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Abstract Multibody systems are dynamical systems characterized by intrinsic symmetries and invariants.
Geometric mechanics deals with the mathematical modeling of such systems and has proven to be a valuable
tool providing insights into the dynamics of mechanical systems, from a theoretical as well as from a com-
putational point of view. Modeling multibody systems, comprising rigid and flexible members, as dynamical
systems onmanifolds, and Lie groups in particular, leads to frame-invariant and computationally advantageous
formulations. In the last decade, such formulations and corresponding algorithms are becoming increasingly
used in various areas of computational dynamics providing the conceptual and computational framework for
multibody, coupled, andmultiphysics systems, and their nonlinear control. The geometric setting, furthermore,
gives rise to geometric numerical integration schemes that are designed to preserve the intrinsic structure and
invariants of dynamical systems. These naturally avoid the long-standing problem of parameterization singu-
larities and also deliver the necessary accuracy as well as a long-term stability of numerical solutions. The
current intensive research in these areas documents the relevance and potential for geometric methods in
general and in particular for multibody system dynamics. This paper provides an exhaustive summary of the
development in the last decade, and a panoramic overview of the current state of knowledge in the field.

1 Introduction

Space kinematics is solely based on screw theory, and consequently so is the kinematics of multibody systems
(MBS). Even though such concepts are not so widely known in the MBS community, which is an obstacle
hindering a fruitful exploitation of such concepts for computationalMBS dynamics. On the other hand, a recent
trend in MBS dynamics is to employ the terminology and certain concepts of Lie groups noting that rigid body
motions, i.e., finite frame transformations, form such a group possessing certain desirable properties. The link
between the theory of screws and motion groups is the fact that the screw algebra is nothing but the Lie algebra
of the Lie group in question. The aim of this review paper is to discuss the significance of the Lie group
concept, to summarize the recent work and to discuss open research problem in this area. It is shown that such
an approach gives rise to compact formulations of the basic kinematic relations and to advanced geometric
integration schemes.

Spatial kinematics rests on the theory of screws as originally discussed by Ball [10]. From today’s perspec-
tive, this seems to be most natural, but it would not have happened without the major overhaul of geometry
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in all its variants triggered by Klein’s Erlanger Program [83]. The basis of screw theory is the line geometry
introduced by Plücker [133,134] together with the projective geometry of Grassmann [68] and Cayley [36].
The projective theory of screws was advanced in the context of kinematics by Study [55], von Mises [156],
Hunt [77], Blaschke [15], Gibson and Hunt [65,66], Dimentberg [53], and many others, and now provides a
consistent and self-contained geometric framework. Klein’s work was accompanied by Lie’s development of
continuous transformation groups. Even more, the discovery that transformations of (Euclidean) spaces form
what is called today Lie groups is an essential aspect in kinematics. Furthermore, the inextricable connection
of Lie groups and spatial motions is a cornerstone of modern kinematics, and consequently of robotics, rigid
body dynamics, and so forth. It is even more remarkable that screw and Lie group theory is underrepresented
in computational MBS dynamics. It is even more remarkable that Liu [91] already presented an approach to
MBS modeling based entirely on screws. The significance of screw theory for mechanism kinematics and
dynamics cannot be too highly praised. As a curiosity a poem entitled "Song of the Screw" was published in
Nature [149] during the time when Ball worked on the theory of screws.

A MBS is a set of solid (rigid or flexible) bodies kinematically or physically interconnected. If a MBS
consists of rigid bodies, it is called a discrete mechanical system [1,5]. Approaches to MBSmodeling have tra-
ditionally been split into twomain categories, namely the so-called absolute and relative coordinate approaches.
The motivation to apply Lie group methods to the absolute and relative coordinate formulations is different.
The former aims to apply geometric Lie group integration methods, whereas the latter aims to employ the
geometry of screw motions for the modeling purposes. This will be discussed in the paper. Lie group methods
are the bridge between differential geometric approaches to MBS dynamics and geometric modeling concept
applicable to computational MBS dynamics.

The area of Lie group and geometric methods is a relatively young discipline. Various approaches together
with different notations havemerged. A review of this upcoming area is hence timely. In Sect. 2, the geometry of
the rigid bodymotion is discussed and the configuration space is identified with a Lie group. The differences of
the semidirect product group SE (3) and the direct product SO (3)×R

3 are discussed. Velocities are introduced
by left or right trivialization.The rigid bodydynamics is reviewed inSect. 3. Thegoverning equations arewritten
in the form of Euler–Poincaré equations. Therewith the equations governing the kinematics and dynamics are
consistently written in Lie group setting. Section 4 recalls the modeling of lower pair joints using canonical
coordinates on themotion subgroups defined by lower pair joints. This is then the basis for modelingMBSwith
tree structure in terms of relative coordinates in Sect. 5. In this section, recursive relations for the configuration,
velocity, and acceleration are recalled. Emphasis is given on the various forms that were reported in the
literature. Finally, the motion equations are expressed algebraically in closed form. The Lie group modeling
in terms of absolute coordinates is presented in Sect. 6. The numerical integration of these model equations is
discussed in Sect. 7. In each section, the current trend and open issues are discussed.

2 The geometry of rigid body motions

A proper representation of rigid body motions is essential for any Lie group MBS modeling. Rigid body
motions form a Lie group—the group if isometric and orientation-preserving transformations of Euclidean
space. While the geometry of rigid body motions is well understood, several representations of rigid body
motions have been introduced.

2.1 Semidirect product representation of finite motions as screw motions

2.1.1 Rigid body motions as frame transformations

A rigid body is regarded as an Euclidean space equipped with a mass density function. Kinematically, a rigid
body is represented by a body-fixed reference frame with respect to which the mass density is defined. The
configuration of a rigid body is then represented by a rotation matrixR ∈ SO (3) and a position vector r ∈ R

3.
The configuration is denoted with C = (R, r) ∈ SE (3). The Lie group SE (3) = SO (3) � R

3 of rigid body
motions is the semidirect product of the rotation group SO (3) and the translation group R

3

SE (3) = {C = (R, r) |R ∈ SO(3), r ∈ R
3} (1)

with the group multiplication C1 · C2 = (R1R2, r1 + R1r2). That is, the rotation group SO (3) acts on the
translation groupR

3. The latter clearly describes frame transformations. It is also customary to represent frame
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transformations as 4 × 4 matrices

C =
(
R r
0 1

)
∈ SE (3) . (2)

Thesematrices are called homogenous transformationmatrices [119] since they are used to transform homoge-
nous point coordinates. The group multiplication, i.e., the concatenation of frame transformations, is then the
matrix multiplication C1C2. The inverse of the transformation (2) is

C−1 =
(
RT −RT r
0 1

)
=

(
R −Rr
0 1

)
(3)

, respectively, C−1 = (
RT , −RT r

)
. In this representation, SE (3) is a matrix Lie group. Throughout the paper,

the notations C ∈ SE (3) and C ∈ SE (3) are used interchangeably.

