL
DP-

definable subset of Ln is often called a semialgebraic subset of Ln . An LL
an-

definable subset of Ln is called a subanalytic subset of Ln . Let L be either LL
DP

or LL
an. From now on in Section 3, definable sets and functions will be so for the

language L. Note that the study of definable sets was initiated in the works of
Macintyre [25] and Denef and van den Dries [19] in the p-adic case, and was
generalized later to this and other settings in for example [1, 12, 14, 36].

For a nonempty definable set X ⊂ Ln , the dimension of X is defined as the
largest integer m 6 n such that, for at least one of the coordinate projections
p : Ln

→ Lm , the set p(X) has nonempty interior for the valuation topology on
Lm . The empty set is given dimension −∞.

For an integer r > 0, and similarly for r = +∞, the Cr -norm of a Cr -function
f = ( f1, . . . , fn) : U → Ln on an open U ⊂ Lm is defined as the supremum
over all x in U , all i = 1, . . . , n, and all α ∈ Nm with |α| 6 r , of the values∣∣∣ 1

α!

∂α fi

∂xα
(x)
∣∣∣, (3.1.9)

where α! stands for
∏m

j=1(α j !), and |α| for
∑

j α j .
For a Cr -function ( fi)i = f : U ⊂ Lm

→ Ln and y ∈ U , write T<r
y, f (or T 6r−1

y, f )
for the tuple of the Taylor polynomials of the fi at y of degree r − 1. We now
define a notion of (global) approximation by Taylor polynomials.

DEFINITION 3.1.1. Let X be a subset of Lm . Let r be a positive integer. We say
that a map f = ( f1, . . . , fn) : X → Ln satisfies Tr (on X ) if X is open in Lm , f
is Cr with Cr -norm not larger than 1, and for every x and y in X one has

| f (x)− T<r
y, f (x)| 6 |x − y|r .
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If a map f satisfies Tr on a subset of Om
L , then it also satisfies T` for any `

with 1 6 ` 6 r , by the ultrametric inequality. For a C1-function from an open
subset of Lm to On

L , satisfying T1 is equivalent to being Lipschitz continuous
with Lipschitz constant 1.

DEFINITION 3.1.2. Let X ⊂ Ln be a definable set of dimension m. A family
fi : Pi → X of definable functions for i running over some set I , and with
Pi ⊂ Om

L , is called a Tr -parametrization of X if each of the fi satisfies Tr and

X =
⋃
i∈I

fi(Pi).

A family X of sets X y for y running over a definable set Y is called a definable
family if {(x, y) | x ∈ X y, y ∈ Y } is a definable set. A collection of maps fy

for y running over a definable set Y is called a definable family of maps if the
collection f of the graphs of the fy is a definable family of sets. Recall that for
f : D ⊂ A × B → C a map and a ∈ A, we write Da for the set {b ∈ B | (a,
b) ∈ D} and f (a, ·) or fa for the function b 7→ f (a, b) on Da .

THEOREM 3.1.3. Let n > 0, m > 0, and r > 0 be integers, and let (X y)y∈Y

be a definable family of subsets X y ⊂ On
L for y running over a definable set Y .

Suppose that X y has dimension m for each y ∈ Y . Then there exist an integer N
and a definable family g = (gy,i)y∈Y,i∈L N

N
of definable functions

gy,i : Py,i → X y

such that Py,i ⊂ Om
L , and, for each y, (gy,i)i∈L N

N
forms a Tr -parametrization of

X y . Namely,

X y =
⋃

i∈L N
N

gy,i(Py,i) for each y ∈ Y,

and gy,i satisfies Tr on Py,i for each y ∈ Y and each i ∈ L N
N .

Let us first describe the strategy of the proof of Theorem 3.1.3. We introduce
a global notion of analyticity (global in the sense that the radii of convergence
of the power series are large in a certain sense), and show a globally analytic
cell decomposition theorem. A first step toward Theorem 3.1.3 is to parametrize
our set with functions having small C1-norm. This is done by inverting the roles
of some of the coordinates and using the chain rule to bound the C1-norm by 1.
The analyticity allows us to go further by working with Gauss norms on balls
and on boxes (defined as products of balls). This has two uses: to obtain that
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composition with well-chosen power maps makes the Cr -norm less than or equal
to 1, and to obtain that Cr -norm bounded by 1 implies Tr on each maximal ball
included in the domain. Moreover, by using the results of the previous section on
T1, we reduce to the situation where one has globally T1 and locally (on maximal
balls) Tr . By composing with power maps once more, the previous T1 condition
on far-away points implies Tr , which then follows globally on the pieces. Finally,
Theorem 3.1.6 strengthens Theorem 3.1.3.

DEFINITION 3.1.4 (Cell around zero). Consider integers n > 0 and ni > 0 for
i = 1, . . . , n. A nonempty definable set X ⊂ Ln is called a cell around zero with
depth (ni)i∈{1,...,n} if it is of the form

{x ∈ Ln
| acni (xi) = ξi , (|x1|, . . . , |xn|) ∈ G}

for some set G ⊂ Rn and some ξi ∈ Lni . If moreover G is a subset of (R×)n ,
where (R×)0 = {0} and L0

= {0} by convention, then X is called an open cell
around zero. More generally, for nonempty definable sets Y and X ⊂ Y × Ln ,
the set X is called a cell around zero over Y with depth (ni)i∈{1,...,n} if it is of the
form

{(y, x) ∈ Y × Ln
| y ∈ Y, acni (xi) = ξi(y), (y, (|xi |)i) ∈ G}

for some set G ⊂ Y×Rn and some definable functions ξi : Y → Lni . If moreover
G is a subset of Y × (R×)n , then X is called an open cell around zero over Y .
Note that the definability of G is not an issue here, since X is assumed to be
definable.

Note that some of the sets X y for some y ∈ Y may be empty.
By a box we mean a Cartesian product of closed balls, where a closed ball is

a subset of L of the form

{x ∈ L | |x − c| 6 |r |}

for some r in L× and some c ∈ L . For a box B of the form
∏n

i=1{x ∈ L |
|x − ci | 6 |ri |}, we define the associated set Bas as

Bas :=

n∏
i=1

{x ∈ Lalg
| |x − ci | < |ri/$L |}, (3.1.10)

where Lalg is an algebraic closure of L with norm extending the one on L . Note
that B ⊂ Bas. We extend the definition of Cr -norm, for an integer r > 0, and
also for r = +∞, of a Cr -function f = ( f1, . . . , fn) : U → (Lalg)n on an open
U ⊂ (Lalg)m in the obvious way.
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DEFINITION 3.1.5 (Global analyticity). Let f : X ⊂ Lm
→ Ln be a definable

function on an open set X . Say that f is globally analytic on X if, for any box
B contained in X , the restriction of f to B is given by a tuple of power series,
converging on the associated set Bas. By this we mean that, for any b ∈ B, there
is a power series

∑
ai x i such that f (x) =

∑
ai(x − b)i for all x ∈ B and which

converges on −b + Bas.

The notion of globally analytic maps will be most useful when the
domain is an open cell around zero. We can now give in Theorem 3.1.6 a
strengthened version of Theorem 3.1.3 as well as a variant of Theorem 3.1.6 in
Proposition 3.1.7.

THEOREM 3.1.6. With data and notation from Theorem 3.1.3, one can take g as
in Theorem 3.1.3 and such that moreover gy,i is globally analytic for each y, i
and such that P is an open cell around zero over Y × L N

N , where P = {(y, i,
x) | y ∈ Y, i ∈ L N

N , x ∈ Py,i}.

PROPOSITION 3.1.7. With data and notation from Theorem 3.1.3, one can take
g as in Theorem 3.1.6 such that moreover for each y, i , and for each box B
contained in Py,i and associated set Bas, the power series corresponding to gy,i

on B satisfies Tr on the whole of Bas.

3.2. Proofs of the parametrization theorems. In order to prove Theorems
3.1.3 and 3.1.6, we give now some preliminary definitions.

For a closed ball
{x ∈ L | |x − c| 6 |r |}

with r in L× and c ∈ L , the real number |r | is called the radius of the closed ball,
while ord r is called the valuative radius. All balls from now on will be closed
balls, as opposed to Section 2, where we used open balls. A ball B with B ⊂ X
for some set X ⊂ L is called a maximal ball contained in X if B is a closed ball
which is maximal for the inclusion among all closed balls contained in X . By
convention, L0 stands for {0}, and so do also k0

L and Z0, namely the definable set
of a true formula without free variables.

We complement the above notion of cells around zero by a notion of cells with
a center.

DEFINITION 3.2.1 (Cell with center). Consider integers n > 0 and ni > 0 for
i = 1, . . . , n. For nonempty definable sets Y and X ⊂ Y × Ln , the set X is called
a cell over Y with center (ci)i=1,...,n and depth (ni)i=1,...,n if it is of the form

{(y, x) ∈ Y × Ln
| y ∈ Y, acni (xi − ci(x<i)) = ξi(y), (y, (|xi − ci(x<i)|)i) ∈ G}
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for some set G ⊂ Y × Rn and some definable functions ξi : Y → Lni and
ci : Y × L i−1

→ L , where x<i = (y, x1, . . . , xi−1). If moreover G is a subset of
Y × (R×)n , where (R×)0 = {0}, then X is called an open cell over Y (with center
(ci)i=1,...,n and depth (ni)i=1,...,n).

DEFINITION 3.2.2 (Associated cell around zero). Let X be a cell over Y with
center, with notation from Definition 3.2.1. The cell around zero associated to X
is by definition the cell X (0) obtained by forgetting the centers, namely

X (0)
= {(y, x) ∈ Y × Ln

| y ∈ Y, acni (xi) = ξi(y), (y, (|xi |)i) ∈ G},

with associated bijection θX : X → X (0) sending (y, x) to (y, (xi − ci(x<i))i).
For a definable map f : X → A there is the natural corresponding function
f (0) = f ◦ θ−1

X from X (0) to A.

