
Animal (2008), 2:8, pp 1120–1127 & The Animal Consortium 2008
doi:10.1017/S1751731108002383

animal

The consequences of metabolic changes in high-yielding dairy
cows on oocyte and embryo quality*

J. L. M. R. Leroy1-, A. Van Soom2, G. Opsomer2 and P. E. J. Bols1

1Laboratory for Veterinary Physiology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp,
Universiteitsplein 1, B-2610 Wilrijk, Belgium; 2Department of Reproduction, Fertility and Herd Health; Faculty of Veterinary Medicine, Ghent University,
Salisburylaan 133, B-9820 Merelbeke, Belgium

(Received 3 September 2007; Accepted 20 February 2008)

Unsatisfactory reproductive performance in dairy cows, such as reduced conception rates, in addition to an increased incidence
of early embryonic mortality, is reported worldwide and has been associated with a period of negative energy balance (NEB)
early post partum. Typically, NEB is associated with biochemical changes such as high non-esterified fatty acid (NEFA), high
b-hydroxybutyrate (b-OHB) and low glucose concentrations. The concentrations of these and other metabolites in the follicular
fluid (FF) of high-yielding dairy cows during NEB were determined and extensively analyzed, and then were replicated in
in vitro maturation models to investigate their effect on oocyte quality. The results showed that typical metabolic changes
during NEB are well reflected in the FF of the dominant follicle. However, the oocyte seems to be relatively isolated from
extremely elevated NEFA or very low glucose concentrations in the blood. Nevertheless, the in vitro maturation models revealed
that NEB-associated high NEFA and low glucose levels in the FF are indeed toxic to the oocyte, resulting in deficient oocyte
maturation and developmental competence. Induced apoptosis and necrosis in the cumulus cells was particularly obvious.
Furthermore, maturation in saturated free fatty acid-rich media had a carry-over effect on embryo quality, leading to reduced
cryotolerance of day 7 embryos. Only b-OHB showed an additive toxic effect in moderately hypoglycemic maturation conditions.
These in vitro maturation models, based on in vivo observations, suggest that a period of NEB may hamper the fertility of
high-yielding dairy cows through increased NEFA and decreased glucose concentrations in the FF directly affecting oocyte
quality. In addition to oocyte quality, these results also demonstrate that embryo quality is reduced following an NEB episode.
This important observation may be linked to the typical diet provided to stimulate milk yield, or to physiological adaptations
sustaining the high milk production. Research into this phenomenon is ongoing.
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Introduction

Reproductive failure in high-yielding dairy cattle is a multi-
faceted problem. The pathogenesis of their sub-fertility is
complex. The interactions between negative energy balance
(NEB), early post partum and the hypothalamus–pituitary–
ovary–uterus axis have been studied thoroughly (Ducker
et al., 1985; Lucy, 2001; Butler, 2003). Energy partitioning
favoring the mammary tissue makes it possible to produce
large volumes of milk, putting the remainder of the body in
a status of severe NEB. Disturbed endocrine signaling dur-
ing NEB leads to a retarded resumption of ovarian cyclicity

post partum that has been recognized as a major factor
contributing to the reproductive failure often exhibited by
high-yielding dairy cattle (Opsomer et al., 1998). However,
attention has recently been shifting towards the ubiqui-
tously reported disappointingly low conception rates (Royal
et al., 2000; Lucy, 2001; Bousquet et al., 2004) and the
remarkably high incidence of early embryonic mortality
(Dunne et al., 1999; Mann and Lamming, 2001; Bilodeau-
Goeseels and Kastelic, 2003) in these cattle. Therefore, it is
critical to further investigate the quality of the oocyte and
embryo, and to elucidate the direct effects of their micro-
environments in order to adequately resolve the problem of
sub-fertility (O’Callaghan and Boland, 1999).