2.1.2 Instantaneous screws and canonical coordinates

In matrix representation, the Lie algebra se (3) is the vector space of matrices of the form

X̂ =
(

ξ̃ η
0 0

)
∈ se (3) (4)

where ξ̃ ∈ so (3) is the skew symmetric matrix associated to the vector ξ ∈ R
3. Notice that occasionally the

‘hat’ notation is used instead of the tilde, as for instance in [119]. Here the hat denotes isomorphism

X =
(

ξ
η

)
∈ R

6 ↔ X̂ =
(

ξ̃ η
0 0

)
∈ se (3) . (5)

The Lie bracket on se (3) is given by the matrix commutator [X̂1,X̂2] = X̂1X̂2 − X̂2X̂1. With the isomorphism
(5), this Lie bracket reads

[X1,X2] = (
ξ1 × ξ2, η1 × ξ2 + ξ1 × η2

)T = adX1X2 (6)

with

adX =
(

ξ̃ 0
η̃ ξ̃

)
. (7)

The Lie bracket (6) is also called the screw product [24,144]. The matrix (7) has appeared under different
names, such as ‘spatial cross product’ in [61,62,82], or the ‘north-east cross product’ [22]. The closed form
of the exp mapping on SE (3) is found evaluating the matrix exponential

exp(X̂) =
(
exp(̃ξ) dexpξ η

0 1

)
(8)

with the Euler–Rodrigues formula

exp ξ̃ = I + sin‖ξ‖
‖ξ‖ ξ̃ + 1−cos‖ξ‖

‖ξ‖2 ξ̃
2

(9)

= I + sinc ‖ξ‖ ξ̃ + 1
2 sinc

2 ‖ξ‖
2 ξ̃

2
(10)

and dexp is the right-trivialized differential of the exp mapping on SO (3)

dexpξ = I + 1−cos‖ξ‖
‖ξ‖2 ξ̃ + ‖ξ‖−sin‖ξ‖

‖ξ‖3 ξ̃
2

(11)

= 1
‖ξ‖2

[
(I − exp ξ̃ )̃ξ + ξξ T

]
(12)

= 1
‖ξ‖2 ξξ T − sinc ‖ξ‖ ξ̃ − 1

2 sinc
2 ‖ξ‖

2 ξ̃
2
. (13)

The expressions (10) and (13) are preferable from a computational point of view [114].
The important point for application to MBS modeling is that se (3) is isomorphic to the algebra of screws

[119,144]. It actually took some time until their relation was fully understood since Ball [8–10] introduced the
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concept of screws. An excellent review on this topic can be found in [47,48]. With a chosen reference frame,
a general screw is represented by a screw coordinate vector X = (ξ , η), as in (5), where ξ ∈ R

3 is the angular
and η ∈ R

3 is the translational component. While Ball introduced the notion of screws basically as a tool for
static analysis, it was first Mozzi [109] who proved that any rigid body motion possesses an instantaneous
screw axis about which the body is performing an instantaneous screw motion. Chasles [38] later proved that
any finite rigid body displacement can be achieved by a screw motion about a constant screw axis.

Chasles theorem gives rise to the explicit construction of the screw coordinates for a finite screw motion.
Denote with e ∈ R

3 the unit vector along the axis, and with p ∈ R
3 the position of any point on that axis.

Then, the unit screw coordinate vector is [102,119,144]

X =
(

e
p × e + eh

)
∈ R

6. (14)

Here, h ∈ R is the pitch of the screw, i.e., h = 0 for pure rotations, and h = ∞ for pure translations. For the
case h = ∞, the screw coordinates (14) are the Plücker coordinates of a line at infinite. With this particular
form, the exp mapping (8) becomes

exp(ϕX̂) =
(
exp(ϕ̃e) (I − exp(ϕ̃e))p + ϕhe

0 1

)
, for h �= ∞

=
(
I ϕe
0 1

)
, for h = ∞ (15)

The exponential mapping in its closed form is the foundation for the Lie group modeling of MBS kinematics.
The six elements of the screw coordinate vector X ∈ R

6 in (8) represent canonical coordinates of the
first kind on SE (3) (also called exponential coordinates). Therewith the configuration of a rigid body is
determined as C (X) = exp(X̂). The angular part ξ ∈ R

3 is indeed the instantaneous rotation axis. A rigid
body motion can also be described as combination of successive one-dimensional motions. This corresponds
to expressing SE (3) as product of one-parameter subgroups. Then, the configuration is parameterized as
C (ϕ) = exp(ϕ1̂e1) exp(ϕ2̂e2) · · · exp(ϕ6̂e6) with constant basis vectors ei ∈ R

6. The ϕi , i = 1, . . . , 6 are
canonical coordinates of the second kind.

2.1.3 Frame transformations of screws

Frame transformations are described by the conjugation map. Let C ∈ SE (3) be the configuration of a body
w.r.t. a chosen frame. Now let B ∈ SE (3) be the transformation to another reference frame. Then,

C′ = LB ◦ R−1
B · C = BCB−1 = B exp(X̂)B−1 = exp(X̂′) (16)

where LB and RB are left and right translation map on SE (3), respectively, and

X̂′ = AdB(X̂) = BX̂B−1. (17)

Here AdB : se (3) → se (3) is the adjoint transformation (111). Using screw coordinates, the adjoint mapping
is X′ = AdBX with

AdB =
(

R 0
r̃R R

)
(18)

for B = (R, r).

2.1.4 Rigid body velocities: twists

Using operations on the Lie group, there are two ways to introduce the twist of a rigid body: the spatial twist
V̂s := TIR

−1
C · Ċ and the body-fixed twist V̂s := TIL

−1
C · Ċ. These are explicitly

V̂s =
(

ω̃s vs

0 0

)
= ĊC−1, V̂b =

(
ω̃b vb

0 0

)
= C−1Ċ (19)
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and thus the twist screw vectors are Vs = (ωs, vs)T and Vb = (
ωb, vb

)T
. Here ω̃s

i = ṘiRT
i and ω̃b

i = RT
i Ṙi

are the body-fixed and spatial angular velocity, respectively. The vector vbi = RT
i ṙi is the velocity of the

body-fixed frame measured in the inertial frame and resolved in the body-fixed frame. The spatial translational
velocity, vsi = ṙi + ri × ωs

i , is the velocity of the point of the body that is momentarily passing through the
origin of the inertial frame and resolved in this frame.

In terms of the instantaneous screw coordinates as canonical coordinates, the rigid body motion is deter-
mined as C (t) = expX (t). Then, the body twist is determined by

Vs = dexpXẊ, Vb = dexp−XẊ. (20)

The relation (20) is attributed to Hausdorff and Magnus [93]. A closed form of the right-trivialized differential
of the exp mapping on SE (3) was reported in [18,22,128]

dexpX =
(
dexpξ 0
P dexpξ

)
(21)

for X = (ξ , η) ∈ se (3), where

P (X) = β

2
η̃ + 1 − α

‖ξ‖2
(̃
η̃ξ + ξ̃ η̃

) + hX
α − β

‖ξ‖ ξ̃ + hX
‖ξ‖2

(
β

2
− 3(1 − α)

‖ξ‖
)

ξ̃
2

(22)

with α := 2
‖ξ‖ sin

‖ξ‖
2 cos ‖ξ‖

2 , β := 4
‖ξ‖2 sin

2 ‖ξ‖
2 , and the pitch h = ξ · η/ ‖ξ‖2. An alternative form that

makes obvious the geometric properties of the screw coordinates was reported in

dexpX =
(
dexpξ 0
A dexpξ

)
(23)

with

A = d1
(
sincϕ1 + 1

2 sinc
2 ϕ1
2

)
ñ1 + d1

ϕ1
(sincϕ1 − cosϕ1)̃n21

+ 1
2 sinc

2 ϕ1
2 m̃1 + (1 − sincϕ1) (̃n1m̃1 + m̃1ñ1) (24)

where ϕ := ‖ξ‖ is the rotation angle, n := ξ/ ‖ξ‖ the unit vector along the screw axis,m := −n×(n×η)/ ‖ξ‖
the moment vector, and d := ξ · η/ ‖ξ‖ = n · m the displacement along the axis. Moreover, (n,m) ∈ R

6 is
the vector of Plücker coordinate vectors of the line along the instantaneous screw.