DEFINITION 3.2.3 (Globally analytic cells). Suppose that X ⊂ Y × Ln is an
open cell over Y . If n = 0, then X is a globally analytic cell over Y . For n > 0, if
the image of X under the coordinate projection p from Y × Ln to Y × Ln−1 is a
globally analytic cell, and if c(0)n,y is globally analytic on p(X (0))y for each y ∈ Y
in the sense of Definition 3.1.5, then X is called a globally analytic cell over Y .

THEOREM 3.2.4 (Globally analytic cell decomposition). Given definable sets Y
and X ⊂ Y × Ln and a definable map f : X → L s , there exist N > 0 and a
definable bijection

X → X ′ ⊂ L N
N × X ⊂ L N

N × Y × Ln

over X such that X ′ is the disjoint union of a cell with empty interior, and an
open globally analytic cell A over L N

N × Y such that f (0)a,y is globally analytic on
A(0)a,y for each a ∈ L N

N and y ∈ Y .

We define an expansion L∗ of L similar to the one of [14, (4.1)], and to the one
of [12, Definition 6.1.7], by joining division and witnesses for henselian zeros
and roots.

DEFINITION 3.2.5. Let L∗ be the expansion of L ∪ {−1
} obtained by joining to

L ∪ {−1
} function symbols (·, ·)1/m

e and hm,e for e > 0 and m > 1, where on a
henselian valued field K of characteristic zero and with value group ΓK these
functions are as follows:

(·, ·)1/m
e : K × Ke2 → K
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sends (x, ξ) to the (unique) mth root y of x with ace(y) ≡ ξ mod eMK and
ord(y) = z, whenever simultaneously ξm

= ace2(x), ace(m) 6= 0, and ord(x) is
divisible by m in ΓK , and to 0 otherwise;

hm,e : K m+1
× Ke2 → K

sends (a0, . . . , am, ξ) to the unique y satisfying ord(y) = 0, ace(y) ≡ ξ mod
eMK , and

∑m
i=0 ai yi

= 0, whenever ξ is a unit, ord(ai) > 0,
∑m

i=0 aiξ
i
≡ 0 mod

e2MK , and
f ′(ξ) 6≡ 0 mod eMK

with f ′ the derivative of f , and to 0 otherwise.

PROPOSITION 3.2.6. Given a definable function f : X → Y , there exist a
definable bijection λ : X → X ′ ⊂ X × L N

N over X and a tuple of L∗-terms
h such that

h(x ′) = f (x)

for all x ∈ X and with x ′ = λ(x).

Proof. By [14, Theorem 7.5], the proposition holds in a slightly different setting.
Namely, in [14], an extra value group variable is allowed as input in the function
(·, ·)1/m

e , and in parametrizations λ runs over a Cartesian product of L N
N with

the value group. Since in the present case the value group is simply Z, the
proposition as stated follows directly from [14, Theorem 7.5].

Proof of Theorem 3.2.4. We proceed by induction on n. For n = 0, there is
nothing to prove. We will use the classical form of cell decomposition without
global analyticity, which follows immediately from tameness and compactness,
or alternatively by [14, Theorem 7.4]. Suppose now that n > 1. Let L∗ be the
expansion of L given by Definition 3.2.5. By Theorem 3.2.6, we may suppose
that f is given by a tuple of L∗-terms t j . We may focus on t1 among the t j . We
proceed now by induction on the complexity of the term t1. Suppose that t1 equals
h(v1, . . . , vm) for some L-valued terms vi and a function symbol h of L∗. By
the classical form of cell decomposition and both ongoing inductions, we may
assume that X is already a globally analytic cell over Y , that the v(0)i,y are globally
analytic for each y ∈ Y , and that, for a chosen M > 0, |v(0)i,y | and acM(v

(0)
i,y )

are constant on each box contained in X (0)
y . Now, by choosing M appropriately

depending on h (as explained in the proof of Lemma 6.3.15 of [12] for each
possibility for h), the theorem follows.

The following elementary lemma about compositions will often be used
without mentioning.
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LEMMA 3.2.7. Let n,m, r be integers. Let f : U → V and g : V → OL be
locally analytic functions on some open subsets U ⊂ On

L and V ⊂ Om
L . Assume

that f and g satisfy Tr . Then the composition g ◦ f satisfies Tr .

Proof. Just use that the Taylor polynomial of a composition corresponds to the
composition of the Taylor polynomials (of respective degrees and up to a certain
degree), and use a classical ultrametric calculation.

The composition with power maps has been used in the context of real
parametrizations by Yomdin et al. We will use power maps similarly and
introduce the following notation for convenience.

DEFINITION 3.2.8. For f : A ⊂ Om
L → Ln a definable function, for any integer

N > 0, and any b ∈ Om
L , write A?N ,b for the set of all x ∈ Om

L such that bx N
:=

(bi x N
i )i∈{1,...,n} lies in A, and write f?N ,b : A?N ,b → Ln for the function x 7→

f (bx N ).

Let us recall how convergent power series over OL may also be interpreted in
other valued fields, even when they are noncomplete or of higher rank. For m >
0, put Am = OL{x1, . . . , xm}, namely the ring of formal power series in x over
OL and converging on Om

L . Write F(X, Y ) for the ring of Y -valued functions on
X for any sets X, Y . Let L ′ be a valued field with valuation ring OL ′ and maximal
ideal ML ′ . An analytic {Am}m-structure on L ′ is the data of ring homomorphisms

σm : Am → F(Om
L ′,OL ′),

for all m > 0, satisfying

• σ0(ML) ⊂ML ′ ,

• σm(xi) = the i th coordinate function on Om
L ′ for i = 1, . . . ,m, and

• σm+1 extends σm with the natural inclusions Am ↪→ Am+1 and Om
L ′ ↪→ Om+1

L ′ :

ξ 7→ (ξ, 0) inducing F(Om
L ′,OL ′) ↪→ F(Om+1

L ′ ,OL ′).

We also consider one-sorted variants L1 and Lh
1 of L.

DEFINITION 3.2.9. For K a henselian field, let hn : K n+1
→ K be the function

that associates to (a0, . . . , an, b) ∈ OK the unique zero, c, of the polynomial
p(x) := an xn

+ an−1xn−1
+ · · · + a0 that satisfies |c− b| < 1, if |p(b)| < 1 and

|p′(b)| = 1, and let hn output 0 in all other cases. Corresponding to the choice
of L as either LL

DP or LL
an, let L1 be the valued field language (·, −1,+,−, 0, 1, |)

with coefficients from L , respectively, the valued field language together with
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function symbols for each element of Am for all m > 0. Let Lh
1 be L1 together

with the function symbols hn for all n > 0.

THEOREM 3.2.10 [13, Theorem 3.4.2]. Let Lalg be an algebraically closed
valued field with analytic {Am}m-structure. Then Lalg admits quantifier
elimination in (the one-sorted language) Lh

1 .

The following lemma gives uniform bounds on Gauss norms and is based
on [12, Lemma 6.3.9]. Recall that the Gauss norm of a power series is the
supremum of the norms of the coefficients. Write MLalg for the maximal ideal of
the valuation ring OLalg of Lalg.

LEMMA 3.2.11. Let fy :Mm
L → L be a definable family of functions for y in a

definable set Y . Suppose that, for each y ∈ Y , fy is given by a power series with
coefficients in L which converges on the associated set Bas := (MLalg)m . Suppose
further for each y ∈ Y and each i = 1, . . . ,m that the partial derivatives ∂ fy/∂xi

have norm at most one on Bas. Then there is a nonzero integer M such that the
Gauss norm of M( fy − fy(0)) is at most one for each y ∈ Y .

Proof. The proof is somewhat easier in the equicharacteristic zero case, but we
will give a uniform treatment. Our lemma is implied by compactness by the
following more general and abstract result. Let L ′ be an algebraically closed
valued field with an analytic structure in the sense of [12, Definition 4.1.6], and
let f :Mm

L ′ → L ′ be given by a power series in A0,m of the separated Weierstrass
system of the analytic structure. Suppose for each i = 1, . . . ,m that ∂ f/∂xi has
norm at most one on ML ′ . Then there is a nonzero integer M such that the Gauss
norm of M( f − f (0)) is at most one. When m = 1, this follows from the first
part of the proof of Lemma 6.3.9 of [12] (showing that c is not infinitesimal).
The statement for general m follows from induction on m, [12, Property (v),
Definition 4.1.2], and compactness.

The following corollary expresses that, for power series in our setting,
bounded C1-norm almost implies T1.

COROLLARY 3.2.12. Let fy : By ⊂Mm
L → L be a definable family of functions

for y varying in a definable set Y . Suppose that, for each y ∈ Y , By is a box, and
that fy is given by a power series with coefficients in L which converges on the
associated set By,as. Suppose further that, for each y ∈ Y , the function fy has
C1-norm at most one on Bas. Then there is a nonzero integer M such that, for
each y ∈ Y , the function M fy satisfies T1 on By,as.
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Proof. Let us first consider the situation for fixed y, so we may write f instead
of fy , and so on. Since B is a Cartesian product, to prove this case we may
furthermore assume that m = 1.

Up to a translation, we may suppose there exists a bijection i :ML → B :
x 7→ ax for some nonzero a ∈ OL , and that f (0) = 0. The function

g :

ML −→ OL,

x 7−→
f (ax)

a
,

is globally analytic and has C1-norm at most one on MLalg , by the chain rule
for differentiation. By Lemma 3.2.11, the Gauss norm of Mg is at most one for
some M > 0. Let us write

∑
ai x i for the series M f (x), and thus

∑
ai ai−1zi for

the series Mg(z). By the bound on the Gauss norm of Mg, one has

|ai ai−1
| 6 1.

For x, y ∈ Bas let us write x = av and y = aw for v,w in MLalg , and

|M f (x)− M f (y)| = |a1(x − y)+ a2a2(v2
− w2)+ a3a3(v3

− w3)+ · · · |.

Rewriting vi
− wi by (v − w)(vi−1

+ · · · + wi−1), one thus finds

|M f (x)− M f (y)| 6 max
i
|ai ai−1a(v − w)| 6 |a(v − w)| = |x − y|.

This proves the statement for fixed y. The general case follows from the case
when m = 1 and the uniformity in M given by Lemma 3.2.11.

