
   
 

© The Author(s) 2011. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
email: chilp@mail.ccnu.edu.cn 

Letter 
Statistical Physics and Mathematics for Complex Systems December 2011  Vol.56  No.34: 36303632 

 doi: 10.1007/s11434-011-4751-1  

Binary opinion dynamics with noise on random networks 

CHI LiPing 

Institute of Particle Physics & Complexity Science Research Center, Central China Normal University, Wuhan 430079, China 

Received April 18, 2011; accepted May 31, 2011 

 

Two kinds of noise strategies in binary opinion dynamics on ER random networks are discussed. Random noise p1 in the initial 
configuration plays a role in redistributing the opinion states associated with the network. Under synchronous updating, the sys-
tem can attain a stable state within few time steps. The fraction of nodes with changed opinion states F decreases exponentially 
with time, and the ratio of one of the two opinion states R remains almost unchanged during the evolution. The average ratio <R> 
crosses at the half-half initial concentration under different p1. For noise in the dynamical evolution p2, the system can reach a 
steady state with small fluctuations. With larger p2, more nodes have changed opinion states at each updating and more nodes with 
opposite opinions coexist. If p2 is greater than 0.5, the two opinions coexist with equal support. 
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In recent years, much effort has been invested in social dy-
namics formulated with concepts and methods from statis-
tical physics [1–3]. Opinion dynamics is one of the social 
problems well-studied by physicists based on the famous 
Ising model from three decades ago [4]. Since then, quite a 
few opinion models have been proposed, such as the voter 
model [5,6], the Sznajd model [7–13] and the bounded con-
fidence model [14–16], to name a few. In most of these 
models, each of N agents is assigned a finite number of 
available states of opinions. Opinion formation is modeled 
as a collective behavior of agents in which individuals 
evolve following either majority rule or imitation. In a bi-
nary opinion dynamics, two competing states, +1 or 1, are 
considered. Despite the complex dynamics of opinions 
among agents, the system attains total consensus of one of 
the two contrasting opinions, or a steady state with an equal 
distribution of opinions. 

The growing field of complex networks [17–22] enables 
us to obtain a better knowledge of social systems. The in-
tense theoretical research currently taking place, examines 
the systems of nodes representing agents and links repre-

senting the interactions between them. In the random net-
work proposed by Erdos and Renyi (ER), N nodes are con-
nected by n edges selected randomly from the N(N1)/2 
possible edges; the connection probability is p = n/N(N1)/2. 
The number k of edges connecting one node to others is 
called the degree of that node. The average degree of the 
random network is <k>=2n/N = p(N1)≈pN if p<<1.  

The aim of our model in this paper is to explore the evo-
lution and to determine the final state of the binary opinion 
dynamics with noise. The opinion dynamics is performed 
on the ER random network with nodes N = 105 and average 
degree <k>=4. In the initial configuration, each node is as-
signed an opinion 1 with probability f and +1 with proba-
bility 1f. In this binary opinion dynamics, individuals 
evolve by majority rule: the sign of each node is determined 
according to the majority of its nearest neighbors. Two 
kinds of noise strategies are discussed: (i) noise in the initial 
configuration; and (ii) noise in the dynamical evolution.  

We stress that the evolution in the paper is synchronous, 
which means that at each iteration, every node in the net-
work calculates its next state depending on neighborhood 
opinions, thus to ensure all nodes take the majority opinions 
in their groups.   
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First, we consider the noise in the initial configuration. 
We randomly choose nodes with probability p1 to take their 
opposite states before the evolution. With synchronous iter-
ation under majority rule, we find that the system attains a 
stable state within a few steps [8]. In the stable state, all 
nodes are in the majority compared with their nearest 
neighbors and maintain their opinions. We use F to denote 
the fraction of nodes that have changed their opinion states 
at any given iteration, i.e. F=Nchanged/N. 

The smaller F is the more stable the system becomes. 
Figure 1 shows F evolving with the simulation time under 
different probabilities p1. The fraction of nodes with 
changed states has no relevant to p1, but depends exponen-
tially on time t, with the exponent about 1.75.  