2.1.5 Kinematic reconstruction

The twist of a rigid body does not reveal its actual finite motion. The determination of the actual motion of the
rigid body amounts to solving the Eq. (19) that can be rewritten as

Ċ = V̂sC, Ċ = CV̂b. (25)

These are the right and , respectively ,left Poisson equations on the Lie group SE (3). They are referred to as
the kinematic reconstruction equations [76,98]. These are nonlinear ODEs in the Lie algebra SE (3). That is,
their solution must preserve the nonlinear invariants defining the group.More precisely, these are the invariants
of SO (3), namely the orthogonality conditions.

2.2 Direct product representation of rigid body motions

The configuration of a rigid body relative to a chosen frame can also be regarded as an element of the direct
product of the rotation and translation group: C = (R, r) ∈ SO (3) × R

3. However, then the multiplication in
the direct product group is C1 · C2 = (R1R2, r1 + r2). Apparently, this multiplication law does not describe
frame transformations. The direct product group does hence not represent rigid body motions. Nevertheless,
it is frequently used as geometric model for MBS kinematics and for Lie group integration methods (see Sect.
7). The difference becomes significant if the direct product multiplication is employed in the position update
of time integration schemes as will be shown later.
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The inverse element is (R, r)−1 = (RT , −r). If desired, SO (3) × R
3 can be represented by the group of

7 × 7 matrices of the form [116]

C =
⎛
⎝R 0 0

0 I r
0 0 1

⎞
⎠ ,with R ∈ SO(3), r ∈ R

3. (26)

The multiplication is then represented by C1C2.

2.2.1 Canonical coordinates

The Lie algebra of the direct product SO (3)×R
3 is so (3)×R

3. The latter is isomorphic toR
6, and its elements

can be represented as vectors X = (ξ , r) ∈ R
6. The exponential mapping on the direct product group is

X = (ξ , r) 
−→ expX = (exp ξ̃ , r) (27)

with the exponential mapping (9) on SO (3). Apparently,X is not a screw coordinate vector, but rather consists
of a scaled rotation axis and a translation vector. The parameters are inherited from the rotation group SO (3)
and translation group R

3. Moreover, ξ ∈ R
3 is the scaled rotation vector in (9), and r ∈ R

3 is the translation
vector. These serve as canonical coordinates on the direct product group.

2.2.2 Rigid body velocities

Also for the direct product representation rigid body velocities can be defined using left or right trivialization.
For C (t) = (R, r) ∈ SO (3) × R

3, the left- and right-trivialized derivatives yield, in vector notation,

Vm = C−1 · Ċ = (ωb, ṙ) ∈ so (3) × R
3 (28)

Vh = Ċ · C−1 = (ωs, ṙ) ∈ so (3) × R
3. (29)

These are not proper twists, i.e., screws. Vm is commonly referred to as the mixed velocity (it contains a mix
of body-fixed angular velocity ωb and translational velocity ṙ resolved in the inertial frame), whereas Vh is
referred to as the hybrid velocity [119].

The dexp mapping corresponding to (27) is

dexpX1
(X2) = (dexp̃ξ1

(̃ξ2), r2) (30)

with the dexp mapping on SO (3) in (11). Thus, the mixed and hybrid velocities are determined as

Vm = dexp−XẊ =
(
dexp−ξ̃ 0

0 I

)(
ξ̇
ṙ

)
(31)

Vh = dexpXẊ =
(
dexpξ̃ 0
0 I

)(
ξ̇
ṙ

)
(32)

forX = (ξ , r). The dexp mapping reveals once more the problematic point of the direct product representation
namely that the angular and linear velocities are decoupled.

The Lie bracket on this algebra is

[X1,X2] = (
ξ1 × ξ2, 0

)
. (33)

This can be expressed as adX2X1 with matrix

adX =
(

ξ̃ 0
0 0

)
. (34)



Geometric methods and formulations 3333

2.2.3 Kinematic reconstruction

The reconstruction equations split according to the direct product representations into the integration of ṙ and

Ṙ = ω̃sR (35)

Ṙ = Rω̃b. (36)

These reconstruction equations are seemingly easier to solve than those for the semidirect product representa-
tion in (25). It is, however, obvious that independent integration of angular and translational part does generally
not produce a screw motion, i.e., a rigid body motion.

3 Rigid body dynamics on a lie group

In a geometric setting, the motion of a rigid body is a curve in a Lie group. Accordingly, the rigid body
dynamics is governed by the differential equations on this Lie group. These are the left- and, respectively,
right-trivialized Euler–Poincaré equations. Therewith the motion equations are defined in a coordinate-free
way. A particular choice of representation then yields a particular form of the motion equations.

3.1 Euler–Poincaré equations on SE (3)

The dynamics of a rigid body is governed by the well-known Newton–Euler equations. In a geometric setting,
the Newton–Euler equations of a free rigid body in terms of body-fixed twists are the left-trivialized Euler–
Poincar é equations on SE (3)

0 = �̇
b − adTVb�

b (37)

= MbV̇b − adTVbV
bMb (38)

Here �b ∈ se∗ (3) (se∗ (3) is the dual space to se (3) as a vector space) is the body-fixed momentum screw
defined as �b := MbVb where

Mb =
(

�b mbd̃bc
−mbd̃bc mI

)
(39)

is the (constant) body-fixed inertiamatrix given in termsof the body-fixed inertia tensor�b and the displacement
vector bdbc from the origin of the body-fixed reference frame to the center of gravity resolved in the body-fixed
frame.

In spatial representation, the Newton–Euler equations attain the form

0 = �̇
s

(40)

= MsV̇s − adTVsVsMs. (41)

Here,Ms is the spatial inertia matrix, and�s ∈ se∗ (3) the spatial momentum screw. The Eqs. (38) and (41) are
formally identical. The Eqs. (37) and (40) describe the conservation of momentum. They govern the dynamics
on se∗ (3) after left or right trivialization, respectively. Application of Hamilton equations and use of canonical
momenta are not common MBS dynamics. Rather the Eqs. (38) and (41) are used that govern the dynamics
on se (3).