Proof of Theorems 3.1.3, 3.1.6 and Proposition 3.1.7 for r = 1. We proceed by
induction on m, the case of m = 0 being trivial by (mixed) tameness (see
Section 2.3). The proof will combine Corollary 2.1.14 and Theorems 2.1.7, 2.2.3
and 3.2.4, and will require going to an algebraic closure Lalg of L to control the
C1-norms on Lalg.

By using the two constants 0 and 1 in kL or in L N to realize disjoint unions, it
is clear that we may proceed by working piecewise on X . Also, by induction on
the dimension of X and the dimension theory as in [15], we may replace X by a
definable subset whose complement in X has dimension less than m.

We may therefore assume that we have a definable bijection

h0 : Q0 → X,

where Q0 ⊂ Y × L N
N × Om

L and the Q0,y,a are open in Om
L for each y ∈ Y and

a ∈ L N
N , and such that the h0,y,a are C1 for each y and a. Indeed, such a bijection
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can be found by (a basic form of) Theorem 3.2.4. By Theorem 3.2.6, we may
suppose that the components of h0 are given by L∗-terms t1, . . . , tn , with notation
from Definition 3.2.5.

Let Lalg be an algebraic closure of L with norm extending the one on L . We
now explain how to switch between L and Lalg, to improve h0. This passage
to the algebraic closure will preserve the necessary information by the term
structure given by Proposition 3.2.6 for L and by [13, Theorem 3.4.3(i)] for
Lalg, and by the quantifier elimination result stated as Theorem 3.2.10.

The field Lalg has a natural L∗-structure and Lh
1-structure by [13, Lemma 3.3.6

and Theorem 3.4.1] and [12, Theorem 4.5.11]; this L∗-structure expands the
natural Lh

1-structure on Lalg. Moreover, every L∗-term corresponds in (Lalg,Lh
1)

naturally to an Lh
1-term, where the variables from Lalg

N are replaced by (new)
variables over Lalg. For example, the L∗-term (·, ·)1/m

e is interpreted by the
function (Lalg)2 → Lalg which sends (x, w, a) to the (unique) mth root y of
x with |y − w| < |ey|, whenever simultaneously |wm

− x | < |e2x |, |m| > |e|,
and to zero otherwise, which is given by an Lh

1-term.
Let us now associate to the L∗-terms t j in Lalg the corresponding Lh

1-terms
v j and consider them as Lalg-valued functions on (Lalg)S+m for some S > 0.
We will mimic the proof of Corollary 2.1.14 to make the C1-norm of the v j

small, and then go back to L . By Theorem 3.2.10, there is a finite quantifier-free
Lh

1-definable partition of (Lalg)S+m with pieces As such that, up to neglecting
lower-dimensional parts and possibly permuting coordinates, we may suppose
for each piece As that |∂v1/∂x1| is maximal among the |∂v j/∂xi | for j = 1,
. . . , n and i = 1, . . . ,m, and that it is either at most one or larger than
one on the whole of As . In the latter case, we may assume by compactness,
Propositions 2.1.10 and 2.2.5, and reinterpreting back (as above) into Lh

1 if
necessary, that the functions v1,b,x2,...,xm are injective for each (b, x) ∈ As , with
inverse (v1,b,x2,...,xm )

−1 also given by an Lh
1-term by [13, Theorem 3.4.3(i)].

Replacing the restriction of v = (v j) j to As with the function

(b, w, x2, . . . , xm) 7→ v(b, (v1,b,x2,...,xm )
−1(w), x2, . . . , xm),

and by the chain rule for differentiation (with a similar calculation as in the proof
of Corollary 2.1.14), it follows that we may suppose that the functions v j,b have
C1-norm bounded by one on each As,b. Since moreover such terms are almost
everywhere locally analytic, the v j,b may be assumed to be locally T1.

Interpreting this data back in L , we obtain an improved L-definable
function h : Q ⊂ Y × L N

N × Om
L → On

L . Using cell decomposition for h as
provided by Theorem 3.2.4, it follows from Theorems 2.1.7, respectively 2.2.3,
Corollary 3.2.12, and by induction on m applied to the graphs of the centers to
replace Q by Q(0) as in Definition 3.2.2, that one may assume that there is an
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integer N ′ > 0 (with N ′ = 1 in the equicharacteristic zero case) such that

N ′h :
{

Q ⊂ Y × L N
N ×Om

L −→ N ′X,
(y, a, x) 7−→ N ′h(y, a, x),

is as desired, but for N ′X instead of X , with N ′ coming from the use of
Theorem 2.2.3 and Corollary 3.2.12.

We are done if kL is of characteristic zero, since then N ′ = 1. Now suppose
that kL is of positive characteristic. In that case we shall make use of the fact
that, for x close enough to y in OLalg , one has, with p = pL ,

|x p
− y p
| = |(x − y)(x p−1

+ · · · + y p−1)| 6 |(x − y)p|, (3.2.11)

to gain a factor |p|. Note also that it is always possible to increase the depth of
the cell Q over Y × L N

N , at the cost of increasing N .
We first increase the depth of the cell Q over Y × L N

N by a factor which is a
power of pL , then replace the h y,a by composing with M th powers for some M
which is a power of pL , and restore the condition of having open cells around
zero (which is possible since the group of M th powers have finite index in L×).
Using (3.2.11), we observe that all conditions are met for the new h, for a large
enough choice of the powers of pL , depending only on N ′. This finishes the
proof.

LEMMA 3.2.13. Let g : B → L be a globally analytic function, where B is the
box aML for some nonzero a ∈ OL . If, for some λ ∈ Lalg,

|g| 6 |λ| on Bas,

then, for all i > 0, ∣∣∣g(i)
i !

∣∣∣ 6 |λ|
|a|i

on Bas.

Proof. First, assume that a = 1 = λ. The assumptions imply that the sup-norm
of g on Bas is at most one. Since the sup-norm of g on Bas coincides with the
Gauss norm of g, it follows that also the latter is at most one. Hence, the Gauss
norm and the sup-norm of g(i)/ i ! on Bas are also at most one. In other words,
|g(i)/ i !| 6 1 on Bas. The general case follows by applying the case a = 1 = λ
to the function h : x 7→ g(ax)/λ on ML .

By Legendre’s formula |pL |
i 6 |i !|, and thus, for any positive integer n

divisible by pL ,
|n|i

|i !|
6 1 (3.2.12)

for all integers i > 0.
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We now prove a key lemma allowing us to go from C1 to Tr .

LEMMA 3.2.14. Let a positive integer r be given. In the equicharacteristic zero
case, let N = r , and let n = 1. In the mixed characteristic case, let n be a positive
integer sufficiently divisible by pL , and let N be a positive integer divisible by nr .
Let B be the ball b · (1+ nML) for some nonzero b ∈ OL . Let g : B → OL be
a globally analytic function whose C1-norm is at most one on Bas. Let hN be the
map Lalg

→ Lalg sending x to x N . Then, for any ball B ′ ⊂ OL with hN (B ′) ⊂ B,
the function g ◦ hN satisfies Tr on B ′as.

Proof. Let us write gN for g ◦ hN with domain D consisting of x ∈ OLalg such
that hN (x) lies in Bas. By the chain rule and the product rule for differentiation,
for any x ∈ D, and for i with 0 < i , the derivative g(i)N (x) is a finite sum of terms
of the form N βxαg(β)(x N ) for 0 < α and 0 < β 6 i 6 βN and with

α = βN − i. (3.2.13)

Moreover, by Lemma 3.2.13 applied to g′, one has

|g(β)| 6
1

|nb|β−1
on Bas.

Hence, for b′ ∈ Lalg with |b′|N = |b|, and for x in D, one has |b′| = |x |, and thus
we find

|N βxαg(β)(x N )| = |N βxβN−i g(β)(x N )|

= |N βb′βN−i g(β)(x N )|

6
|N |β

|n|β−1
·
|b′|βN−i

|b|β−1

6 |N ||b′|N−i

6 |n|r |b′|N−i .

Hence, for each i > 0, ∣∣∣∣g(i)N (x)
i !

∣∣∣∣ 6 |n|r|i !| |b′|N−i , (3.2.14)

on B ′as. Thus, the Cr -norm of gN is at most one on B ′as, by (3.2.12). Now choose
B ′, and choose x, b′ ∈ B ′as. Develop g around b′ into a series g(z+b′) =

∑
i ai zi .

Then |ai | 6 |b′|N−i
|nr
|/|i !| by (3.2.14), which implies that g is Tr on B ′as as

follows. First note that |nb′| > |x − b′|. Using this and the bounds on the |ai |,
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we have

|gN (x)− T<r
b′,gN

(x)| =
∣∣∣∣∑

i>r

ai(x − b′)i
∣∣∣∣

6 max
i>r

(|b′|N−i(|nr
|/|i !|) · |x − b′|i)

6 max
i>r

(|b′|N−i(|nr
|/|i !|) · |x − b′|i−r

· |x − b′|r )

6
|n|i

|i !|
|x − b′|r

6 |x − b′|r ,

where the last inequality follows from (3.2.12). This proves the lemma.

The following is a multi-variable variant of Lemma 3.2.14.

PROPOSITION 3.2.15. Let positive integers r and m be given. In the
equicharacteristic zero case, set n = 1 and N = r . In the mixed characteristic
case, let n be sufficiently divisible by pL and N be sufficiently divisible by n. Let
B be the box

∏m
i=1 bi ·(1+nML) for some nonzero bi ∈ OL . Let g : B→ OL be

a globally analytic function. Let hN be the map (Lalg)m → (Lalg)m sending (xi)i
to (x N

1 , . . . , x N
m ). Suppose that the C1-norm of g is at most one on Bas. Then, for

any box B ′ ⊂ Om
L such that hN (B ′) ⊂ B, the function g ◦ hN satisfies Tr on B ′as.

Proof. The proof is as for Lemma 3.2.14.

Proof of Theorems 3.1.3, 3.1.6 and Proposition 3.1.7 for r > 1. We may take
g : P → X with all properties of Theorems 3.1.3, 3.1.6 and Proposition 3.1.7
with r = 1, since this case has already been proved. We work with fixed
y ∈ Y and a ∈ L N

N and omit y and a from the subscripts, explaining uniformity
properties in y and a along the way.