Recent studies have confirmed that the quality of the
female gamete and the embryo is under pressure (Kruip et al.,
1995; Kendrick et al., 1999; Gwazdauskas et al., 2000;
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Wiltbank et al., 2001; Walters et al., 2002). Oocytes
retrieved from high genetic merit cows, irrespective of their
milk production value, resulted in significantly lower blas-
tocyst yields in vitro (Snijders et al., 2000). This suggests
possible adverse effects on fertility of the enforced genetic
selection towards milk production.

In addition to oocyte quality, embryo quality also seems
to be reduced in high-producing dairy cows compared to
their non-lactating counterparts (Wiltbank et al., 2001),
and what is more, a high proportion of non-viable embryos
were produced by lactating cows (Sartori et al., 2002). More
studies are needed to obtain an informative and complete
picture of average embryo quality in high-yielding dairy
cows. Moreover, in the literature, many suggestions are
made and much speculation offered on the causes of the
reduction in quality of oocytes and embryos in dairy cattle;
examples of these are provided by the following questions:

> Is oocyte growth and maturation adversely affected
before ovulation due to biochemical or endocrine
alterations in the intra-follicular environment (O’Callaghan
and Boland, 1999; Lozano et al., 2003)?

> Has the micro-environment of the oviduct or uterus been
changed due to dietary and metabolic changes in the
modern dairy cow, thus creating a hostile environment for
the early embryo (Elrod and Butler, 1993; McEvoy et al.,
1995; Kenny et al., 2002)?

> Is something defective in the genetic structure of modern
dairy cow oocytes due to consecutive years of rigorous
genetic selection towards milk yield? Or in other words, is
there a genetic correlation between merit for milk
production and oocyte or embryo quality (Snijders et al.,
2000; Hayhurst et al., 2007)?

In contrast with the extensive knowledge of disturbed
endocrine signaling and ovarian function, clear evidence
concerning the deficiencies in oocyte and/or embryo quality,
and the consequent impact on the reproductive perfor-
mance in high-producing dairy cows is severely lacking. In
the present article, we will review a number of possible
mechanisms linking NEB to oocyte quality. Furthermore, in
the event an embryo is formed after fertilization, we will
investigate whether the quality of early life is impaired.
Accordingly, oocyte and embryo quality were investigated
and compared in lactating high-yielding dairy cows, non-
lactating dairy heifers and beef cows.

Follicular fluid, the missing link between blood and gamete
An NEB is characterized by a number of typical endocrine
and biochemical changes in the blood of modern dairy cows
(Herdt, 2000). Some studies have already inferred these
metabolic changes in serum affect oocyte quality, but the
physiological connection between blood and oocyte is still
not well established, i.e. the follicle and the follicular fluid
(FF) (Hashimoto et al., 2000; De Wit et al., 2001; Jorritsma
et al., 2004).

The follicle is an avascular ‘compartment’ filled with FF in
which the oocyte undergoes the fine-tuning process of oocyte

growth, prematuration and final maturation (Bagavandoss
et al., 1983; Gosden et al., 1988). The physiological properties
of FF have been reviewed by Gosden et al. (1988). During the
process of follicular growth, the physiochemical properties of
the blood–follicle barrier transform thoroughly, suggesting
that the oocyte’s environment undergoes compositional
changes (Edwards, 1974; Wise, 1987; Gosden et al., 1988).
In addition, the active transport mechanisms through the
follicular wall may also alter during follicular growth. Argov
et al. (2004), for example, recently demonstrated that while
lipoproteins are predominantly internalized by endocytosis in
small follicles, this is not the case in large follicles, in which
circulating lipoproteins contribute their cholesterol esters by
selective uptake and without internalization of the lipoprotein
as such. Hence, to further investigate the biochemical milieu
of the oocyte prior to ovulation, the composition of FF
originating in three differently sized follicles was determined
and compared to the composition of serum from 30 dairy
cows shortly post mortem (Leroy et al., 2004a). The data
confirmed that the FF’s composition changes as the follicle
grows. Another important finding was that the FF’s compo-
sition is correlated with that of the serum. These correlations
are ‘static’, however, and for the confirmation of correlations
in this particularly ‘dynamic’ system, the composition of FF of
high-yielding dairy cows was established during the early post
partum period by means of repeated trans-vaginal follicle
puncture and FF aspiration.

