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Abstract
Purpose To develop a method for intra-patient registration of pre- and post-contrast abdominal MR images with large local
deformations and large intensity variations.
Method A hybrid method is proposed to deal with this problem. It consists of two coupled techniques: (1) descriptor
matching (DM) at the original resolution using a discrete optimization strategy to avoid getting trapped in a local minimum;
(2) continuous optimization to refine the registration outcome based on autocorrelation of local image structure (ALOST).
Our method—called DM-ALOST—has become insensitive to the local uptake of contrast agent by exploiting the mean phase
and the phase congruency extracted from the multi-scale monogenic signal. The method was extensively tested on abdominal
MR data of 30 patients with Crohn’s disease.
Results DM-ALOST produced significantly larger mean Dice coefficients than two state-of-the-art methods (p < 0.05).
Conclusion Both qualitative and quantitative tests demonstrated improved registration using the proposed method compared
to the state-of-the-art. The DM-ALOST method facilitates measurement of corresponding features from different abdominal
MR images, which can aid to assess certain diseases, particularly Crohn’s disease.

Keywords Monogenic signal · Image registration · Large deformations · Intensity variation · Descriptor matching · Crohn’s
disease

Introduction

Image registration has been a key topic in the medical
imaging community over the past decades. However, there
are still many registration problems that remain challeng-
ing. We encountered such a challenge upon registering
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three-dimensional pre- to post-contrast abdominal images
acquired bymagnetic resonance imaging (MRI) for quantify-
ing Crohn’s disease activity [1]. This registration is far from
trivial as peristalsis of the bowel (or organmotion)may cause
large local deformations, which makes that the registration
algorithm gets trapped in a local minimum as discussed in
[2]. Furthermore, the diseased regions of interest are com-
posed of relatively thin bowel structures, which are easily
mismatched. Moreover, there can also be large local inten-
sity variations, a.o. due to space-varying contrast uptake and
the MRI bias field.

A coarse to fine (or multi-resolution) registration strategy
is often used [3] to avoid getting trapped in local minima as
much as possible. However, this can be insufficient for large
deformations, as we have experienced in the aforementioned
case. A coarse to fine registration method can be combined
with discrete optimization approaches, such as graph cuts [4]
and linear programming [5]. Discrete optimization is typi-
cally less sensitive to the initial conditions [5] and suitable
to deal with large deformations [2]. However, discrete opti-
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mization goes at the expense of the registration precision
because of quantization effects.

Alternatively, continuous optimization typically produces
more precise solutions than discrete approaches. However,
continuous optimization is sensitive to the initial conditions
and gets more easily trapped in a local minimum. A hybrid
optimization strategy was recently proposed to combine the
best of both worlds [6]. As such the discrete optimization
strategy initially yields a coarse solution to cope with the
largest deformations after which continuous optimization
locally improves the result in a refined search space. A good
review on hybrid image registration can be found in [7].

It canbe foreseen that the aforementionedmulti-resolution
strategy removes fine structures (e.g. the bowel wall) from
the image at coarse resolutions. Furthermore, local deforma-
tion due to peristalsis is in essence different from the global
motion of the larger structures due to breathing.As large local
deformations are not correctly estimated at a coarse scale, an
ambiguous registration result will occur locally. Thus, regis-
tration based on the highest resolution is preferred without
any restriction of the search space for discrete optimization.
The large displacement optical flow (LDOF)method [8] inte-
grates rich descriptors such as the scale-invariant feature
transform (SIFT [9]) and the histograms of oriented gra-
dients (HOG [10]) into variational optic flow to solve the
large deformation problem. To use descriptor matching with
continuous optimization for our task, we need an image rep-
resentation and an energy function that are both insensitive
to local intensity variations.

Previously, well-known rich descriptors such as SIFT,
SURF [11] and HOG were studied for representing image
structure. However, none of these can fully handle intensity
and contrast variations. Alternatively, images may be trans-
formed into a representation that is insensitive to these signal
variations. An example of such a representation for multi-
dimensional signals is the monogenic signal [12]. Thus, a
rich descriptor could be calculated based on the monogenic
signal representation of these images.

Likewise, there are many energy functions for image reg-
istration that tackle the intensity inhomogeneity problem.
For example, mutual information (MI) [13,14] is one of
the most widely used energy functions. However, originally
being a global objective function, it lacks local, i.e. spa-
tial, information on the local structure and cannot cope with
large space-variant signal and contrast differences. Although
several methods introduce local information into a global
objective function [15,16], it has been noticed [17] that find-
ing an accurate correspondence remains difficult, especially
due to themany local minima that generally accompanymost
non-rigid deformation models.