Take n and N corresponding to Proposition 3.2.15 and our r and m. We
may increase the depth of the cell P to the depth (ni)

m
i=1 with ni = n. By

Proposition 3.2.15, applied to the restrictions of g to any box B in its domain,
we find for any c ∈ Om

L that the function g?N ,c is globally analytic and satisfies
Tr on B ′as for any box B ′ included in B?N ,c.

Similarly as at the end of the proof of the case when r = 1, after rewriting
the function g?N ,c, we get a definable function g : P ⊂ Y × L N

N
as in the case

when r = 1 of Theorems 3.1.3, 3.1.6 and Proposition 3.1.7. Moreover, for each
y ∈ Y and a ∈ L N

N
, the map gy,a satisfies Tr on B ′as for each box B ′ in its domain.

We claim that g is as desired in Proposition 3.1.7 and Theorems 3.1.6 and 3.1.3.
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There is only left to check that g satisfies Tr globally. We still omit y and a from
the notation. To show Tr for g, we will use T1 for the above g. Choose v and
w in the domain P of g. Let I be the set of those indices i such that vi and wi

have the same order, and let I c be its complement in {1, . . . ,m}. Let z be the
intermediary tuple (zi)i such that zi = vi when i ∈ I and zi = wi when i ∈ I c.
Then w and z lie in the same box contained in P , and, by T1 for the above g, we
have

|g(v)− T<r
w,g(v)| 6 max(|g(v)− g(z)|, |g(z)− T<r

w,g(z)|, |T
<r
w,g(z)− T<r

w,g(v)|)

6 max(|g(v)− g(z)|, |z − w|r , |T<r
w,g(z)− T<r

w,g(v)|)

6 max(|vr
− zr
|, |z − w|r )

6 |v − w|r .

The first of these inequalities follows from the ultrametric triangle property, the
second from the fact that g satisfies Tr on each box in its domain, and the third
from the construction of g via g?N ,c, property T1 for g, and the fact that N > r .
The fourth and final inequality follows from the fact that |vr

− zr
| = |v − z|r by

construction of the point z. Indeed, |v − z| = maxi∈I c |vi − zi | = maxi∈I c(|vi |,

|zi |), and similarly |vr
− zr
| = maxi∈I c(|vi |

r , |zi |
r ). This finishes the proof of

Proposition 3.1.7, Theorem 3.1.6, and thus also of Theorem 3.1.3.

REMARK 3.2.16. In the case where m = 1 in Theorems 3.1.3, 3.1.6, and by
observing their proof, one can further ensure in Theorems 3.1.3, 3.1.6 that the
coordinate projection

Y × L N
N ×OL → Y ×OL

is finite to one on P = {(y, i, x) | x ∈ Py,i}.

REMARK 3.2.17. Let us comment on how the reparametrization results can be
generalized to other fields than the fields L of this section, and to other languages
than L = LL

an or L = LL
DP. The language L can be interpreted naturally in many

more fields than just in L , as explained below Definition 3.2.8, with still a well-
understood geometry of the definable sets by [13, Section 3.4]. Similarly, instead
of L = LL

an or L = LL
DP, for L we can take any analytic language formed by

adding function symbols for the elements of a separated Weierstrass system as
in [12] to LDP, further enriched with some constant symbols, and interpret it as
an analytic structure on a henselian valued field L ′ of characteristic zero, as in
[12]. Suppose that (L ′,L) is such a more general structure. If, furthermore, for
sufficiently many N > 0, OL ′ is a finite union of sets of the form λPN (OL ′) for
λ ∈ L ′, where PN (OL ′) is the set of N th powers in OL ′ , and if L has constant
symbols for these λ, then we strongly expect Theorems 3.1.3 and 3.1.6 and
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Proposition 3.1.7 to go through on (L ′,L) with similar proofs, where the results
of [12] can be used instead of the quoted results from [14].

3.3. A determinant estimate. Once we have the parametrizations of
definable sets provided by Theorem 3.1.3, we may derive a result analogous to
[31, Lemma 3.1] and [26, Lemma 2.1] similarly as Pila does in [31]. We now
introduce the following notation, that will be used again in subsequent sections:

Λm(k) = {α ∈ Nm
; |α| = k}, ∆m(k) = {α ∈ Nm

; |α| 6 k},

and Lm(k) = #Λm(k), Dm(k) = #∆m(k). Thus, Lm(k) =
(k+m−1

m−1

)
and Dm(k) =(k+m

m

)
.

LEMMA 3.3.1. Fix µ ∈ N. Let U be an open subset of Lm contained in a box
which is the Cartesian product of m closed ball of equal radius % 6 1. Let x1,

. . . , xµ be points in U, and ψ1, . . . , ψµ be Cr -functions U → L. Assume the
following.

(1) The integer r satisfies

Dm(r − 1) 6 µ < Dm(r).

(2) The functions ψi satisfy Tr on U.

Set
∆ = det(ψi(x j)).

Then
|∆| 6 %e

with

e =
r−1∑
k=0

kLm(k)+ r(µ− Dm(r − 1)).

Proof. By hypothesis (2), one may write

ψi(x j) = T 6r−1
x1,ψi

(x j)+ Ri, j

with
Ri, j 6 %r .

Expanding T 6r−1
x1,ψi

(x j) into the sum of Dm(r − 1) monomial terms of type

1
α!

∂αψi

∂xα
(x1)(x j − x1)

α,
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one gets an expansion of ψi(x j) into the sum of Dm(r−1)+1 terms, the last one
being Ri, j . The columns of the matrix (ψi(x j)) being indexed by j , we can write
each column in ∆, except for the first one, which is (ψi(x1))i∈{1,...,µ}, as a sum
of Dm(r − 1) + 1 columns, and then expanding the determinant one may write
∆ as the sum of (Dm(r − 1) + 1)µ−1 determinants ∆`. For each determinant
∆`, we factor out from its columns the factors (x j − x1)

α. This lets us write
∆` as a product of factors (x j − x1)

α and of a determinant δ` with columns
((1/α!)(∂αψi/∂xα)(x1))i∈{1,...,µ}, called of order |α|, and columns (Ri, j)i∈{1,...,µ}.
Note that, if δ` 6= 0, then δ` cannot have two identical columns, and thus cannot
have more than Lm(k) columns of order k, k 6 r − 1. Now |∆`| is maximized
when the number of columns of type ((1/α!)(∂αψi/∂xα)(x1))i∈{1,...,µ} in δ` is
maximal, that is, for Lm(k) columns of order k, k ∈ {1, . . . , r − 1}. Note,
by hypothesis (1), that the number of these columns is then

∑r−1
k=0 Lm(k) =

Dm(r − 1) 6 µ. In this case, the degree for the monomial factored out from
∆` is

∑r−1
k=1 kLm(k), and thus of norm 6%

∑r−1
k=1 kLm (k), and the number of the

remaining columns in δ`, which are of type (Ri, j)i∈{1,...,µ}, is minimal and equals
µ − Dm(r − 1). By hypothesis (2) and the ultrametric property of the norm, it
follows that |δ`| 6 ρr(µ−Dm (r−1)). Thus, for such a ∆`, |∆`| 6 %e. Finally, again
by the ultrametric property of the norm, the statement follows.

4. A p-adic analog of the Pila–Wilkie Theorem

4.1. Preliminaries. We give in this section a p-adic version of Pila–Wilkie’s
theorem [35, Theorem 1.10] in the form stated by Pila [33, Theorem 3.5]; that
is, the so-called block version. Though the arguments involved in the proofs
of both versions are the same, the block version has shown to be more useful
in applications (a reason for the effectiveness of the block version is that the
image of a block under a semialgebraic map has a controlled number of zero-
dimensional blocks). For instance it allows one to bound the number of points of
given algebraic degree over Q and bounded height. In the p-adic context, such
a byproduct of the p-adic block version of Theorem 3.5 in [33] is still possible,
and it is given at the end of the section in Theorem 4.2.3.

We shall work in this section with the languageL= LQp
an . Thus the L-definable

subsets of Qn
p are exactly the subanalytic sets. We say that an L-definable subset

X of Qn
p is of dimension k at a point x if, for every small open ball B containing

x , B ∩ X is of dimension k. We say that X is of pure dimension k if it is of
dimension k at each of its points.

Let X be an L-definable subset of Qn
p. One defines X alg as the union of all

semialgebraic subsets of X of pure (strictly) positive dimension. Note that this
description of X alg coincides with the one given in introduction, since, by the
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curve selection lemma, a point x of a given semialgebraic set X of positive
dimension at x is always contained in an algebraic curve C such that C(Qp)∩ X
is of positive dimension at x . We denote by X (Z, T ) the set of points (x1, . . . ,

xn) ∈ X ∩ Z with |xi |R 6 T , for i ∈ {1, . . . , n}.
Let Z be an L-definable subset of Qn

p × Qm
p , and denote by Y the projection

of Z on Qm
p . For y in Y , we denote by Z y the fiber of Z → Y at y. We view Z as

a family of definable subsets Z y of Qn
p parametrized by Y . We call Z a definable

family of definable subsets of Qn
p.

We begin this section by a simple but useful remark relating the norm | |R and
the p-adic norm | |.

REMARK 4.1.1. Let x ∈ Z \ {0} and T > 1 be such that |x |R 6 T . Choosing
r ∈ N such that T 6 pr , since |x |R 6 pr , one obtains |x | > p−r > T−1.

LEMMA 4.1.2. Fix positive integers m < n. Then for every integer d > 1 there
exist an integer r = r(m, n, d) and positive constants ε(m, n, d) and C(m, n,
d) such that the following holds. For every real number T > 1, for every open
subset U of Zm

p , and for every locally analytic mapping ψ = (ψ1, . . . , ψn) :

U → Qn
p such that the functions ψ` satisfy condition Tr , the subset ψ(U )(Z, T )

is contained in the union of at most

C(m, n, d) T ε(m,n,d)

hypersurfaces of degree 6 d. Furthermore, ε(m, n, d)→ 0 as d →∞.