In a subsequent study, Leroy et al. (2004b) concentrated on
compositional changes over time in the FF of high-yielding
dairy cows early post partum; here the data were compared
with the extensively reported biochemical alterations in blood
during NEB (see above). NEB typically causes some obvious
changes in serum, such as high non-esterified fatty acids
(NEFA) and b-hydroxybutyrate (b-OHB) concentrations, or
low glucose concentrations (Baird, 1982; Chilliard et al., 1998;
Duffield, 2000; Herdt, 2000). Urea concentrations can also be
elevated, due to an increased amino acid metabolism for
gluconeogenesis, or the intake of a protein-rich diet (Butler,
1998; Sinclair et al., 2000). Britt (1992) hypothesized that
these features of the NEB can directly affect the follicle and
its enclosed oocyte, leading to the ovulation of an inferior
oocyte. This hypothesis is interesting because it is generally
accepted that oocytes are highly vulnerable to any disruption
in their environment (O’Callaghan and Boland, 1999), a point
of view that has been more or less confirmed by others
(Armstrong et al., 2001; Boland et al., 2001). The data of
Leroy et al. (2004b) provided evidence to, at least partially,
answer the question raised by Britt (1994): ‘How does NEB
directly influence the micro-environment that is most
intimately linked with the oocyte?’

An adapted ovum pick-up technique (Bols et al., 1995) was
used at six different points in time during the early post
partum period to collect FF from the dominant follicle of high-
producing dairy cows. Given that follicular size is related to FF
composition (Leroy et al., 2004a), similar-sized follicles were
aspirated throughout the entire study. Due to the reduced
accessibility of the ovaries during the puerperium period,
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FF was only collected from day 14 post partum onwards.
Good correlations were found between serum and FF
composition for glucose, b-OHB, urea and total cholesterol.
Based on the results of repeated measurements (dynamic
correlations) (Leroy et al., 2004b), we can state that typical
post partum serum fluctuations are more or less reflected in
the FF of the dominant follicle. For urea and b-OHB, no
concentration differences between serum and FF could be
detected. It is important to mention, though, that the follicle
appears to be able to maintain higher glucose and lower
NEFA concentrations than does serum. In other words, it
can be suggested that the oocyte is isolated, possibly
even protected, from excessively low glucose or high NEFA
concentrations in the blood.

Despite the follicle’s buffering capacities, glucose con-
centrations do decrease, and NEFA concentrations signif-
icantly rise, in FF during NEB. Also Jorritsma et al. (2003) and
Comin et al. (2002) described an increase in NEFA con-
centrations in FF due to an acute dietary restriction. However,
in these studies no concentration gradients between serum
and FF were mentioned, there is now enough evidence to
conclude that the growing and maturing oocyte is directly
exposed to the typical biochemical changes that occur in high-
yielding dairy cows early post partum. It has furthermore
been established that high urea concentrations, also found in
FF (Hammon et al., 2005), can be toxic to oocytes during
maturation (Ocon and Hansen, 2003; Iwata et al., 2006),
probably through an inhibition of the polymerization of
tubulin into microtubules (De Wit et al., 2001). The same
is true for the lowered glucose concentrations observed.
Adequate glucose supplies are necessary to support normal
cumulus expansion and nuclear maturation (Krisher and
Bavister, 1998; Sutton-McDowall et al., 2004). Similarly,
high NEFA and b-OHB concentrations are probably harmful
to the oocyte’s developmental competence, but this has,
to our knowledge, never been substantiated.