Recently, a method employing a local modality indepen-
dent neighborhood descriptor (MIND) was proposed [17].
MIND was reported to be a “distinctive” descriptor, which

was claimed to be important for registering imageswithmany
degrees of freedom [17]. However, MIND is not invariant
to large intensity inhomogeneities LCC-Demons was intro-
duced to address the local intensity variation issue [18] by
using symmetric local correlation coefficient as energy func-
tion. A new descriptor called ALOST is proposed to reduce
the influence of intensity inhomogeneities [19].Methods that
transform MRI images into a new image representation can
be also used to deal with intensity inhomogeneities [20].
Other methods specifically designed for abdominal DCE-
MRI registration use the entire DCE-MRI image sequence
to reduce the influence [21,22]. However, all of above-
mentioned methods are sensitive to large local deformations
of an image.

In this paper, we present a hybrid registration method
to facilitate the spatial alignment of pre- to post-contrast
abdominal MR images. Our work is inspired by the method
described in [8] that initially performs descriptor matching
using discrete optimization succeeded by a continuous opti-
mization to refine the registration. Different from [8], we
perform the descriptor matching based on a representation
derived from the monogenic signal rather than on the origi-
nal image. The ALOST method [19] follows as a continuous
optimization step to refine the registration. Therefore, our
work contains two main contributions compared to [8,19]. 1.
It is insensitive to local contrast changes due to the varying
uptake of contrast agent as well as to global signal fluctua-
tions from the MR scanner’s bias field. 2. Several elaborate
evaluations are performed to assess the performance of our
method on bowel images.

Method

Image registration can be treated as an optimization problem
[23]. The energy function to be optimized in our experiments
consists of three parts, namely a data term, a regularization
term and a coupling term:

E(w) = Edata(w) + αEregularize(w) + βEcoupling(w,w1),

(1)

where w = [u, v, w] is the deformation field for each pixel
in a 3D moving image, α and β are weighting parameters.

In our proposed hybrid registration framework, we first
find a solution to the descriptor matching term through dis-
crete optimization: w1 = argminw2{Edescriptor(w2)} (see
(5)). Herewith, we aim to estimate the largest deformations
in the presence of intensity distortions without sacrificing
image resolution. Subsequently, w1 is used to initialize the
minimization (1).

The remainder of the method section is structured as fol-
lows. First, we introduce some basic theory of themonogenic
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Fig. 1 aAn abdominalMR image and b the same image deformed only
by a simulated local intensity distortion; e, f mean phase images com-
puted from a, respectively, b; c intensity profiles along the red dashed
lines in a (red) and b (blue); g intensity profiles along the red dashed
lines in d (red) and e (blue); d descriptor matching correspondences

using HOG-I; h descriptor matching correspondences using HOG-MP;
the red circles correspond to positions in image (a), the green crosses
correspond to positions in image (b); each green cross should directly
fit in a red circle, i.e. without a displacement, as no spatial deformation
was imposed

signal onwhichwewill build both parts of the hybridmethod.
Subsequently, we will define the involved energy terms: the
data term, and the coupling term. Finally, we will describe
our optimization procedure.

Preliminaries

The mean phase and phase congruency [24] are derived from
the analytic representation of a signal based on the Riesz
transform [25]. They provide measures that are independent
of the signal’s amplitude, making them invariant to trends in
the signal and variations in contrast. A representative exam-
ple is shown in Fig. 1. The intensity distortion we added
merely concerned the addition of a Gaussian intensity profile
centered at a randomly selected point [26]. We plot profiles
along a line segment suffering from a large local intensity
variation in Fig. 1c, g. In Fig. 1c, the profiles from the original
and distorted images clearly deviate because of the intensity
distortion. In contrast, this is not the case in Fig. 1g. This
example illustrates that the mean phase image is insensitive
to local intensity changes.