Remark 1 The Eq. (37) can be derived invoking the concept of Lagrange reduction as it has been advanced by
Marsden and Scheurle [100]. Lagrange and Poisson reductions for general mechanical systems are powerful
tools in geometric mechanics. In the general situation on a Lie group G with algebra g with given left- and
right-trivialized Lagrangians L l (g, ξ) and L r (g, ξ), respectively, the reduced equations are

d

dt
Dξ L

l (g, ξ) − ad∗
ξ · Dξ L

l (g, ξ) − TeLg · DgL
l (g, ξ) = 0

ġ = TeLg (ξ) (42)
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d

dt
Dξ L

r (g, ξ) + ad∗
ξ · Dξ L

r (g, ξ) − TeRg · DgL
r (g, ξ) = 0

ġ = TeRg (ξ) . (43)

with ad∗
ξ : g∗ → g∗ being the dual to the adjoint operator on g. The last equation in (42) and (43), respectively,

is indeed the respective kinematic reconstruction equation. For Lagrangians that are G independent, i.e., L
does not depend on g ∈ G (as for the free rigid body in body-fixed description), these equations reduce to
the Euler–Poincaré equations. More on reductions can be found in [17,98,100], and also on the extension to
continuum mechanics [99].

3.2 Rigid body equations of motion on SO (3) × R
3

If the direct product SO (3)× R
3 is used as configuration space, the motion equations cannot be derived as the

Euler–Poincaré equations. This is a hint that the configuration space does not capture the geometry of rigid
body motions. In other words, a different geometric model is used for the kinematics and for the dynamics.

In terms of mixed velocities, the Newton–Euler equations are

�bω̇b + ω̃b�bωb + mbd̃bcRT r̈ = 0 (44)

m(r̈ + R( ˙̃ωb + ω̃bω̃b)bdbc) = 0. (45)

When a reference frame at the center of gravity is used they simplify to

�cω̇
b
c + ω̃b

c�cω
b
c = 0

mr̈c = 0. (46)

It is important to notice that only in the latter case the angular and translational momentum balance are
decoupled, and that only then the geometric model of a direct product group is applicable. The consequences
will be discussed in Sect. 7. The (46) can also be written as left-trivialized Euler–Poincare equations

0 = MmV̇m − adTVmVmMm (47)

where Mm is the mass matrix (39) with bdbc = 0, and the matrix (34).

3.3 Note on the kinematic reconstruction

Solving the Euler–Poincaré equations yields the time evolution of the spatial and body-fixed twist, respectively.
In summary, the Euler–Poincar é equations (37) and (41) together with the Poisson equations (25) describe the
dynamics and kinematics of a free rigid body, either in spatial or in body-fixed representation. The dynamic
equations (37) and (41) are ODEs on se (3).

The solution of the kinematic reconstruction equations may seem to be a rather obvious task but these
equations have always been a source for problems, mainly for two reasons: (1) there is no singularity-free
parameterization of rotations, and (2) the solution must respect nonlinear invariants intrinsic to SE (3). Clas-
sically the remedy consists in using Euler parameters (unit quaternions) [143]. This itself leads to numerical
issues since the Euler parameters must satisfy a unit length constraints. The latter is a quadratic form and
deemed to be easy to satisfy within numerical integration schemes. Yet, the necessary constraint stabilization,
i.e., renormalization, is a potential cause for errors.

This is classically attributed to Poisson, and (25) and (35,36) are called the kinematic Poisson equation
[142]. More precisely, (35) is referred to as the left Poisson equation and (36) as the right Poisson equation.
However, the problem of determining the rotationwhen the angular velocity is given has also been addressed by
Darboux [49]. For this reason, Condurache [46] called them the kinematic Poisson-Darboux equation.Attempts
to solve them explicitly can still be found in the literature. As such, exact solution for special situations was
proposed [44]. As special case, the Kepler problem of relative orbital motion was solved in [46]. Also the
problem of solving the kinematic Poisson problem in a stochastic setting was reported [69].
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4 The geometry of relative motions

4.1 Relative motions as screw motions

Most technical systems are built with the so-called lower kinematic pairs [2,3,78] that are characterized by
surface contact. The contact surface is thus an invariant subspace of the relative motion two bodies connected
by a lower pair joint. This was studies already by Reuleaux [137,138], which is why lower pairs are also called
Reuleaux pairs. Lower pair joints correspond to subgroups of SE (3). These are the isotropy groups leaving
the contact surface invariant. The correspondence of motion subgroups and lower pairs has been discussed
in [144]. As the space of relative motions (disregarding restrictions due to contact) is a subgroup, the vector
space of relative twists is a subspace of the corresponding subalgebra, i.e., it is involutive. Motivated by this
observation, Stramigioli [150] uses this as the defining property of lower pairs. Recently, Selig [145] and Wu
et al. [158] seized on a concept by Brockett [28] called Lie triple systems. The latter refers to systems of vector
fields that are closed under the triple Lie bracket (whereas a Lie algebra is closed under the Lie bracket). Wu
[158] pointed out that this concept allows for studying the kinematic of non-lower pair joints, such as constant
velocity joints.

The fact that the motion of any lower pair joint can be parameterized by canonical coordinates of second
kind, i.e., by 1-DOF screw motions, proves that any lower pair joint can be modeled as a combination of
revolute and prismatic joints, which was the approach when computational MBS dynamics started [143,157].
This notion also goes back to Denavit and Hartenberg [50] (Table 1).

Not all subgroups correspond to lower pairs. But they can be generated by combination of lower pairs

4.2 Partitioning and canonical coordinates

The standard approach in MBS modeling is to introduce body-fixed joint frames whose relative motion is
describe by a screw motion. A detailed exposition of this approach can be found in [154,155].

Variant 1 Consider two bodies, indexed with i − 1 and i . Let Si−1,i be the fixed transformation from the
joint frame to the reference frame on body i − 1, and with Si,i the constant transformation from the joint
frame to the reference frame on body i . In the classical MBS approach, they are parameterized in terms of
Denavit-Hartenberg parameters. The joint motion is then determined by the relative motion of the two joint
frames. For a lower pair joint, this is expressed as exp(Zi qi ) where

Zi =
(

i−1ei
i−1zi × i−1ei + i−1ei hi

)
(48)

is the associated screw coordinate vector, and qi the joint variable (angle, displacement). The notation ix
indicates that the vector is resolved in a frame on body i . The relative configurationCi−1,i := C−1

i−1Ci of body
i w.r.t. body i − 1 is thus

Ci−1,i (qi ) = Si−1,i exp(Zi qi )S
−1
i,i . (49)

Table 1 Subgroups of SE(3) and the corresponding lower pair joint

n Subgroup Lower pair Combination of lower pair joints

1 R Prismatic joint
1 SO (2) Revolute joint
1 Hp Screw joint
2 R

2 Combination of two non-parallel prismatic joints
2 SO (2) � R Cylindrical joint
3 R

3 Combination of three non-parallel prismatic joints
3 SO (3) Spherical joint
3 Hp � R

2 Planar joint + screw joint with axis normal to plane
3 SO (2) � R

2 = SE (2) Planar joint
4 SO (2) � R

3 = SE (2) � R Planar joint + prismatic joint with axis normal to plane
6 SE (3) ‘Free joint’
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Variant 2 In the above formulation, the joint screw coordinate vector is represented in the joint frame on
body i − 1. Since the Lie group formulation is frame invariant, any other frame can be used. In particular, the
reference frame on body i can be used. This leads to

Ci−1,i (qi ) = Bi exp(Xi qi ) (50)

where the constant part Bi := Si−1,iS
−1
i,i = Ci−1,i (0) is the reference configuration of body i w.r.t. body i − 1

for qi = 0. This is referred to as the zero reference configuration of the joint. The screw coordinate vector of
joint i represented in the reference frame of body i is

Xi = AdSi,iZi =
(

iei
ixi,i × iei + hi iei

)
. (51)

Therein, ixi,i is the position vector of a point on the axis of joint i , and iei is the unit vector along the joint
axis, both resolved in the frame in body i .