Negative energy balance and its direct consequences for
oocyte quality: an in vitro model
Initially, it was important to pay attention to the NEFA
fraction of the FF, as not only the absolute NEFA con-
centration but also the NEFA composition is physiologically
important. Samples were analyzed by means of a combined
thin layer and gas chromatography (Folch et al., 1957).
The results surprisingly revealed that both the NEFA
concentration (see above) and the NEFA composition sig-
nificantly differed between serum and FF. Differences in
albumin content (on which NEFA are predominantly bound)
between the two compartments could not be found, and
thus did not offer any clues for explaining the observed
differences in NEFA concentration and composition.
Disconcertingly, the described dynamic interchange of NEFA
between serum and FF (Moallem et al., 1999) was also not
totally in agreement with these findings. The study of
Chung et al. (1995), however, offered a possibly useful
clarification. In the presence of high NEFA levels, a sub-
stantial portion of the NEFA in serum is partitioned into

low-density lipoproteins (LDL). The saturated fatty acids in
particular are bound on LDL, while the unsaturated ones are
preferentially bound on albumin (Chung et al., 1995).
Because LDL are absent in FF, these findings could account
for the differences in concentration and composition of
NEFA in FF compared to serum early post partum (Wehrman
et al., 1991).

Chromatographic analyses revealed that the three most
abundant free fatty acids present in FF during NEB were
oleic, palmitic and stearic acid. The NEB-associated FF
concentrations of these three free fatty acids were applied
to an in vitro serum-free maturation model to evaluate their
effect on oocyte quality (Leroy et al., 2005a). In these tests,
oleic acid had no discernable effect on the oocyte’s devel-
opmental capacity. However, exposing oocytes to palmitic
and stearic acid, at concentrations comparable to those
assessed in vivo, resulted in reduced maturation rates, thus
leading to unsatisfactory fertilization and cleavage rates.
Also, cumulus expansion was adversely affected. In these
cumulus cells, a significantly higher rate of apoptosis and
even necrosis could be detected after 24 h of exposure to
elevated stearic or palmitic acid concentrations. Very
recently, it was shown that this fatty acid exposure during
maturation has carry-over effects on embryo quality in
terms of open pulled straw freezeability (Shehab-El-Deen
et al., in press). This also suggests that the fatty acid
composition of the oocyte, and thus the embryo, is altered,
leading to reduced freezing-warming survival rates. Rooke
et al. (2006) demonstrated that changes in the FF fatty acid
composition are also reflected in the fatty acid content and
profile of the cumulus-oocyte complex.

Similar toxic effects of high NEFA concentrations on
bovine or human granulosa cells in vitro have been shown
in other studies (Mu et al., 2001; Jorritsma et al., 2004;
Vanholder et al., 2005). Optimal granulosa and cumulus
cell functioning are indispensable for oocyte maturation
because these cells are responsible for endocrine and
paracrine signaling (Bilodeau-Goeseels and Panich, 2002;
Tanghe et al., 2002). Therefore, it is most likely that the
toxic effect of NEFA on oocyte quality is partly an indirect
effect. In contrast with the results of Leroy et al. (2005a),
Jorritsma et al. (2004) did find detrimental effects of oleic
acid. In their study, however, oleic acid was bound on
albumin and was added in supra-physiological concentra-
tions to an undefined in vitro maturation medium (con-
tained fetal calf serum, an undefined source of fatty acids).
Moreover, it is unclear whether these adverse effects were
caused by the addition of BSA itself or by oleic acid. Homa
and Brown (1992) showed that albumin-bound linolenic
acid in in vitro maturation medium inhibited germinal
vesicle breakdown in denuded oocytes.

Similar toxic effects of NEFA have also been described for
Leydig cells, muscle cells and pancreatic b-cells, and it is
the induction of apoptosis and/or insulin resistance as well
as changes in membrane properties that have been speci-
fically suggested as potential mechanisms for explaining
the observed toxic effects (Shimabukuro et al., 1998;
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Maedler et al., 2001; Hirabara et al., 2003; Lu et al., 2003;
Jorritsma et al., 2004).