Definition of the data term

Our data term EALOST(w) exploits the autocorrelation of
LOcal STructural information. It was inspired by the MIND

concept [17], which is based on the local sum of squared
differences (SSD) between two patches P of image I :

DP (I , x1, x2) =
∑

p∈P

(I (x1 + p) − I (x2 + p))2

=
∑

p∈P

I 2 (x1 + p) − 2
∑

p∈P

I (x1 + p) I (x2 + p)

︸ ︷︷ ︸
ACP (I ,x1,x2)

+
∑

p∈P

I 2 (x2 + p) (2)

where x1 and x2 are the centers of the two image patches
p of size D × D × D. Notice that expanding the square
of (2) reveals the inner product between the two patches,
which can also be interpreted as a windowed (hence local)
autocorrelation as a function of the difference x1−x2. The
local SSDs are incorporated in a feature vector defined by:

MIND (I , x, r) = 1

n
exp

(−DP (I , x, x + r)
V (I , x)

)
(3)

with r an offset in a predefined neighborhood R of size R ×
R×R aroundpositionx (spatial coordinator of the image),n a
normalization constant (chosen such that themaximumvalue
of the MIND feature at position x is one) and V (I , x) rep-
resents the average SSD in a small neighborhood N around
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x defined by V (I , x) = 1
size(N )

∑
n∈N DP (I , x, x + n). In

words, the feature vector consists of a 1-D vector of length
R×R×R, which represents all correlations between a neigh-
borhood P centered at a voxel (x) and a neighborhood P
centered on a voxel (x + r).

We employ the mean phase image IMP and the phase
congruency image IPC for image I in (3), since these are
both insensitive to local contrast changes. Furthermore, we
concatenate the feature vectors for IMP and IPC to form the
ALOST representation as

ALOST (I , x, r) = [MIND (IMP, x, r) ,MIND (IPC, x, r)] .

The ALOST representation has two important properties:
(1) it is insensitive to intensity distortions; (2) it empha-
sizes ‘salient’ features (e.g. edges) in the image. For the
sake of simplicity, we use in the remaining text the notation
ALOSTf(x) and ALOSTm(x) to represent ALOST feature
vectors calculated from the fixed image and the moving
image, respectively. As such, the data term Edata(w) in (1)
can be defined as:

Edata(w) =
∫

�

|ALOSTm(x + w(x)) − ALOSTf(x)|2dx.

(4)

The local diffusion regularization is used to avoid the ill-
posedness of the image registration. More details of the
ALOST method can be found in [19].

Definition of the descriptor matching and coupling
terms

The registration procedure is made robust against getting
stuck in a local minimum through descriptor matching in a
discrete optimization scheme.Toaccomplish this,wedensely
calculate descriptors over both the fixed and moving images
at the original resolution (without down-sampling) to pre-
serve the thin bowel structures. Inspired by [8,27], we use
the 3D HOG in our descriptor matching step. Therefore, we
first calculate 3D gradients [Gx ,Gy,Gz] using a coarse 1-
D central difference operator in all three dimensions. Then,
these 3D gradients are quantized based on a regular polyhe-
dron with N0 = 10 orientations (i.e. a icosahedron) to limit
the computation time. Furthermore, a Gaussian filter with
σ = 0.8mm is applied to smooth along the polyhedron to
reduce quantization effects. The final 3DHOG descriptor for
each voxel consists of 10× 7 entries (10 orientations times 7
cells, the cell of the current voxel plus cells from its 6 cardinal
neighbors in 3D space). For building a cell, we empirically
set neighborhoods Nn = 9.

Notice that the discrete optimization aims to simplify the
registration problem after which the continuous optimization
follows to refine the registration. Therefore, a highly accu-
rate calculation is not required. At the same time, we found
that the HOG was sensitive to large local intensity variations
(see see Results section). Accordingly, we propose to calcu-
late HOG on the mean phase image (ϕ̄(x)), which describes
the type of local structure and is insensitive to the intensity
variations.

The descriptor matching term is defined as:

Edescriptor(w2) =
∑

i

|HOG-MPm(xi + w2(xi ))

−HOG-MPf(xi )|2, (5)

where HOG-MPm and HOG-MPf denote the HOG descrip-
tors of themeanphase images derived from themoving image
and the fixed image, respectively; the summation is over all
positions xi in the fixed image where a HOG descriptor was
calculated; x j = xi + w2(xi ) is a position in the moving
image with such a descriptor.

We couple the discrete optimization functional to the con-
tinuous one by adding a coupling term to the latter

Ecoupling(w,w1) =
∫

�

ρ(x)|w1(x) − w(x)|2dx. (6)

Optimization procedure

Approximate nearest neighbor (ANN) search method is used
for descriptor matching [28]. Compared to exhaustive search
method, ANN method allows reduction of the complexity
without losing too much accuracy. Similar to [8], we use the
ANNmethod twice (for searching from the moving image to
the fixed image and vice versa) to exclude outliers.