Proof. With the notation of Section 3.3, set µ = Dn(d), and fix r such that
Dm(r − 1) 6 µ < Dm(r). Note that r is unique, so we can denote it by r(m, n,
d). Let ψ = (ψ1, . . . , ψn) : U → Zn

p, with U an open subset of Zm
p , such that

the functions ψi satisfy the condition Tr . Let Σ ⊂ Zm
p be a ball of radius % < 1.

Considerµ points (possibly with repetition) P1, . . . , Pµ inΣ∩U∩ψ−1(ψ(U )(Z,
T )) and the µ monomials ψα

:= ψ
α1
1 · · ·ψ

αn
n , α ∈ ∆n(d). By Lemma 3.2.7, the

mappings ψα, for α ∈ ∆n(d), satisfy Tr as well as the mappings ψ`, ` ∈ {1, . . . ,
n}. By Lemma 3.3.1, it follows that

|det(ψα(Pj))| 6 %e (4.1.15)

with

e = e(m, n, d) =
r−1∑
k=0

kLm(k)+ r(µ− Dm(r − 1)).

On the other hand, since |ψ`(Pj)|R 6 T , for all j ∈ {1, . . . , µ} and all ` ∈
{1, . . . , n}, after expanding the determinant det(ψα(Pj)) one gets a sum of µ!
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integers, each of them having a real norm 6 T V , with V =
∑d

k=0 kLn(k). It
follows that the integer det(ψα(Pj)) has a real norm 6 µ!T V , and finally, by
Remark 4.1.1, one has, under the condition det(ψα(Pj)) 6= 0,

|det(ψα(Pj))| > µ!−1T−V . (4.1.16)

By putting together (4.1.15) and (4.1.16), it follows that, if

% < µ!−1/eT−V/e, (4.1.17)

then det(ψα(Pj)) = 0.
Now the end of the proof is quite similar to that of [2, Lemma 1]. For % > 0

as in (4.1.17), note that the matrix

A(P1, . . . , Pµ) = (ψα(Pj))

has rank 6 µ − 1, with α running over ∆n(d), and for any P1, . . . , Pµ ∈ Σ ∩
U ∩ ψ−1(ψ(U )(Z, T )). Say that, for instance, in this matrix the columns are
indexed by j . Let a be the maximal rank of A(P1, . . . , Pµ) over all P1, . . . ,

Pµ ∈ Σ ∩ U ∩ ψ−1(ψ(U )(Z, T )), and let M = (ψα(Pj))α∈I, j∈{1,...,a} be of rank
a, for some fixed P1, . . . , Pa ∈ Σ ∩U ∩ψ−1(ψ(U )(Z, T )) and some I ⊂ ∆n(d)
of cardinality a. Since a < µ, we can choose β ∈ ∆n(d) \ I .

Let us denote by f (x) the determinant of the matrix (M ′xγ )γ∈I∪{β}, where x =
(x1, . . . , xn) and M ′ is M augmented by the line ψβ(Pj) j∈{1,...,a}. The polynomial
f is not zero, since the coefficient of xβ in f is the nonzero minor det(M), and
the degree of f is at most d . Furthermore, for any u ∈Σ∩U∩ψ−1(ψ(U )(Z, T ))
we have f (ψ(u)) = 0, by definition of the maximal rank a.

Since there exists a constant C ′ depending only on m, n, d (and p), such that
Zm

p is covered with 6 C ′ T mV/e balls of radius % such that (4.1.17) holds, we get
the required result, since, by a straightforward computation done in [31, page
212] (the constant B of [31] being our constant e), for fixed m < n, mV/e→ 0
as d →∞.

PROPOSITION 4.1.3. Let Z an L-definable family of L-definable subsets of Zn
p

parametrized by Y ⊂ Q`
p. Assume that all fibers have dimension < n. Let ε > 0.

There exist an integer d = d(ε,m, n) and a positive real number C(Z , ε) such
that, for every y in Y and every T > 1, the set Z y(Z, T ) is contained in the union
of at most C(Z , ε) T ε algebraic hypersurfaces of degree at most d.

Proof. The argument is quite similar to the one in [35, Proposition 6.2]. We
assume that all fibers of Z have dimension m < n. Take d = d(ε,m, n) large
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enough in order to have ε(m, n, d) < ε, and take r = r(m, n, d), where ε(m, n,
d) and r(m, n, d) are given in Lemma 4.1.2. By Theorem 3.1.3, there exist an
integer K and a definable family (gy,i)y∈Y,i∈{1,...,K } of locally analytic functions

gy,i : Py,i → Z y

satisfying Tr and such that

K⋃
i=1

gy,i(Py,i) = Z y.

By Lemma 4.1.2, since dim(Z y) < n, for every i ∈ {1, . . . , K }, the set
gy,i(Py,i)(Z, T ) is contained in C(m, n, d)T ε algebraic hypersurfaces of
degree at most d , with C(m, n, d) as in Lemma 4.1.2. We set C(Z , ε) =
K C(m, n, d).

4.2. Blocks and the main result. We now come to the main result of this
section, the p-adic version of Theorem 3.5 in [33]. We first define our notion of
a block, essentially in the same way as in [33], up to connectedness.

DEFINITION 4.2.1. A block A ⊂ Qn
p is either a singleton or a smooth definable

set of pure dimension d > 0 which is contained in a smooth semialgebraic set of
pure dimension d .

In particular, for a block W of positive dimension, one has W alg
= W . Note

that the interior int(X) of a definable set X of dimension n in Qn
p is a block, since

int(X) is the intersection of itself with the semialgebraic set On
K . On the other

hand, the regular part of a definable set is not always a block. A family of blocks
W ⊂ Qn

p × Y is a definable set whose fibers Wy , for y ∈ Y , are blocks in Qn
p.

In Proposition 4.2.2, we consider integer points of bounded height. We deduce
from it Theorem 4.2.3, which is about rational points, and we finally prove the
rational version of Proposition 4.2.2 in Theorem 4.2.4.

PROPOSITION 4.2.2. Let Z ⊂ Qn+`
p be an L-definable family of L-definable

subsets of Qn
p parametrized by a definable set Y ⊂ Q`

p. Let ε > 0 be given.
There exist s = s(ε, n) ∈ N, a constant C(Z , ε), and a family of blocks
(Wy,σ )(y,σ )∈Q`p×Qs

p
⊂ Qn`

p ×Qs
p such that, for any y ∈ Y , for any T > 1,

Z y(Z, T ) ⊂
⋃
σ∈S

Wy,σ ,
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Non-Archimedean parametrizations and points of bounded height 45

for S = S(Z , ε, T ) ⊂ Qs
p of cardinal less than C(Z , ε)T ε. In particular, for all

y ∈ Y , denoting by W ε
y the union over σ in Qs

p of the sets Wy,σ with dim(Wy,σ ) >

0, one has W ε
y ⊂ (Z y)

alg, and

#(Z y \W ε
y )(Z, T ) 6 C(Z , ε)T ε for all T > 1.

Proof. We follow the strategy of Pila’s proof of Theorem 3.5 in [33]. Since we
want to bound the density of integer points of Z , one can assume that Z ⊂ Zn

p×Y .
Since our result is true for the union of two families when it is true for each
family, one can assume that the dimension k of the fibers Z y of Z is constant,
and that these fibers are of pure dimension. We proceed by induction on k.

For k = 0, the family Z has a finite number of points for fibers, and this
number is bounded with respect to the parameter y, by a constant depending
only on the set Z . It follows that Z itself is a finite union of families of blocks.

Assume now that our statement is true for definable families of fiber dimension
6 k − 1, and consider Z , a definable family in Zn+`

p of fiber dimension k > 1.
We first remark that one can easily assume that the fibers Z y are not of

maximal dimension in Zn
p. For this let us denote by Z 0

y the regular part of a
fiber Z y , that is, the set of points of Z y at which Z y is smooth. Now, if k = n, the
definable subset Z ′ = {(x, y) ∈ Z; x ∈ Z 0

y} of Zn+`
p is a family of blocks, since

a fiber is given by the intersection of the semialgebraic set Qn
p with the definable

set Z 0
y . Finally, since the definable set Z \ Z ′ has fiber dimension 6 n−1, we can

apply to this set the induction hypothesis, and obtain our statement in this case.
From now on we assume that k < n, and we fix ε > 0. By Proposition 4.1.3,

for any y ∈ Y and for any choice of k + 1 coordinates in Qn
p, the projection

π(Z y) onto the corresponding Qk+1
p subspace of Qn

p is such that π(Z y)(Z, T ) is
contained in the union of at most C(Z , ε)T ε/M hypersurfaces of degree at most
d = d(ε, k, n), with M = n!/(k + 1)!(n − k − 1)!, and with some constant
C(Z , ε) depending only on Z and ε. Let us denote by Σ ⊂ Qn+`+s

p , s = s(ε, n),
the family of algebraic sets of Qn

p defined by intersecting the cylinders in Qn
p

over algebraic hypersurfaces of degree at most d in Qk+1
p ⊂ Qn

p, for every choice
of k + 1 coordinates in Qn

p. The dimension of a given fiber of Σ depends on the
transversality of the M cylinders over hypersurfaces in Qk+1

p that give this fiber
by intersecting each other, but this dimension is at most k, by transversality of
the supplementary coordinates in Qn

p for each choice of k + 1 coordinates. We
now consider the family Z ×Qs

p in Qn+`+s
p , which, for the sake of simplicity, we

shall still denote by Z . The set Z y(Z, T ) is contained in the intersection of the
cylinders over the hypersurfaces of Qk+1

p containing the points of π(Z)(Z, T );
that is, Z y(Z, T ) is contained in at most C ′(Z , ε)T ε fibers of Σy for some
constant C ′(Z , ε).
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Now, as in the proof of Theorem 3.5 in [33], we stratify Z∩Σ in the following
way. Let us consider the definable family

Z1 = {(x, y, σ ) ∈ Z ∩Σ ⊂ Qn+`+s
p ; x 6∈ regk((Z ∩Σ)y,σ )},

where regk((Z ∩ Σ)y,σ ) is the regular subset of (Z ∩ Σ)y,σ of dimension k,
that is to say the set of points of (Z ∩ Σ)y,σ in the neighborhood of which
(Z ∩ Σ)y,σ is smooth and of dimension k. Then Z1 is a definable family with
fiber dimension < k, and we can apply the induction hypothesis: there exists a
family of blocks W 1