These indications of NEFA toxicity at the oocyte and follicle
level not only are important in relation to the sub-fertility
issue in modern dairy cows, but may also provide a valuable
model for human research. Obesity and diabetes are char-
acterized by increased concentrations of NEFA due to high
adipose sensitivity for lipolytic triggers (Herdt, 2000; Cnop
et al., 2001). Our data suggest that the frequently reported
fertility disorders in obese or diabetic women (Pasquali et al.,
2003) may be not only due to the toxic effects of NEFA on
granulosa cells, which mainly lead to amenorrhea (Mu et al.,
2001), but could also originate from direct detrimental effects
on the cumulus-oocyte complex. The latter could explain the
disappointing IVF or intracytoplasmic sperm injection (ICSI)
results, and the higher risk for early pregnancy loss in obese
women, as has been documented by Fedorcsak et al. (2000
and 2004) and Pasquali et al. (2003). Ongoing research on
humans should confirm or refute the validity of applying this
bovine model in human studies.

Not only high NEFA but also elevated ketone concentra-
tions are a distinctive characteristic of NEB (Sato et al., 1999).
High ketone concentrations generally go together with
hypoglycemia (Herdt, 2000). Therefore, in a second in vitro
maturation model (Leroy et al., 2006), the effects of combined
high b-OHB and low glucose concentrations, ascertained in
measurements of FF of dairy cows during NEB, were inves-
tigated. The primary conclusion of this study was that the
in vitro model imitating sub-clinical ketosis had no effect on
the oocyte’s developmental capacity in vitro. Clinical ketosis,
however, turned out to be detrimental to oocyte quality
in vitro; this was presumed to be due to the effect of depleted
glucose, rather than high b-OHB concentrations. Thus, the
toxicity of b-OHB, as has been described for polymorpho-
nuclear cells and macrophages (Hoeben et al., 1997; Sartorelli
et al., 2000), could not be confirmed for cumulus-oocyte
complexes. Conversely, it can be assumed, with a high degree
of certainty, that inadequate glucose supplies compromise
oocyte developmental competence, and this is a conclusion
that is in agreement with other studies (Krisher and Bavister,
1998; Cetica et al., 2002; Sutton-McDowall et al., 2004).

When interpreting these in vitro results and explaining
them in terms of sub-fertility in high-producing dairy cows,
some prudence is warranted. In studies described above,
it was hypothesized that elevated NEFA or b-OHB con-
centrations, together with low glucose concentrations,
contributed to reducing fertility in high-yielding dairy cows
by exerting detrimental effects on oocyte developmental
competence. These findings more or less resemble the
hypothesis of Britt (1994), who stated that a follicle grown
during the period of NEB early post partum could be
affected by unfavorable metabolic changes, and may con-
tain a developmentally incompetent oocyte; following a
growing and maturation phase of several weeks, this
inferior oocyte is ovulated at the time of the initial inse-
mination (Lucy, 2003). This hypothesis has been partially
confirmed in recent in vivo studies (Gwazdauskas et al.,

2000; Snijders et al., 2000; Sartori et al., 2002). It is important,
however, to mention that the combined in vitro and in vivo
model used in the studies of Leroy et al. (2005a and 2006)
described above was not entirely appropriate for investigating
the carry-over effect on oocyte quality as hypothesized by Britt
(1994). The results only documented the FF composition in the
dominant follicle during the NEB mimicked in vitro. Quiescent
follicles, however, provide a much poorer isolation from the
extrafollicular environment and blood serum for the oocytes
embedded within them. As a consequence, such oocytes
are probably exposed to even higher NEFA concentrations
(Zamboni, 1974). Another possibility is that oocytes of pri-
mordial follicles are completely insensitive to all these meta-
bolic disruptions. Moreover, the cumulus-oocyte complexes
were exposed to elevated NEFA or b-OHB and low glucose
concentrations for only 24 h, whereas in vivo the oocytes are
exposed to these concentrations for several days or even
weeks. In the ideal model, primordial follicles should be cul-
tivated in high NEFA conditions for several weeks. However,
maintaining such long-term cultures of primordial follicles
presents major obstacles, and growing bovine primordial fol-
licles up to the preovulatory stage has so far proven to be
unachievable (Gutierrez et al., 2000); although, successes have
been obtained in mice with prolonged primordial and preantral
follicle culture leading to in vitro ovulation and, after fer-
tilization, the birth of pups (Cortvrindt and Smitz, 2001).
Current research uses this murine model to investigate the
consequences of long-term exposure to elevated NEFA on
follicular growth and subsequent oocyte development.
Nevertheless, it is believed that the data from the present
model revealed for the first time the possible toxic effects of
high FF NEFA and low glucose concentrations on the
developmental competence of bovine oocytes in vitro.