Variant 3 Instead of using the reference frame on body i , the reference frame on body i − 1 can be used. This
yields the alterative form of (50)

Ci−1,i (qi ) = exp(i−1X̄i qi )Bi (52)

with the joint screw coordinate vector

X̄i = AdSi−1,iZi = AdBiXi =
(

i−1ei
i−1x̄i−1,i × i−1ei + i−1ei hi

)
(53)

expressed in the frame on body i − 1. Now i−1x̄i−1,i is the position vector of a point on the axis of joint i
measured in the frame on body i − 1.

The last two forms (50) and (52) bear important features that make them superior for efficient MBS
modeling. This clearly demonstrates the advantage of using the Lie group, respectively, screw, approach. The
remarkable point here is that no joint frames need to be introduced, and that no convention (like Denavit-
Hartenberg parameters) needs to be respected.

Variant 2 (50) has been reported by Ploen et al. in [130,132]. Both variants 2 and 3, (50) and ( 52), were
originally presented in [125,126].

4.3 Open issues

There are still several open issues regarding the modeling of general joints. The historically prevailing problem
is the singularity-free description of spatial rotations, i.e., of spherical joints. This is not problematic within
the Lie group framework since this is a coordinate-free approach. The problem arises as soon as an explicit
canonical parameterization is introduced. Classically this is remedied by use of Euler parameters. However, in
the Lie group setting, parameters are only required during the time integration. To this end, local parameters
are introduced to describe the configuration increment. Therewith a singularity-free description is achieved
(see Sect. 7).

Beyond lower pairs, complex mechanical systems comprise higher kinematic pairs (e.g., curve contacts)
as well as the so-called non-holonomic joints. A non-holonomic joint is a higher kinematic pair imposing
non-holonomic constraints to relative motion of the respective two links. That is, a non-holonomic joint is
characterized by a non-integrable constraint distribution defining feasible relative velocities. Suchmechanisms
were proposed and analyzed by Grosch et al. [70,71], di Gregorio [51,52], and Duindam and Stramigioli [54].
In [54], a modeling approach was proposed that makes use of local exponential coordinates on the covering
Lie subgroup defining the relative joint motions. A more holistic approach was taken by Chhabra [42,43] who
introduced a generalized exponential formula.

5 Relative coordinate modeling of multibody systems in Lie group setting

The term ‘relative coordinate’ modeling refers to the use of local parameters to describe joint motions and
thus the relative motion of adjacent bodies as in Sect. 4. Historically, the relative coordinate modeling of
mechanisms comprising ideal joints has been the subject of analytical mechanics, ref. to Papastavridis [124]
and Lurie [92]
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5.1 Configuration of a kinematic chain using the product of exponentials

For illustration purpose, consider a kinematic chain with n rigid bodies interconnected by n lower pair 1-DOF
joints. The central relation for the Lie group description of a serial kinematic chains is the Product-of-
Exponentials (POE) formula. Although Brockett presented it in a conference paper [27], the POE formula is a
key relation in the modeling of rigid body mechanisms. Later, Park [125] discussed its computational aspects
and presented two variants as follows.

Denote with q ∈ V
n the vector of generalized coordinates (canonical joint coordinates). The relative

motions due to lower pair joints, as described in the preceding section, can be concatenated as

Ci (q) = B1 exp(X1q1) · B2 exp(X2q2) · . . . · Bi exp(Xi qi ) (54)

= exp(X̄1q1)B1 · exp(X̄2q2)B2 · . . . · exp(X̄i qi )Bi .

It will be called the body-fixed Product-of-Exponentials (POE) formula in body-fixed description since the
joint kinematic is expressed by exponentials of joint screws. The first version of (54) was reported in [132],
and both forms in [125,126]. Common to both formulations (54) is the exclusive use of body-fixed reference
frames, while no joint frame is necessary. The difference though is at which body the reference frame is used.
This resembles the different forms of the Denavit-Hartenberg conventions as discussed in [3].

The body-fixed POE formulation possess two advantages compared to the classical MBSmodeling. Firstly
it does not require introduction of joint frames. Secondly, the screw coordinates Xi of joint i represented in
the reference frame on body i , respectively, X̄i represented in the frame on body i − 1, are given in terms of
readily available geometric data as in (51), respectively (53).

Yet the body-fixed POE formula can be reformulated in terms of joint screw coordinates represented in the
spatial inertial frame as follows

Ci (q) = exp(Y1q1) · exp(Y2q2) · . . . · exp(Yi qi )Ai (55)

where
Ai := B1 · · ·Bi = Ci (0) (56)

is the absolute ‘zero reference’ configuration of body i . Now

Y j = AdA j
jX j =

(
e j

y j × e j + h je j

)
(57)

is the screw coordinate vector of joint j represented in the inertial frame in the reference configuration with
q = 0, where e j is the direction unit vector, and y j the position vector of any point on the joint axis, both
resolved in the inertial frame. This is also the relation of the spatial representation and body-fixed representation
of joint screw in the reference configuration. The spatial POE formula (55) is the original form introduced by
Brockett [27] for the kinematic description of robotic manipulators. The initial transformationAi is referred to
as the ‘zero reference.’ Without resorting the exponential mapping, a ‘zero reference formulation’ was already
reported by Gupta [72] in terms of frame transformation matrices. The POE formulae (55) was first used for
MBS modeling in [30].

The main advantages of the spatial POE formulation is that all required data are represented in the spatial
inertial frame. It thus allows for formulating the MBS kinematics without body-fixed joint frames and without
referring to body-fixed reference frames. This aids theMBSmodeling since no joint kinematics, i.e., Si,i ,Si−1,i
or Bi , need to be described. Rather the absolute reference configurations Ai w.r.t. to the inertial frame and the
screw coordinates (57), i.e., ei and pi are required.

5.2 Velocity of tree topology MBS

The configuration of body i is given recursively as Ci (q) = Ci−1 (q)Bi exp(Xi qi ). Inserting this in the
definition of body-fixed and spatial velocity (20) yields the recursive relation for the body-fixed and spatial
twist

Vb
i = AdCi,i−1V

b
i−1 + Xi q̇i (58)

Vs
i = Vs

i−1 + AdCiXi q̇i . (59)
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Resolving the recursion, the POE formula leads to

Vb
i =

∑
j≤i

Jbi, j q̇ j = Jbi q̇ (60)

Vs
i =

∑
j≤i

Jsj q̇
j = Jsi q̇ (61)

where

Jbi, j = AdCi, j
jX j = AdCi, jA

−1
j
Y j , j ≤ i (62)

Jsj = AdC j
jX j = AdC jA

−1
j
Y j , j ≤ i (63)

are the instantaneous screw coordinates that constitute the columns of the body-fixed and spatial Jacobian Jbi
and Jsi . The body-fixed version of the recursive relations (58) and (62) was reported in [125,126,132]. The
spatial version was presented in [115].