⊂ Qn+`+s1
p such that, for all y ∈ Y , Z 1

y(Z, T ) ⊂
⋃

σ∈S1
W 1

y,σ ,
with s1 = s1(Z1, ε) and S1 ⊂ Qs1

p of cardinal less than C(Z1, ε)T ε.
The same kind of data s2, S2 ⊂Qs2

p , W 2, C(Z2, ε) and s3, S3 ⊂Qs3
p , W 3, C(Z3,

ε) are in the same way provided by the induction hypothesis for the families

Z2 = {(x, y, σ ) ∈ Z ∩Σ ⊂ Qn+`+s
p ; x 6∈ regk((Σ)y,σ )},

Z3 = {(x, y, σ ) ∈ Z ∩Σ ⊂ Qn+`+s
p ; x 6∈ regk((Z)y,σ )},

since these two families have fiber dimension < k as well as the family Z1.
Now observe that, for (x, y, σ ) a point of Z∩Σ not in the family Z1∪Z2∪Z3,

a sufficiently small semialgebraic neighborhood Σy,σ ∩ B(x, η) of x coincides
with Z y,σ ∩ B(x, η). The family (Z ∩Σ) \ (Z1 ∪ Z2 ∪ Z3) is therefore a family
of blocks with fibers of dimension k > 0, such that, for y ∈ Y , a union of not
more than C ′(Z , ε)T ε of them contains the whole set Z y(Z, T ) \ (Z1∪ Z2∪ Z3).

Denoting C ′′(Z , ε) = C(Z1, ε) + C(Z2, ε) + C(Z3, ε), and considering
that the parameter spaces Qs

p, Qsi
p , i = 1, . . . , 3, are all contained in a single

parameter space, also denoted Qs
p for simplicity, one obtains that, for any y ∈ Y ,

the set Z y(Z, T ) is contained in at most C ′(Z , ε)T ε fibers ofΣy over Qs
p, each of

them being decomposed in at most 1 + C ′′(Z , ε)T ε family of blocks, providing
the existence of the desired W and S . To conclude for the final statement of
the proposition, observe again that W ε

y ⊂ (Z y)
alg follows from the definition of

(Z y)
alg, and that blocks of dimension zero are singletons by definition, which

implies the final bound of the proposition.

Before applying Proposition 4.2.2 to algebraic points in Qn
p of bounded

algebraic degree over Q and bounded height, let us recall the notion of
polynomial height defined in the introduction that will encode both classical
height and algebraic degree over Q.

For a = r/s ∈ Q, with r and s relatively prime integers, let

h(a) := max{|r |R, |s|R},

and, for a = (a0, . . . , ak) ∈ Qk+1, we set

H0(a) := max{h(a0), . . . , h(ak)}.
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Non-Archimedean parametrizations and points of bounded height 47

Now, for k ∈ N \ {0} and for x ∈ Qp, we denote by H poly
k (x) the following

element of N ∪ {+∞}:

H poly
k (x) := inf

{
H0(a); a = (a0, . . . , ak) ∈ Qk+1

\ {0},
k∑

j=0

a j x j
= 0

}
,

H poly
k,Z (x) := inf

{
H0(a); a = (a0, . . . , ak) ∈ Zk+1

\ {0},
k∑

j=0

a j x j
= 0

}
,

and, for x = (x1, . . . , xn) ∈ Qn
p, we finally set

H poly
k (x) := max{H poly

k (xi), i = 1, . . . , n},

H poly
k,Z (x) := max{H poly

k,Z (xi), i = 1, . . . , n}.

For Z a definable subset of Qn
p, k ∈ N \ {0}, and T > 1 a real number, we

denote by Z(k, T ) the set of points x ∈ Z such that H poly
k (x) 6 T , and by ZZ(k,

T ) the set of points x ∈ Z such that H poly
k,Z (x) 6 T .

THEOREM 4.2.3. Let n, `, k be nonnegative integers. Let Z ⊂ Qn+`
p be an L-

definable family of L-definable subsets of Qn
p parametrized by a definable set

Y ⊂ Q`
p. Let ε > 0. There exist s = s(ε, n), a constant C(Z , ε, k), and a family

of blocks V ⊂ Qn+`
p ×Qs

p such that, for any y ∈ Y , for any T > 1,

Z y(k, T ) ⊂
⋃
σ∈S

Vy,σ ,

for S = S(Z , ε, k, T ) ⊂ Qs
p of cardinal less than C(Z , ε, k)T ε. In particular,

for any y ∈ Y , denoting by V ε
y the union over σ ∈ Qs

p of the Vy,σ of dimension
>0, one has V ε

y ⊂ (Z y)
alg and

#(Z y \ V ε
y )(k, T ) 6 C(Z , ε, k)T ε.

Proof. To prove this statement for all k it is obviously enough to prove the
similar statement for all k where rational points are replaced by integer points,
that is to say it is enough to work with Z y,Z(k, T ) instead of Z y(k, T ). For this
goal, let us now consider

An,k =

{
(ξ, x, y) ∈ (Qk+1

p \ {0})
n
×Qn+`

p ;

k∑
j=0

ξi, j x
j

i = 0, i = 1, . . . , n
}
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R. Cluckers et al. 48

and
Zn,k = {(ξ, x, y) ∈ An,k; (x, y) ∈ Z}.

Consider the projection π1 : An,k → (Qk+1
p )n × Q`

p defined by π1(ξ, x, y)
= (ξ, y). Let us write U for π1(An,k), and let us denote by π2 : An,k → Qn

p × Y
the projection defined by π2(ξ, x, y) = (x, y).

By definable choice, and since π1 has fibers of size at most kn , there exist kn

semialgebraic maps Ψi : U → An,k which are sections of π1 and such that the
union of the graphs of the Ψi equals An,k . Hence,

Z ⊂
kn⋃

i=1

π2(Ψi(π1(Zn,k))),

and thus, by construction, one has for any y ∈ Y that

Z y,Z(k, T ) ⊂
kn⋃

i=1

(π2(Ψi([π1(Zn,k)]y(Z, T ), y)))y. (4.2.18)

Now, given ε > 0 and applying Proposition 4.2.2 to the definable family
π1(Zn,k)with parameter y ∈ Y , we obtain a family of blocks W ⊂ π1(Zn,k)×Qs

p,
such that, for any T > 1 and any y ∈ Y , [π1(Zn,k)]y(Z, T ) ⊂

⋃
σ∈S0

Wy,σ , for
S0 = S0(Z , ε, k, T ) ⊂ Qs

p of cardinal less than CT ε for some C .
Since the maps π2 and Ψi are semialgebraic, by the definition of blocks, and

by dimension theory for L-definable sets, there exist integers M = M(Z , ε,
k) and s ′, and a family of blocks V ⊂ Z × Qs′

p such that any set of the form
(π2(Ψi(Wσ )))y for any σ ∈ Qs

p and any y ∈ Y , can be written as the union of
no more than M blocks of the form Vy,σ ′ for σ ′ ∈ Qs′

p . Combining with (4.2.18)
and with the information we have about S0, the existence of S with the desired
properties follows for this V and for any T > 1, with C(Z , ε, k) = MknC . One
concludes as for the proof of Proposition 4.2.2.

Finally, note that Theorem 4.2.3 implies in particular the following
rational version of Proposition 4.2.2, which differs only in its last line from
Proposition 4.2.2.

THEOREM 4.2.4. Let Z ⊂ Qn+`
p be an L-definable family of L-definable subsets

of Qn
p parametrized by a definable set Y ⊂ Q`

p. Let ε > 0. There exist s = s(ε,
n) ∈ N, a constant C(Z , ε), and a family of blocks W ⊂ Qn+`

p × Qs
p such that,

for any y ∈ Y , for any T > 1,

Z y(Q, T ) ⊂
⋃
σ∈S

Wy,σ ,
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for S = S(Z , ε, T ) ⊂ Qs
p of cardinal less than C(Z , ε)T ε. In particular, for all

y ∈ Y , denoting W ε
y the union over σ ∈ Qs

p of the Wy,σ of dimension > 0, one
has W ε

y ⊂ (Z y)
alg and

#(Z y \W ε
y )(Q, T ) 6 C(Z , ε)T ε.

REMARK 4.2.5. Note that the question of extending to the p-adic context the
methods of Bombieri and Pila and Pila and Wilkie is briefly alluded to at the end
of Appendix A in [44].

5. A geometric analog of results of Bombieri and Pila [2] and Pila [30]

5.1. Main results of the section. In this section, we shall work over the field
K = C((t)). Note however that all our results remain valid with identical proofs
when C is replaced by any algebraically closed field of characteristic zero.

For each positive integer r , we denote by C[t]<r the set of complex
polynomials of degree < r . Let A be a subset of C((t))n . We denote by Ar

the set A ∩ (C[t]<r )
n , and by nr (A) the dimension of the Zariski closure of Ar

in (C[t]<r )
n
' Cnr . Similarly, when X is an algebraic subvariety of An

C((t)), we
shall write Xr for (X (C((t))))r and nr (X) for nr (X (C((t)))).

We have the following basic estimate, which is the best possible when X is
linear.

LEMMA 5.1.1. Let X be an algebraic subvariety of An
C((t)) of dimension m. Then,

for any r > 0,
nr (X) 6 rm.

Proof. Up to a C-linear coordinate change, there is a coordinate projection

p : An
C((t))→ Am

C((t))

whose restriction to X has finite fibers. The projection p induces a map pr :

(C[t]<r )
n
→ (C[t]<r )

m . Since Xr is a constructible subset of (C[t]<r )
n
' Cnr ,

and pr has finite fibers on Xr , the estimate follows.

COROLLARY 5.1.2. If m < n, (An
C((t)) \ X)1 is nonempty.