Back to the field: a closer look at embryo quality
From the data presented above, it can be concluded that the
oocyte is vulnerable to at least some of the metabolic
alterations associated with NEB. Clearly, obvious adverse
effects on oocyte quality were observed in our in vitro
model. Logically, the next step would be to investigate the
consequences of these effects on embryo quality. It has
been suggested by Rizos et al. (2002) that the conditions
prior to fertilization are the determinants for embryo yield,
while the embryo’s culture environment is crucial for
embryo quality. On the basis of that theory, the toxic effects
of high NEFA and low glucose concentrations during oocyte
maturation that have been demonstrated in high-producing
dairy cows (Leroy et al., 2005a and 2006) should primarily
lead to low fertilization (i.e. conception) rates. However,
based on the reports of Royal et al. (2000) and Bousquet
et al. (2004), this does seem to be the case. Also, the
environment of both the oocyte and the embryo is said to
be crucial to ultimate fertility. As suggested by Kenny et al.
(2002), Elrod and Butler (1993) and McEvoy et al. (1995),
high-energy and/or high-protein diets can alter the micro-
environment of the embryo in the oviduct and uterus (for
review see Leroy et al., 2008). Such changes are expected to
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be detrimental to embryo quality (Rizos et al., 2002), which
has been shown experimentally in heifers by Wrenzycki et al.
(2000). However, it has never been demonstrated whether
or not this is also the case in high-producing dairy cows.
Accordingly, a field trial was arranged to compile data on the
embryo quality of high-producing dairy cows in comparison
with non-lactating dairy heifers and (non-lactating) beef
cows. Through this field trial it was possible to investigate
simultaneously the effects of milk production and breed
(or genetic background) (Leroy et al., 2005b). Briefly, embryos
from lactating dairy cows clearly displayed inferior quality
as assessed by morphological evaluation, compared to
dairy heifers or beef cows. Furthermore, it was possible to
demonstrate by means of a multivariable regression model
that the state of producing milk v. not producing milk was
highly correlated with embryo quality. It is also important
to mention that no differences were found in fertilization
rates or in the number of transferable embryos per embryo
collection among these animals.

Because the embryos of the lactating dairy cows were on
average collected around day 230 post partum, it is very
unlikely that a carry-over effect of NEB, as has been
hypothesized by Britt (1992), is responsible for their poor
quality. This could have been a likely explanation when
embryo collection was performed on average around 2 to 3
months after calving, as was done by Sartori et al. (2002);
he also found an obvious difference in embryo quality
between lactating dairy cows and maiden heifers, sug-
gesting that genetic merit for milk production does not
account for the reduction in embryo quality observed in
lactating dairy cows. In contrast with our results, Sartori
et al. (2002) reported not only inferior embryo quality but
also a lower fertilization rate, illustrated by a higher pro-
portion of unfertilized oocytes present in the uterine
flushing of lactating dairy cows. Sartori et al. (2002) may
have described the adverse influences of a carry-over effect

of NEB on oocyte quality (reduced fertilization rates),
combined with the possible negative effects of lactation,
management or diet on the micro-environment of the oviduct
or uterus (reduced embryo quality), similar to what we
found in our field trial. By way of summary, all suggested
mechanisms that could potentially diminish embryo quality
are diagrammatically represented in Figure 1. Further
research should reveal the exact mechanism through which
embryo quality is adversely affected in lactating dairy cows.