To obtain the time-dependence of the opinion states, we 
record the ratio of opinions 1 within the system after each 
update here denoted by R=N1/N.  

The inset in Figure 2 plots the time variation of R when 
the initial fraction of opinion 1 is 0.1, that is, f = 0.1. We 
find that R remains almost unchanged under different p1. 
We also notice that the ratio of opinion 1 can rise to as 
high as 0.5 in the final state under p1=0.7 even though the 
initial fraction is f = 0.1. Assuming R is unrelated to p1, we 
record the average value <R> after 10 realizations with 
each p1 with fixed f. Figure 2 shows the results of <R> as a 
function of f. The intersection of different p1 is made at f = 

0.5. If f < 0.5 <R> becomes larger with increasing p1, 
whereas if f > 0.5 <R> decreases with p1.  

These results can be explained by considering that if we 
change the states of randomly chosen nodes, the initial dis-
tribution of opinions is changed correspondingly. After in-
troducing p1, the fraction of opinion 1 in the initial distri-
bution takes the form f (1p1)+(1f )p1, in which the first 
term is the probability of staying in state 1 and the second 
term is the probability due to transitions from state +1 to 1.  

 

Figure 1  Time evolution of the fraction of nodes with changed opinion 
states. For the random noise in the initial configuration, the fraction F 
decreases exponentially with t under probability p1=0.1, 0.5, 1, respectively. 
The exponent is about 1.75. 

 

Figure 2  Plot of the average ratio of opinion 1, <R>, as a function of f 
under different probabilities of p1 for the noise in the initial configuration. The 
inset shows R evolving with t when f = 0.1. The lines are for eye guidance. 

It is obvious that the configuration of the network will not 
be changed at f = 0.5 under different p1. The application of 
random noise p1 shifts the initial concentration of opinion 
1 from f to f (1p1)+(1f )p1. The effect of p1 is corre-
sponding to the redistribution of initial opinion states.  

Next, we discuss the noise in the dynamical evolution. In 
this noise strategy, at each synchronous updating, we 
choose nodes with probability p2 that stay at their minority 
states compared with their nearest neighbors and with 
probability 1p2 that the nodes assume the majority states. 
For p2=0, the model results in ordinary majority rule on 
random networks.  

Figure 3 shows the time variation of R and F given f = 0.5 
with p2 = 0.01, 0.1, 0.5, 0.7. We find that the system can arrive 
at a steady state with small fluctuations. If p2 is very small, 
see p2 = 0.01 in Figure 3, the system has a tendency towards 
a state of consensus. As p2 becomes larger, more nodes 
change their opinion state and hence more nodes with op-
posing opinions exist in the system. If p2 0.5, the two op-
posing opinions coexist with equal support. At the same time, 
more than half of the nodes keep changing their opinions. 

Recall that noise parameter p2 represents the fraction that 
nodes will not adopt majority states of their nearest neigh-
bors, but keep their minority states. If we introduce noise 
into the dynamics of majority rule, the system can no longer 
reach a consensus state. With p2→0, the system will be 
nearing the consensus state. If p2 0.5, most nodes intending 
to change will keep their minority states, whereas the rest 
evolve under majority rule. As a result, the system will re-
tain thereabouts equal support for the two opinions. 

In summary, we have investigated two kinds of noise 
strategies in binary-opinion dynamics for ER random net-
works. The random noise p1 in the initial configuration has  
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Figure 3  The ratio of opinion 1 R (a) and the fraction of changed nodes 
F (b) as a function of time step t for the noise in the dynamical evolution.  

played a role in the redistribution of opinion states in the 
network. Under synchronous updating, the system attained a 
stable state within a few time steps. The fraction of nodes 
with changed opinion states F falls off exponentially with 

time. The ratio R of one of the two opinion states stayed 
almost unchanged during the evolution. The average ratios 
<R> for different p1 all crossover at f = 0.5. For noise p2 in 
the dynamical evolution, the system can arrive at a steady 
state with small fluctuations. With larger p2, F had become 
larger and more nodes with opposing opinions coexisted in 
the system. If p2 is greater than 0.5, the two opinions coexist 
with equal support with more than half of the nodes chang-
ing state, i.e. opinions, within any time step. 
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