A continuous optimization strategy is subsequently used
for refining the deformation field, after descriptor matching,
by minimizing (1). We apply the Gauss–Newton optimiza-
tion method in order to do so. We use a multi-resolution
registration procedure in order to speed up the convergence.
Notice that the multi-resolution strategy is only used in the
continuous registration step. At that stage the largest defor-
mations have already been resolved.

The “initialization” through w1 is softly favored through
Ecoupling(w,w1) (see (1)), but we reduce the “influence”
of w1 when estimating w at finer resolutions. Different from
[8], the weighting parameter of β is not fixed but decreasing
with increasing iteration number of the registration proce-
dure: β(k) = β0/k, where β0 is the initial value and k the
iteration number.
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Results

The proposed hybrid registration method will be com-
pared against two state-of-the-art registration techniques: the
deformable registration via attribute matching and mutual-
saliency weighting (DRAMMS), [29] and the MIND [17].
Both methods are based on neighborhood structure descrip-
tors. In total, seven different registration methods will be
used in the comparisons. These will be referred to as
DRAMMS, DM-O (descriptor matching on original image),
DM (descriptor matching on mean phase image), MIND,
DM-MIND (descriptor matching plus MIND), ALOST [19]
and DM-ALOST (descriptor matching plus ALOST, the
hybrid method currently proposed).

The computation time for the ALOST and MIND meth-
ods on the abdominal dataset (containing the largest images
of size 400*400*100) was less than 10min on a personal
computer equipped with an Intel� CoreTM2 Quad Proces-
sor Q8400 clocked at 2.66GHz and 4GBRAMmemory. The
DM-ALOST and DM-MIND took around 20min, which is
in the same range as the DRAMMS approach.

Comparison of descriptor matching on intensity and
mean phase

Figure 1d visualizes the descriptor matching results using
HOG on the intensity images, HOG-I, and Fig. 1h pictures
the descriptormatching results usingHOGon themean phase
images, HOG-MP, between the same regions (middle left
side) in Fig. 1a, b. Red circles indicate the positions around
which the descriptors are calculated in Fig. 1a and green
dots indicate positions in Fig. 1b. Since there were no spatial
deformations, an identity correspondence should be found,
i.e. each green dot should directly fit in a red circle, with-
out a displacement. However, there is a clearly observable
difference in the matching pairs by using the HOG-I descrip-
tor (Fig. 1d) and the HOG-MP descriptor (Fig. 1h). Where
the HOG-MP descriptor mostly finds the identity correspon-
dence, theHOG-I descriptor finds correspondences over very
large displacements. This outcome emphasizes that HOG-I
is very sensitive to intensity variation, whereas HOG-MP is
not.

Registration performance on synthetic abdominal
images

We evaluated the performance of our registration framework
in the presence of a local geometric deformation and a local
intensity distortion. We empirically set α = 0.1 for ALOST
(same as [19]) and in addition set β0 = 0.5 for DM-ALOST.
In the ALOST paper [19], we have extensively tested differ-
ent settings for MIND, but found that the optimal settings
were the default settings. We adopted this setting for this

paper. For DRAMMS, we also tested several settings in
this paper, but without too much difference in performance.
Therefore, we used the default settings of DRAMMS and
MIND in all our experiments. Furthermore, we selected a
typical 2D slice (containing diseased bowel) froma3D image
for this synthetic experiment.

We generated 100 differently deformed images with large
local large deformation and local intensity distortion from
the selected reference image. First, a global geometric defor-
mation with a thin-plate spline (TPS) model (similar to [26],
7 × 7 grid size) was applied to a reference image (Fig. 2a).
Second, a local deformation was imposed around one ran-
domly picked point from the image. This deformation was
generated by randomly selecting a displacement between 15
to 25 pixels in the x and y direction, respectively. Thereafter,
care was taken that the displacement field was continuous
by Gaussian filtering, creating a Gaussian distributed dis-
placement field around the picked point. The width of the
Gaussian was set to a randomly selected value in the range
from 20 to 50 pixels, which effectively controlled the locality
of the deformation. Finally, a local intensity distortion was
induced by adding a Gaussian-shaped intensity distribution
centered at a randomly selected point (again as in [26]). An
example is shown in Fig. 2b.