The body-fixed Jacobians have been used already byMaißer in [94]. The remarkable fact that the Jacobians
are given algebraically motivated to call them ‘kinematic basic functions’ since they are the intrinsic objects
required for MBS kinematics. Angeles [4] termed the Jacobian the ‘natural orthogonal complement.’

Denote with Vb = (Vb
1, . . . ,V

b
n)

T the overall body-fixed twist vector of the kinematic chain. This is
determined as

Vb = Jbq̇ (64)

where the 6n × n matrix Jb = AbXb is the body-fixed system Jacobian, and

Ab : =

⎛
⎜⎜⎜⎜⎝

I 0 0 0
AdC2,1 I 0 · · · 0
AdC3,1 AdC3,2 I 0

...
...

. . .
. . .

AdCn,1 AdCn,2 · · · AdCn,n−1 I

⎞
⎟⎟⎟⎟⎠ (65)

Xb : = diag (X1, . . . ,Xn) . (66)

Analogously denote with Vs = (Vs
1, . . . ,V

s
n)

T the overall spatial twist vector. This is given as

Vs = Jsq̇ (67)

where the spatial system Jacobian possesses the factorizations

Js = AsbXb (68)

with

Asb =

⎛
⎜⎜⎜⎜⎝

AdC1 0 0 0
AdC1 AdC2 0 0
AdC1 AdC2 0 0

...
...

. . .
. . .

...
AdC1 AdC2 · · · AdCn−1 AdCn

⎞
⎟⎟⎟⎟⎠ . (69)

5.3 Acceleration of tree topology MBS

The central relation that allows for the recursive and derivative-free generation of motion equations is the
following closed-form expression for the partial derivatives of the body-fixed Jacobian

∂Jbi, j
∂qk

= [
Jbi, j , J

b
i,k

]
, j < k ≤ i. (70)
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This only involves the computationally simple Lie bracket (6). It yields the closed-form expression for the
acceleration in a very concise and compact form

V̇b
i =

∑
j≤i

Jbi, j q̈ j +
∑
j<k≤i

[Jbi, j , Jbi,k]q̇ j q̇k . (71)

The expression (71) has been derived, using different notations, for instance in [27,115,119,125].
Therewith the time derivative of the Jacobian is

J̇bi, j =
∑
j<k≤i

[
Jbi, j , J

b
i,k

]
q̇k = −

∑
j<k≤i

AdCi,kadkXk
Jbk, j q̇k . (72)

This gives rise to the time derivative of the body-fixed system Jacobian

J̇b (q, q̇) = −Ab (q)ab (q̇)Ab (q)Xb = −Ab (q)ab (q̇) Jb (q) (73)

where

ab (q̇) = diag (q̇1ad1X1
, . . . , q̇nadnXn ).

This leads to a compact matrix form of the system acceleration

V̇b = Jbq̈ − AbabJbq̇ = Jbq̈ − AbabVb. (74)

An analogous derivation yields
∂Jsj
∂qk

= [Jsk, Jsj ], k < j (75)

and thus for the time derivative of the spatial Jacobian

J̇sj =
∑
k≤ j

[
Jsk, J

s
j

]
q̇k = [ ∑

k≤ j

Jsk, J
s
j

]
q̇k = [Vs

j , J
s
j ] (76)

and the spatial acceleration

V̇s
i =

∑
j≤i

Jsj q̈ j +
∑

k< j≤i

[Jsk, Jsj ]q̇ j q̇k =
∑
j≤i

(
Jsj q̈ j + [Vs

j , J
s
j ]q̇ j

)
. (77)

The overall spatial acceleration is thus expressed as

V̇s = Jsq̈ + LbsJsq̇ = Jsq̈ + LbsVs (78)

with

bs
(
Vs) = diag (adVs

1
, . . . , adVs

n
). (79)

The expressions for the body-fixed acceleration were presented in [125,126,132]. The role of the Jacobian
was, however, not discussed. It is clear that the Jacobian is the essential object in the MBS kinematics descrip-
tion. Its derivatives are given simply in terms of the Lie brackets, i.e., simple algebraic operations. It is to be
mentioned that the following closed-form expression for the higher-order partial derivatives exists [112,113]

∂νJbi, j
∂qα1∂qα2 · · · ∂qαν

= [. . . [[[Jbi, j ,Jbi,β1], Jbi,β2 ], Jbi,β3] . . . , Jbi,βν
], j < β1 ≤ β2 ≤ · · · ≤ βν ≤ i (80)

where β1 ≤ β2 ≤ · · · ≤ βν is the ordered sequence of the indices α1, . . . , αν .
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5.4 Motion equations in closed form

Finally the above algebraic relations allow for constructing the motion equations of a MBS in closed form.
They are commonly written in the form

M (q) q̈ + C (q̇,q) q̇ = Q (q̇,q, t) (81)

where M denotes the generalized mass matrix, C (q̇,q) q̇ represents the Coriolis and centrifugal forces, and
Q stands for all other generalized forces, including potential, dissipative, and applied forces.

Using body-fixed twists, the kinetic energy of the MBS comprising n rigid bodies is T (q̇,q) =
1
2

∑n
i=1(V

b
i )

TMb
i V

b
i = 1

2 (V
b)TMbVb = 1

2 q̇
TMq̇ where the generalized mass matrix is

M (q) = (Jb)TMbJb (82)

with Mb := diag (Mb
1, . . . ,M

b
n). With (74) the time derivative of the conjugate momentum vector(

∂T
∂q̇

)T = (Jb)TMbVb is d
dt

(
∂T
∂q̇

)T = M (q) q̈ − (Jb)T
(
(MbAbab)T + MbAbab

)
Jbq̇. From (70) follows(

∂T
∂q

)T = (MbAbbbXb)T Jbq̇, introducing

bb
(
Vb) = diag (adVb

1
, . . . , adVb

n
). (83)

The matrix representing Coriolis and centrifugal terms can thus be identified as

C (q, q̇) = −(Jb)T (MbAbab + (bb)T )MbJb. (84)

The expressions (82) and (84) are given algebraically, and the Lagrangian motion equations are thus alge-
braically determined in closed form. The only information needed are the instantaneous joint screw coordinates
in body-fixed representation as it was discussed in [125,126,132].

It is common to rephrase the Lagrange equations as the equations of geodesic in the configuration space
V
n equipped with the mass matrix as Riemannian metric

n∑
j=1

Mi j (q) q̈ j +
n∑

j,k=1

Γi jk (q) q̇ j q̇k = Qi (q, q̇, t) . (85)

Here Γi jk = 1
2

(
∂Mik
∂q j

+ ∂Mi j
∂qk

− ∂Mjk
∂qi

)
= Γik j are the Christoffel symbols. These possess a closed-form

expressions, obtained using the relations (62) and (70),

Γi jk = 1

2

n∑
l=k

(
(Jbl,k)

TMladJbl,i J
b
l, j + (Jbl j )

TMladJbl,i J
b
l,k + (Jbl,i )

TMladJbl,sJ
b
l,r

)

with i < j ≤ k or j ≤ i < k, r = max (i, j) , s = min (i, j) . (86)

The expression (86) for the Christoffel symbols was reported in [30,115] using Lie group notation. Prior to
these publications, an equivalent expression was presented in [94] using tensor notation, where the body-
fixed Jacobians were called ‘kinematic basic functions.’ Also Burdick [35] presented a similar, although not
equivalent, algebraic form of the Lagrange equations.