The following result shows the basic bound can be improved, as soon as X
is not a linear subspace. By the degree of an irreducible affine variety X over
a field k we mean the number of intersection points when intersecting X ⊗ k̄
with a generic affine space over k̄ of dimension equal to the codimension of X ,
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R. Cluckers et al. 50

for some algebraic closure k̄ of k. The improved bound then reads as the trivial
bound for (m − 1)-dimensional varieties plus r/d , rounded up.

THEOREM 5.1.3. Let X be an irreducible subvariety of An
C((t)) of dimension m

and degree d. Then, for every positive integer r , one has

nr (X) 6 r(m − 1)+
⌈ r

d

⌉
.

REMARK 5.1.4. As already mentioned, Theorem 5.1.3 remains valid with
an identical proof when one replaces C by any algebraically closed field of
characteristic zero.

REMARK 5.1.5. For the plane curve X given by y = xd , for every positive
integer r , one has the equality

nr (X) =
⌈ r

d

⌉
.

Thus, taking the product of X with an affine space of dimension m − 1, one sees
that the upper bound given in Theorem 5.1.3 is optimal for any value of m, d .
and r .

5.2. Reduction to plane curves. By simple projection and section arguments
à la Lang-Weil, one reduces, completely analogously to the case in [30], to the
case of plane curves (n = 2 and m = 1). For the sake of completeness, let us
provide some more details.

Reduction to the case n = 2 and m = 1 of Theorem 5.1.3. Assume first that
m = 1 and n > 2. Linear projections π : An

→ A2 are written in coordinates
as x =

∑n
i=1 ai xi , y =

∑n
i=1 bi xi . For the ai and bi in a dense open subset O of

A2n , π is surjective, and X and π(X) have the same degree. By Corollary 5.1.2,
O(C) := O(K )1 is nonempty. Thus take π corresponding to some point in
O(C). The number of points in the fibers of π : X → Γ = π(X) is finite, and
π(Xr ) is contained in Γr ; thus the statement for X follows from the one for
Γ . Now assume that m > 1. By a similar argument, after projecting, one may
assume that n = m + 1. In the linear space of hyperplanes H with equations∑n

i=1 αi xi = b, H ∩ X is irreducible of degree d outside a closed subset E of
positive codimension. Thus, by Corollary 5.1.2, for some αi , 1 6 i 6 n and b0,
all in C, the corresponding H is not in E . Consider the pencil Hb of hyperplanes∑n

i=1 αi xi = b, b ∈ C((t)). Since Hb0 is not in E , the pencil intersects E in at
most e points b j such that Hb j lies in E . If Hb j = X for some b j we are done, so
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we may assume that, for such a b j , X ∩ Hb j is of dimension 6 m − 1, and thus
nr (X ∩ Hb j ) 6 (m− 1)r by the trivial estimate. For the other instances of b, one
may apply the induction hypothesis, which gives nr (X∩Hb) 6 r(m−2)+dr/de.
Since the linear form

∑n
i=1 αi xi induces a constructible mapping Xr → C[t]<r ,

the statement follows by additivity of dimensions.

5.3. Hilbert functions. Let K be a field. For s ∈ N, we denote by K [x0, . . . ,

xn]s the vector space of homogeneous polynomials of degree s. Thus K [x0, . . . ,

xn]s is of dimension Ln(s) over K . Let I be a homogeneous ideal of K [x0, . . . ,

xn], and set Is = I ∩ K [x0, . . . , xn]s . We set HI (s) = dim K [x0, . . . , xn]s/Is . It
is the Hilbert function of I .

Let< be a monomial ordering on K [x0, . . . , xn] in the sense of [17, Definition
1, Ch. 1.2]. Denote by LT(I ) the ideal generated by the leading terms for
the ordering < of elements of I , where the leading term of a homogeneous
polynomial f =

∑
i ai x i is the term among the nonzero ai x i which is maximal

for the ordering. By [17, Proposition 9, Ch. 9.3], I and LT(I ) have the same
Hilbert function.

For each 0 6 i 6 n, set

σI,i(s) =
∑

α∈Λn+1(s);xα /∈LT(I )

αi .

Thus, s HI (s) =
∑

i σI,i(s).
Let X be an irreducible subvariety of dimension m and degree d of Pn

K defined
by a homogeneous ideal I . Then, for s large enough, HI (s) is equal to PX (s),
with PX the Hilbert polynomial of X . It is a polynomial of degree m, leading
coefficient d/m!, and coefficients bounded in terms of n and the degrees of
generators of I . As explained in [3] and [26], it follows there exist nonnegative
real numbers aI,i , i = 0, . . . , n, such that

σI,i(s)
s HI (s)

= aI,i + On,d(1/s)

as s →∞. Note that
aI,0 + · · · + aI,n = 1.

We shall need the following lemma of Salberger for n = 2 and m = 1.

LEMMA 5.3.1 [37, Lemma 1.12]. Let X be a closed equidimensional subscheme
of dimension m of Pn

K . Assume that X intersects properly the hyperplane x0 = 0;
that is, no irreducible component of X is contained in x0 = 0. Let < be the
monomial ordering defined as follows: α < β if |α| < |β| or if |α| = |β| and, for
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some i , αi > βi and α j = β j , for j < i . (That is, after reindexing the coordinates,
< is the reverse graded lexicographic order.) Then

aI,1 + · · · + aI,n 6
m

m + 1
.

5.4. Proof of Theorem 5.1.3 when n = 2 and m = 1. Let K = C((t)), and
let X be an irreducible curve in A2

K of degree d . Consider the map

ι :

{
K 2
→ K 3,

(x, y) 7→ (1, x, y),

and the corresponding embedding

ι :

{
A2

K ↪−→ P2
K ,

(x, y) 7→ [1 : x : y],

and let I denote the homogeneous ideal of the closure of ι(X) in P2
K . Let us form

the leading term ideal LT(I ) of I for the monomial ordering < of Lemma 5.3.1
for n = 2. Let r > 0 be given. Fix a positive integer δ. Set

M(δ) = { j ∈ N3
; | j | = δ, x j /∈ LT(I )}.

Set µ = #M(δ) = HI (δ), σi = σI,i(δ) for i = 0, 1, 2, and e = (µ − 1)µ/2.
Let us write X ′ = X (K )∩O2

K . By Theorem 3.1.3, there exists a surjective LK
DP-

definable function
g : Y ⊂ Cs

×OK → X ′

for some integer s > 0 such that, for each ξ ∈ Cs , gξ satisfies Tµ on Yξ . Fix an
integer α > 0, and let Bα be a closed ball of valuative radius α in OK . Fix ξ ∈ Cs ,
and, for any choice of points yi for 1 6 i 6 µ in (gξ (Bα ∩ Yξ ))r , consider the
determinant

∆ = det(ι(yi)
j) j∈M(δ),16i6µ.

By Lemma 3.3.1 for m = 1 and n = 2, and Lemma 3.2.7, we get that

ordt(∆) > α · e. (5.4.19)

On the other hand, recall that x ∈ C[t] belongs to C[t]<r if and only if deg(x) <
r , where deg stands for the degree in t , and hence

deg(∆) 6 (r − 1)(σ1 + σ2).

Thus, if ∆ 6= 0,
ordt(∆) 6 (r − 1)(σ1 + σ2). (5.4.20)
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By putting together (5.4.19) and (5.4.20), it follows that, if

α > (r − 1)(σ1 + σ2)/e, (5.4.21)

then ∆ = 0. For such an α, note that the matrix

A = (y j
i )

with j running over M(δ) and yi in gξ (Bα ∩ Yξ )r for i = 1, . . . , µ, has rank
6 µ − 1. Hence, by the arguments in the proof of Lemma 1 in [2] (which are
quite similar to those from the proof of Lemma 4.1.2), there exists a nonzero
polynomial H in two variables with coefficients in C[t] and exponents in M(δ)
which vanishes at all the yi , and thus at all points of gξ (Bα ∩ Yξ )r . Note that H
does not vanish identically on X , since its exponents lie in M(δ), and that its
degree is at most δ.

Recall that r > 0 is given, and that we want to prove that nr (X) 6 dr/de.
We will prove this bound by choosing δ = δ(r) following [26]. By properties of
Hilbert polynomials recalled in Section 5.3, we have

σi = ai dδ2
+ Od(δ),

µ = dδ + Od(1),

and thus

e =
d2

2
δ2
+ Od(δ),

where the Od notation is for δ going to +∞. Thus

σi

e
=

2ai

d
+ Od(δ

−1).

By Lemma 5.3.1, we find

σ1 + σ2

e
6

1
d
+ Od(δ

−1).

Hence, there exist integers δ > 0 and α > 0, both depending on r , such that

(r − 1)
σ1 + σ2

e
< α 6

⌈ r
d

⌉
.

Now we are ready to bound nr (X ′), using this choice of δ and α. Note that Xr is
Zariski closed in (C[t]<r )

2
' C2r , being an intersection of Zariski closed subsets.

Write
p : Cs

×OK → Cs
×OK/Mα

K ' Cs+α
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for the projection, where MK is the maximal ideal of OK . By Remark 3.2.16,
we may suppose that the projection Cs

× OK → OK is finite to one on Y , and
that Y is a cell over Cs . This implies that

dim(p(Y )) 6 α, (5.4.22)

where p(Y ) is considered as a constructible subset of Cs+α. The set X̂ of all
(w, x) in

p(Y )× Xr

such that there exists y ∈ Y with p(y)= w and g(y)= x is a constructible subset
of Cs+α+2r by Proposition 5.4.1. Since g is surjective, the projection X̂ → Xr is
also surjective. By construction, the projection X̂ → p(Y ) has finite fibers (of
size at most dδ by Bézout’s Theorem): indeed, a point in p(Y ) corresponds to the
choice of ξ ∈ Cs together with a ball Bα as above, and we have shown that the
fiber of the projection X̂ → p(Y ) over this point is contained in the intersection
of X with the zero locus of a polynomial H in two variables, with coefficients
in C[t] and degree at most δ, that does not vanish identically on the curve X . It
follows that nr (X ′) 6 dim(X̂) 6 dim(p(Y )) 6 α 6 dr/de.