DM-ALOST gave the best overall result on data with only
large geometric deformation, although the difference with
DM-MIND was not significant (see Fig. 3a). Furthermore,
the DM-ALOST outcome performs significantly better than
all other approaches as assessed by a two-sided signed rank
test (p < 0.01) on data with large geometric deformations
and local intensity distortions (Fig. 3b). One can also see
that the results of DM on original image (DM-O) and DM on
mean phase (DM) are similar for images without intensity
distortion. On the other hands, DM gave significant better
(p < 0.01) results comparing to DM-O for images with
intensity distortion. It shows that descriptor matching on
mean phase images could give better initialization for the
following continuous registration step. Therefore, we will
only use DM for the rest of experiments.

Abdominal MR image pre- to post-contrast
registration

The last series of experiments assess the suitability of the
proposed method to register pre- and post-contrast abdom-
inal MR data of patients with Crohn’s disease. These MRI
data were taken from a prior study, which has been approved
by the medical ethics committee [30]. Thirty out of 33
patients from the prior study gave written consent to use
their data for future investigations. The image size of the
pre and post-contrast scans was 400 × 400 × 100 voxels
with a resolution of 1 × 1 × 2mm3 and was acquired in a
breath-hold. All patients underwent ileocolonoscopy within
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Fig. 2 a A fixed image and b a moving image generated by adding
a geometric deformation and an intensity distortion to a; c–i regis-
tration outcomes by DRAMMS, DM on original image (DM-O), DM

on mean phase image (DM), MIND, DM-MIND, ALOST and DM-
ALOST, respectively. The red arrows indicate regions with large initial
geometric deformations

Fig. 3 Box-and-whisker plots
of the root-mean-squared error
(RMSE) of the estimated
deformation fields prior to
(original) and after registration
using seven different
approaches. a Outcomes on 100
images that only contain a local
geometric deformation. b
Outcomes on 100 images
containing both a local
geometric deformation and a
local intensity distortion

1month after the MRI scan was acquired. We used the six
methods as described in previous section to register the data
(DM-O is excluded). The parameters were the same as in
previous section. These settings also proved to yield the
best registration result for the abdominal images (data not
shown).

Quantitative assessment of the registration performance

Unfortunately, it is not a trivial task to identify landmark
points on the bowel wall since there is deformation due to
inspiration depth and a continuous deformation over time
due to peristalsis between the scans. Therefore, we decided
to label relevant ‘landmark’ regions, namely the bowel seg-
ments. A research fellow specialized in imaging Crohn’s
disease supervised by a radiologist delineated each bowel
segment affected by Crohn’s disease in the post-contrast MR

images. Subsequently, two research fellows, both special-
ized in imagingCrohn’s disease, independently annotated the
same region in the pre-contrast images. Polygonswere drawn
in coronal slices. Each lesion was delineated in all slices in
which it was observed. In total 30 lesions were identified in
30 bowel segments. A typical example is shown in Fig. 4.
The mean Dice coefficient calculated over the annotations
in the pre-contrast MR images was 0.71, reflecting the inter-
observer agreement. The Dice coefficient was also computed
over corresponding pairs of annotations in the pre- and post-
contrast images prior to registration and after registration
by each of the six methods. The results are summarized in
Table 1. One can see that the DM-ALOST outperformed the
othermethods for the data of both annotators. Particularly, the
Wilcoxon signed rank test demonstrated that DM-ALOST
was significantly (p < 0.05) better than the other meth-
ods. Notice that the mean Dice coefficients of DM-ALOST,
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Fig. 4 Annotations on pre- and
post-contrast MR images. a–c
Reference annotations on the
post-contrast MR images made
by two research fellow; d–f
corresponding annotations on
the pre-contrast MR images
made by the first research
fellow; g–i same images as d–f
but now containing the
annotations by the second
research fellow. Radiologists
supervised the research fellows.
Noticed that the annotations that
were made by the two research
fellows are partially different

0.68 and 0.69, closely approximate the inter-observer agree-
ment..