Analyzing the sensitivity of the motion of a MBS requires linearization of the motion equations, which
amounts to taking partial derivatives. It is clear from the preceding derivation that this shall be possible in a
purely algebraic way. Accordingly, Sohl and Bobrow [148] presented a closed-form algebraic formulation in
Lie group setting. Also this is equivalent to the one presented in [95] using tensor notation. In [110], a closed
form for the partial derivatives of the inverse mass matrix was presented, and in [64] an explicit form of the
time derivatives of the motion equations.
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5.5 Open issues

The computationally efficient evaluation and solution of the motion equations resorts to recursive O (n)
formulations. In the Lie group context, such have been proposed by Ploen et al. [130,132]. The point of
departure is the inverse of the matrix (65) that can be expressed as

Ab = (I − Db)−1 = I + Db + (Db)2 + · · · + (Db)n (87)

with the nilpotent matrix

Db :=

⎛
⎜⎜⎜⎜⎝

0 0 0 0
AdC2,1 0 0 · · ·

0 AdC3.2 0
...

...
. . .

. . .

0 0 · · · AdCn,n−1 0

⎞
⎟⎟⎟⎟⎠ . (88)

This is the common starting point for various O (n)methods [60–62,80,81] . Thus, the basic operations are the
same. However, the actual number of operations depends on the particular transformations involved. That is,
the representation of twists is decisive about the number of operations. When using spatial twists, for instance,
there are no frame transformations in the recursion (58). This is the motivation behind the algorithm introduced
by Featherstone [62]. On the other hand, the instantaneous screw coordinates as well as the spatial mass matrix
must be transformed. Several established O (n) algorithms use the hybrid twist, notably the spatial operator
algebra introduced by Rodriguez [139–141]. Orin et al. [121,122] analyzed the computational effort when
using the different representations. This was made under the premise of modeling convention. The actual
effort remains to be investigated when the general screw description is used. The body-fixed representation
of twists is still dominant in MBS dynamics, while the use of spatial twists is dominant in mechanism theory
[103].

In certain applications, it is necessary to determine the motion equations in closed form. The above closed
form is derived using body-fixed twists. As for the recursive O (n) formulation, the potential benefit of using
spatial, hybrid, or mixed twists remains to be explored.

Most Lie group formulations so far have been focused on lower pair joints that allow for application of the
exponential mapping to express relative motions. Recently, it was attempted in [42,43] and [54] to generalize
this approach to non-holonomic systems. Along this line, an approach to model kinematic couplings that do
not generate a motion subgroup was presented in [158].

Most MBS possess kinematic loops. Within the relative coordinate modeling, this means that the loop
constraints must be formulated in terms of POE formula. Moreover, their derivatives must be determined
algebraically. There is yet no systematic approach to this important issue.

Rigid body motions can be represented by dual quaternions. This was advanced by Chevallier [39–41] for
application to MBS. Also recently Shoham proposed dynamics formulations using dual quaternions [31,45].
The motivation behind this is that this is deemed to be more compact than the screw formulation.

Non-canonical parameterizations such as Cayley-Rodrigues parameters allow for algebraic description of
motions on the expense that they are not globally valid. LikeEuler parameters, such algebraic parameterizations,
also called vector parameters, are deemed advantageous. Lie group formulation in terms of vector parameters
has been presented in [106–108]. Their benefits are to be explored.

6 Absolute coordinate modeling of multibody systems in Lie group setting

6.1 Ambient space of an MBS

A rigid body is kinematically represented by an element of a 6-dimensional Lie group G (either SE (3) or
SO (3)×R

3). The starting point for a Lie group formulation is to describe the motion of a MBS as a curve in a
product Lie group. For aMBS comprising n rigid bodies the, ambient configuration space is the 6n-dimensional
direct product Lie group G = G1 × · · · ×Gn , where Gi is the Lie group used to describe the motion of body
i w.r.t. to the inertial frame. The absolute configuration of the MBS is then g = (C1, . . . ,Cn) ∈ G, where
Ci ∈ Gi is the absolute configuration of body i . Multiplication in G is defined as g′g′′ = (C ′

1C
′′
1 , . . . ,C ′

nC
′′
n ).

The inverse element in G is g−1 = (C−1
1 , . . . ,C−1

n ), and the identity element is I = (
IG1, . . . , IGn

)
with the

identity element IGi in Gi .
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The Lie algebra of the ambient space G is g := g1 × · · · × gn . A typical element has the form X =
(X1, . . . ,Xn) ∈ g. A Lie bracket on this direct product Lie algebra g is inherited componentwise from gi via
[X,Y] = ([X1,Y1] , . . . , [Xn,Yn]) ,X,Y ∈ g. For each Ci ∈ Gi , there exists a Xi ∈ gi , serving as canonical
coordinates, such that Ci = expXi , with the exp mapping on Gi . The induced exp mapping on the direct
product group is exp : g → G

exp X = (expX1, . . . , expXn) ∈ G. (89)

Correspondingly, its right-trivialized differential is dexpX (Y ) = (dexpX1
(Y), . . . , dexpXn

(Yn)). In this set-
ting, X ∈ g represents absolute canonical coordinates of the MBS.

The tangent space of G is isomorphic to the Lie algebra g via left-trivialization

TgG = {
TeLg · V, V ∈ g

}
. (90)

Accordingly, the velocity of the MBS can be introduced via left-trivialization as V := TeL−1
g · ġ = g−1ġ ∈ g

or right-trivialization as V := TeR−1
g · ġ = ġg−1 ∈ g.

Most frequently, the left-trivialized form is used where Gi is either SE (3) or SO (3) × R
3.

6.2 Configuration space of an MBS as subvariety

The bodies of an MBS are geometrically constrained. It is assumed for sake of simplicity that the MBS is
subjected to a system of m scleronomic geometric (and no additional non-holonomic) constraints of the form

0 = h (g) (91)

with the constraint mapping h : G → R
m . This accounts for lower or higher pair joints as well as bilateral

contacts. The geometric constraints define theMBS configuration space

V := {g ∈ G|h (g) = 0}. (92)

This is an subvariety in the ambient manifold G.
Time differentiation of the geometric constraints (91) yields the corresponding velocity constraints. This

can be expressed in terms of the left- and right-trivialized derivatives, respectively, as

0 = d

dt
h (g) = Tgh · ġ

= Tgh · TeLg · V l = Bl (g)Vl

= Tgh · TeRg · V r = Br (g)Vr. (93)

where Bl (g) ,Br (g) : (
R
6
)n → R

m are the Jacobians in vector representation of g. When the semidirect
product group is used, then Vl is the body-fixed system twist, and Vr is the spatial system twist. When the
direct product group is used, then Vl is the mixed, and Vr is the hybrid twist.