The following proposition is deduced from a result of [14] on quantifier
elimination in an expansion of L which includes more auxiliary sorts, namely
all the OK/Mα

K for integers α > 0 (not to be confused with the Kn =

OK/(nMK ) ' C for n > 0).

PROPOSITION 5.4.1. Let X ⊂ Cs
× On+m

K be an LK
DP-definable set, let α > 0

and r > 0 be integers, and let

p : Cs
×On

K ×Om
K → Cs

× (OK/(tα))n ×Om
K

be the projection. Write p(X)r for the intersection of p(X) with
Cs
× (OK/(tα))n × (Om

K )r . Then p(X)r , seen as subset of Cs+αn+mr , is definable
in the ring language with coefficients from C.

Proof. Let L′DP be the language LDP enriched with the auxiliary sorts OK mod
(tα) for each integer α > 0, (higher-order) angular component maps

acα : K → OK mod (tα)

sending nonzero x to xt− ord x mod (tα) and zero to zero, and the bijections
from OK mod (tα) to Cα sending

∑α−1
i=0 xi t i to the tuple (xi)i . (The maps acα

should not be confused with the maps acn introduced before.) One has quantifier
elimination for all sorts in the language L′DP by [14, Theorem 4.2]. It follows
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that p(X) is L′DP-definable without quantifiers. Moreover, in the variables
running over Om

K , finitely many polynomials fi(x) over K can occur in the
formula describing p(X), and we may suppose that they occur as arguments
of acα for some α and of ord. Note that, by the geometry of definable sets as
summarized by the cell decomposition result, the ord( fi) take only finitely many
values on (Om

K )r . Now the lemma follows by syntactical analysis of quantifier-
free formulas describing p(X), in relation with the extra condition that x lies
in (Om

K )r .

REMARK 5.4.2. In fact, the inequality (5.4.22) holds in a wider generality.
Consider an LK

DP-definable set X ⊂ Cs
×On

K , and suppose that the projection

π : Cs
×On

K → On
K

is finite to one on X , where K = C((t)). Suppose further that π(X) is of
dimension m. Let α > 0 be an integer, and write

p : Cs
×On

K → Cs+αn,

for the projection which is OK →OK/(tα) ' Cα on the last n coordinates. Then
one has

dim(p(X)) 6 αm. (5.4.23)

Indeed, (5.4.23) is easy to show when X is a cell, and it follows by the cell
decomposition theorem 3.2.4 in general.

5.5. An observation on the size of motivic transcendental parts. When
L = LK

an with K = C((t)), one may wonder whether one can bound (X trans)r in
terms of r > 0, when X trans is the transcendental part of a definable subset X in
On

K , and with notation from Section 5.1. As usual, X trans is X \ X alg, where the
algebraic part X alg of X is defined as the set of those points x ∈ X through which
there exists a semialgebraic (namely LK

DP-definable) S of dimension 1 such that
X ∩ S is locally around x of dimension one.

A first idea would be to try bounding the dimension nr (X trans) in terms of r ,
but such bounds are useless in view of Proposition 5.5.1.

PROPOSITION 5.5.1. Let X ⊂ On
K be L-definable. Then, for any r > 0 and any

algebraic curve C ⊂ Cnr , the intersection of C with (X trans)r ⊂ Cnr is finite.

Proof. Suppose for contradiction that there is an algebraic curve C ⊂ Cnr with
infinite intersection with X trans

r . Let us write C(K ) for the subset of K nr of
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K -rational points on C . Further, let us write S for the image of C(K ) ∩ Onr
K

under the projection

π :


Onr

K → On
K ,

(x1,0, . . . , x1,r−1, . . . , xn,0, . . . , yn,r−1) 7→

(
r−1∑
i=0

t i x j,i

)n

j=1

.

Since C(K )∩Onr
K is an LK

DP-definable set of dimension at most one, and since S
is its image under an LK

DP-definable function, the dimension of S is at most equal
to one. Since S ∩ X contains an infinite subset of C , the dimension of S ∩ X
equals one. Here, we have used the natural inclusion

C ⊂ Cnr
' (C[t]<r )

n
⊂ C[[t]]n= On

K .

Moreover, S ∩ X is of local dimension one at all but finitely many of its points,
since it is an L-definable set. Hence, X trans is contained in the union of a finite
set with X \ S. Since (X \ S)r = Xr \ Sr , and since Sr contains C , X trans

r cannot
have infinite intersection with C .

Finally, let us mention that it seems quite difficult to give sharp bounds on
the size of the set X trans

r in terms of r in general, for X of large dimension.
Under some extra conditions on X , like with some non-Archimedean analogs
of restricted Pfaffians instead of the full subanalytic language on K , one may
hope that there exist results for (low-dimensional) definable sets, similar to for
example the results in [32] for real Pfaffian curves.

5.6. From C(t) to Fq(t). In this section, we shall discuss related results over
Fq(t). Although our methods are restricted to characteristic zero, due to our
limited understanding of the structure of definable sets over henselian fields of
positive characteristic, it is possible to use standard methods to deduce from
Theorem 5.1.3 asymptotic bounds for the number of rational points in Fq[t] of
bounded degree. This provides in particular a partial answer to a question raised
by Cilleruelo and Shparlinski in Problem 9 in [8], about possible analogs over
Fq(t) of the Bombieri–Pila bound. As noticed in Remark 5.6.4, note however
that an analog of Cohen’s bound holds over Fq(t).

Let R be an algebra essentially of finite type over Z, i.e., the localization
of a finitely generated Z-algebra. We assume that R is an integral domain of
characteristic zero, and we denote by K its fraction field.

We consider the category FieldR of ring morphisms R→ F with F a field, i.e.,
the category of field endowed with an R-algebra structure. If X is an R-scheme,
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and R → F a ring morphism, we denote by X ⊗ F the F-scheme obtained by
base change to F . We consider the affine space An

R[t] and X a closed subscheme
whose ideal is generated by polynomials f1, . . . , fs ∈ R[t][X1, . . . , Xn].

For any positive integer r , we denote by F[t]<r the set of polynomials with
coefficients in F and degree < r . We identify F[t]<r with F r and (F[t]<r )

n

with F rn .
The following lemma is classical; we provide a proof for the sake of

completeness.

LEMMA 5.6.1. Let r be a positive integer. The functor Xr : FieldR → Sets
sending R→ F to

X F,r := X (F[t]) ∩ (F[t]<r )
n
⊂ F rn

is representable by a closed subscheme Xr of Arn
R . In particular, for any F in

FieldR , we have a natural identification of X F,r with Xr (F) inside Rrn .

Proof. After inserting the polynomials xi(t) =
∑

06γ<r aiγ tγ into the system
of equations f j(x1, . . . , xn) and developing, one gets a system of polynomial
equations in the variables aiγ . The corresponding closed subvariety Xr of Arn

R
represents the functor Xr .

If k is a finite field, we denote by pk its characteristic and qk its cardinality. We
shall use the following lemma, which is a consequence from statements in [7]
based on the Lang–Weil estimate.

LEMMA 5.6.2. Let Z be a closed subscheme of Am
R . Let n = dim(Z⊗K ). There

exist positive integers p0, C, and M such that, for any R → k in FieldR with k
finite, if pk > p0 and Z(k) 6= ∅, then, for some δ 6 n and some µ ∈ {1, . . . ,M},

|#Z(k)− µqδk | 6 Cqδ−1/2
k .

Proof. It follows from [7, Proposition 3.3 and Proposition 4.9] that there exist
positive integers C and M such that, for any R → k in FieldR with k finite,
if Z(k) 6= ∅, |#Z(k) − µqδk | 6 Cqδ−1/2

k for some µ ∈ {1, . . . ,M} and δ the
dimension of the Zariski closure of Z(k) in Am

k . In particular, δ 6 dim(Z ⊗ k).
Since, for some p0, dim(Z⊗k) = dim(Z⊗K )whenever pk > p0, the statement
follows.

Now we can state our result, which provides a partial answer to [8, Problem 9].
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THEOREM 5.6.3. Let R be an algebra essentially of finite type over Z, and
assume that R is an integral domain of characteristic zero. Let K be the fraction
field of R and K an algebraic closure of K . Let X be a closed subscheme of
An

R[t]. Assume that X ⊗ K ((t)) is irreducible of dimension m and degree d. Fix a
positive integer r . There exist positive integers p0, C, and M such that, for any
R→ k in FieldR with k finite, if pk > p0 and Xk,r 6= ∅, then

|#Xk,r − µqδk | 6 Cqδ−1/2
k

for some δ 6 r(m − 1)+ dr/de and some µ ∈ {1, . . . ,M}.

Proof. From Theorem 5.1.3, which stills hold when replacing C by K by
Remark 5.1.4, it follows that dim(Xr (K )) 6 r(m− 1)+dr/de. Since dim(Xr ⊗

K ) = dim(Xr (K )), the statement is then a direct consequence of Lemma 5.6.2
applied to Z = Xr .

REMARK 5.6.4. When d > 1, Theorem 5.6.3 provides a nontrivial improvement
on the ‘trivial’ bound with δ 6 rm. Note however that, using the function field
version of the large sieve inequality due to Hsu [24] instead of the one used
in [41], one can easily adapt the arguments given in [41] to get the following
function field analog of Cohen’s result in [16]: if X is an irreducible subvariety
of An

Fq ((t)) of dimension m and degree d > 2, then #Xr = O(rqr(m−1/2)), with
Xr := X (Fq[t]) ∩ (Fq[t]<r )

n .

The following question seems natural.

QUESTION 5.6.5. Does Theorem 5.1.3 still hold when C is replaced by an
algebraically closed field of positive characteristic?
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[34] J. Pila, ‘o-minimality and the André-Oort conjecture for Cn’, Ann. of Math. (2) 173 (2011),

1779–1840.
[35] J. Pila and A. Wilkie, ‘The rational points of a definable set’, Duke Math. J. 133 (2006),

591–616.
[36] S. Rideau, ‘Some properties of analytic difference fields’, J. Inst. Math. Jussieu, to appear.

arXiv:1401.1765.
[37] P. Salberger, ‘On the density of rational and integral points on algebraic varieties’, J. reine

angew. Math. 606 (2007), 123–147.
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