One of the major morphological characteristics evaluated
in the study of Leroy et al. (2005b) was embryo color.
By means of a new lipid evaluation technique (Leroy et al.,
2005c) it could be demonstrated that embryo color is cor-
related with lipid content, as has previously been suggested
by others (Sata et al., 1999; Abe and Hoshi, 2003).
Lactating dairy cow embryos were generally dark and
contained as much lipid as in vitro produced embryos that
are known to accumulate excessive amounts of lipids (Abe
et al., 1999). This has never been shown before. A high lipid
content has undeniably been linked with impaired embryo
quality (Reis et al., 2003; Rizos et al., 2003). The underlying
mechanism(s) linking milk production or nutrition with
embryo color and/or lipid content is unknown, and further
research is necessary. A broader overview on factors influ-
encing oocyte and embryo quality as well as corpus luteum
quality was presented in earlier work (Leroy et al., 2008).

Perspectives for future research and some food for thought
As has been mentioned above, future research should
enlighten us more about the interactions between the blood,
the micro-environment in the oviduct or uterus and embryo
metabolism. Furthermore, several studies have indicated
that NEB is also associated with depressed immunity during
the first weeks post partum, thus leading to an increased
susceptibility to infectious diseases such as mastitis
and metritis (Hoeben et al., 2000; Lacetera et al., 2005).
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Figure 1 Diagrammatic representation of possible mechanisms by which embryo quality can be impaired in high-yielding dairy cows.
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Bearing this in mind, it becomes important to consider not
only the direct link between NEB and fertility but also that
reproductive functions are affected indirectly by an increased
incidence of infectious diseases. Mastitis, for example, that,
together with low fertility, is the principal reason for the
culling of dairy cows, has been shown to be directly linked to
the retarded onset of ovarian activity post partum (Loeffler et
al., 1999; Rajala-Schultz and Gröhn, 2001; Huszenicza et al.,
2005). Whether infectious diseases can affect the oocyte
and/or the embryo in a direct way has been poorly studied,
and certainly requires further investigation (Hansen et al.,
2004). Furthermore, environmental pollution has also been
associated with direct harmful effects on oocyte quality
through the generation of endocrine disrupters (Brevini et al.,
2005), and this merits further study.

Is there still a need for high-producing dairy cows? Yield
maximization per animal is indeed preferable from both an
economic and environmental point of view. However, only
outstanding herd management can guarantee the animal’s
welfare under such pressures. But even with excellent
management, the demands on these animals remain high as
evidenced by the fact that they are rapidly culled for reasons
such as reduced fertility, metabolic disorders and infectious
diseases. Now, it is becoming clear that even the oocyte and
the embryo may directly suffer from high levels of productivity.

Conclusions

It can be concluded that the typical biochemical serum
changes observed in dairy cattle during NEB early post
partum are well reflected in the FF of the dominant follicle,
thus exposing the granulosa cells and the maturing oocyte.
In vitro maturation models revealed that NEB associated
with elevated NEFA and lowered glucose concentrations are
indeed toxic to the oocyte, resulting in both diminished
oocyte maturation and embryo developmental competence.

Even after the period of NEB, and when the carry-over
effects of the NEB were no longer present, high-yielding dairy
cows produced statistically significantly inferior embryos in
comparison with dairy heifers and beef cows. With a newly
developed lipid evaluation technique, it was possible to
demonstrate that high-producing dairy cow embryos con-
tained up to 45% more lipids, compared to the embryos of
non-lactating animals. These findings imply that it is not
genetic merit for milk production or breed that has an adverse
impact on embryo quality, but rather that a variety of factors
associated with milk production as such (metabolism, nutri-
tion, management) induce hostile conditions that prevent
optimal embryo development. Further research is required to
fully comprehend how a dairy cow’s milk production and
nutrition influences embryo health and metabolism via an
altered environment in the oviduct and uterus.
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