Correlation of manual to semi-automatic measurements of
relative contrast enhancement

The manual relative contrast enhancement (RCE) was calcu-
lated as defined above using the mean intensities measured
overmanually delineated regions in the pre- andpost-contrast
images. Four research fellows each supervised by a differ-
ent radiologist outlined corresponding regions with the most
disease activity in the pre- and post-contrast images of the
30 patients affected by the disease [30]. These regions com-
prised small focal areas on the order of 100 voxels, as is
conventional. These local annotations weremade on themost
suspicious part of the bowel wall. This is how radiologists
conventionally measure RCE. The RCE measurements for
these 30 patients were used in previous study [31]. Unfortu-
nately, the annotations for these RCEmeasurementswere not
saved. Moreover, one research fellow supervised by a radi-

ologist delineated the entire region affected by the disease
only on post-contrast MR images. These annotations could
be saved and were used to calculate the semi-automatic RCE
measurement. The RCE was semi-automatically measured
by first calculating the mean intensity over this full region in
the post-contrast image and by averaging over the region in
the pre-contrast image that was copied from the post-contrast
image. These semi-automatic RCEmeasures were correlated
to the manual RCE measures by means of Pearson’s corre-
lation. The correlation coefficients thus obtained are shown
in Table 2, stratified by averaged over four fellows. Notice
that DM-ALOST gave a higher correlation than the other
registration methods, although none of the differences were
significant. It showed that DM-ALOST gave best registration
results among all six methods [32].

Discussion and conclusion

We developed a hybrid registration framework called DM-
ALOST to register images with large local deformations
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Table 1 Mean dice metric (MDM) between annotations on pre- and post-contrast abdominal MR images prior to registration (i.e. no registration),
and after registration using, respectively, DRAMMS, DM, MIND, DM-MIND, ALOST and DM-ALOST

No registration DRAMMS DM MIND DM-MIND ALOST DM-ALOST

Fellow-1 0.50 (0.24) 0.52 (0.22) 0.55 (0.20) 0.63 (0.21) 0.65 (0.20) 0.66 (0.22) 0.68 (0.17)

Fellow-2 0.42 (0.27) 0.52 (0.23) 0.53 (0.21) 0.59 (0.21) 0.62 (0.19) 0.61 (0.21) 0.69 (0.13)

The numbers printed in bold face are the maxima, i.e. the best results, per row. The standard deviation is shown between brackets

Table 2 Average Pearson correlation coefficients of correlations between manual and semi-automatic RCE measurements

No registration DRAMMS DM MIND DM-MIND ALOST DM-ALOST

Average 0.55 0.6125 0.6125 0.5975 0.6025 0.605 0.6225

Manual measurements were taken by four research fellows supervised by four radiologists. Semi-automatic RCE measurements were taken prior
to and after registration by DRAMMS, MIND, DM-MIND, ALOST and DM-ALOST. The numbers printed in boldface are the maxima, i.e. the
best results. The average correlation coefficients by correlating the semi-automatic RCE measurements to all the manual RCE measurements

combined with large local intensity variations. The main tar-
get application was the spatial alignment of 3D abdominal
pre- and post-contrast MR images of patients with Crohn’s
disease. Differences in inspiration depth and peristalsis cause
large local geometric deformations, while the administrated
contrast agent causes large spatially localized contrast vari-
ations. The developed method—DM-ALOST—combines a
discrete descriptor matching at the full image resolution
with continuous optimization of a powerful representation
exploiting the mean phase and the phase congruency. The
discrete optimization enabled us to copewith local geometric
deformations of small image structures and guides the con-
tinuous registration in such a way that it does not get trapped
in a local minimum. The use of the mean phase offers the
required invariance to large intensity distortions.

It is important for our application that especially the dis-
eased parts of the bowel are correctly registered. Previously,
we developed a method to automatically segment the dis-
eased bowel wall from post-contrast MR images [33]. An
obvious way to enhance the registration might be to give
high priority to such regions [34]. However, we have found
that this does not lead to a significant improvement, which
we attribute to the small size of the regions.

There are several limitations of our work. The optimal
weighting parameters were manually selected for each reg-
istration task. Although this might bias the reported figures,
we found little difference between the manually tuned set-
tings for the different data sets and the different tasks. Indeed,
empirical fine-tuning may be needed for particular task. For
example, the scale ofGaussianfilter should be increased if the
SNR of image is too low. Therefore, we do not expect that it
influences the ordering of the six methods in terms of perfor-
mance. Another limitation is that the HOG-MP descriptor is
not invariant to non-rigid deformations. For data hampered
by very large local non-rigid deformations, the descriptor
matching using HOG-MPmight fail. In that case, descriptors

could be considered such as described in [35,36]. However,
that would go at the expense of a higher computation time.
Furthermore, incorporating segmentation of the entire bowel
(i.e. not only the diseased parts) might be useful, although
the segmentation on the pre-contrast MR images is far from
trivial.
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