6.3 Equations of motion in lie group setting

The state space of an MBS is TG ∼= G × g. The motion equations in absolute coordinate representation can
be written

M (g) V̇ + JTλ = Q (g,V, t)

ġ = gV̂
h (g) = 0 (94)

whereQ ∈ g∗ represents all Coriolis, centrifugal, potential, and applied forces. This is an index 3 differential-
algebraic system. Using the time derivatives of the velocity constraints (93), it can be resolved in the form

V̇ = F (g,V)

ġ = gV̂. (95)

This is a standard approach in MBS dynamics [11,143].
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7 Geometric integration of MBS models in absolute coordinates

In the realm of geometric MBSmodeling, recent research addressed the solution of the motion equations index
3 system (94) as well of (95) directly on the Lie group. Common to all Lie group integration methods, using
canonical coordinates, is that a coordinate vector Xi ∈ g is determined so that the configuration at time step
i + 1 is given as gi+1 = gi exp Xi [74].

In a series of publications, the solution of the differential-algebraic equation (DAE) system (94) has been
addressed with amended generalized α schemes that are known from computational structural mechanics.
Brüls et al. [32–34] introduced generalized α schemes adopting the concept of Lie group integration using
canonical coordinates. In [34], the method was extended to MBS containing flexible bodies. It was observed
that the direct and semidirect product representations lead to different numerical behavior. A first analysis of
this phenomenon was reported in [33]. Recently, Arnold et al. [6] presented a consistent theory for the error
analysis for generalized α schemes for constrained MBS on Lie groups.

Classical Lie group integrationmethodswere developed for ordinary differential equations. The best known
are the Munthe-Kaas methods [74,79,117,118]. This integration scheme has been applied to the rigid body
problem from the outset [37,57,59,96,101,123]. Recently Engø [56] introduced partitioned Runge–Kutta
schemes as a special type of Munthe-Kaas integration schemes. In a recent paper [151], Munthe-Kaas method
was extended to be used for DAE problems and applied for solving MBS forward dynamics modeled as DAE
index 1 in MBS state space, introduced as Lie group.

Krysl [86] proposed a version of a generalized α scheme for the solution of ODE on a Lie group. This was
one of the first formlations that initiated the developments for DAE. These ODE integration schemes can be
applied to the formulation (95). Maekinen [96] analyzed the applicability of generalized α schemes.

For both approaches, solving themotion equations in the form of theDAE ( 94) or in theODE form (95), the
configuration space can be the direct or the semidirect product Lie group. For the latter, this was investigated
in [116]. It was concluded that the SE (3) formulation leads to better convergence in particular cases, but both
formulations perform equal for general MBS. It will be the subject of future study to investigate the error and
convergence of the proposed schemes when using different Lie groups to model the MBS.

Eventually the Lie group integration solves the problem of singularity-free parameterizationMBSmodel. It
is common to use Euler parameters as a remedy. Then, however, the unit length constraint must be imposed. In
a recent paper [153], a Lie group integration method was proposed that allows for singularity-free integration
of the quaternion description without explicitly imposing the unit length constraint. To this end, quaternions are
treated as elements of the Lie group Sp (1). In this way, the standard quaternion integration based on a system
of four DAEs (which also requires stabilization of the unit length constraint) is transformed to the problem of
integrating a system of three ODEs on the Lie algebra sp (1) ∼= so (3). More precisely, this ODE describes the
time evolution of the incremental rotational vector. This integration can be performed by using any standard
vector space ODE integration scheme. The Munthe-Kaas method used a Runge–Kutta method, for example.
The quaternion is reconstructed with the exponential mapping on the quaternion group Sp(1), which assures
satisfaction of quaternion unit length. This approach can be adopted to integration of dual quaternions that
describe rigid body motions [114].

In the field of MBS geometric integration, special attention is devoted to structure preserving methods that
exploit rich geometric structure of rigid body rotational dynamics (see [7,16,25,58,67,73,84,85,87,89,90,
97,104,135,146,147,152] and references cited therein). To this end, rigid body rotational dynamics is studied
most conveniently as Lie-Poisson system that is defined on so∗(3) (the dual space of so(3)). Beside free rigid
body rotation, Lie-Poisson systems arise in ideal fluid mechanics (Euler equations for an inviscid fluid), heavy
top equations [59], Vlasov–Poisson equations, and other settings.

As expressed via non-canonical coordinates, Lie-Poisson formalism is generalization of Hamiltonian for-
mulation that is expressed in canonical form [58,88]. Actually, Lie-Poisson system can be regarded as a
reduced system resulting from Lie-Poisson reduction of a canonical Hamiltonian system [97,98]. It is linked
to Euler–Poincare system (reduced Lagrangian being defined on pertinent Lie algebra) via reduced Legendre
transform. In the case of rigid body motions modeled on SE(3), the Euler–Poincare system is introduced by
(38) and (41).

With the aim of deriving geometric methods for free rigid body rotation, several authors used algorithm that
preserves coadjoint orbits in dual space SO∗(3) as a departure point toward design of the structure preserving
schemes that respect integrals of motion. Therefore, by following [58,84,89,152] a geometric scheme can be
introduced that extends the coadjoint orbit-preserving integration method for SO(3).
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We start from the Euler equation of free rigid body rotation given as Lie-Poisson system [98] in the form

π̇ = −ω̃bπ (96)

where ω̃b is the body angular velocity tensor and π ∈ R
3, which can be identified with so∗(3) [75], represents

angular momentum in the body attached frame. By following, for example [89], (96) can be expressed as the
coadjoint operator on the dual so∗(3) as

π̇ = ad∗
ω̃bπ = π̃bω (π) (97)

where ad∗ is the dual of the ad operator ad̃ab = ãb, which is commutator in the Lie algebra so(3) [79],
identified here with R

3. Within each integration step, the solution of (96) can be expressed as an action of
SO(3) on R

3 in the form

πn+1 = QT (t)πn, n = 0, 1, 2, . . .

Q ∈ SO (3) , t ∈ [tn, tn+1] (98)

which leads to solving of ODE on the Lie group that reads

Q̇ (t) = Q (t) ω̃b (π (t)) , t ≥ tn
Q (tn) = I. (99)

The update step (98) can be written as coadjoint action [75] , denoted Ad∗, of SO(3) on R
3 in the form [58]

πn+1 = Ad∗
Q(t)π

n (100)

where Ad∗
Q(t)π = QT (t)π is valid and the coadjoint orbit is given as

Oπ = {Ad∗
Qπ |Q ∈ SO (3)} ⊂ R

3. (101)

Since for the step initial condition πn the coadjoint orbit Oπn is a sphere of radius ‖πn‖, it follows from (100)
that the magnitude of free body angular momentum in the body attached frame is exactly preserved during
the step, independently of the accuracy of the integration method for determiningQ in (99). As it is explained
in [25,58,84,85,89,147,152], by starting from the geometric scheme that preserves coadjoint orbits, further
algorithmic upgrades can be made to allow for numerical preservation of additional integrals of motion, such
as kinetic energy of the free rotating body or heavy top constants of motion.

Another route to derive algorithm that preserves rigid body integrals of motion is treating body as con-
strained mechanical system, which leads to Hamiltonian formalism in canonical form. To illustrate this,
we introduce diagonal matrix D = diag (a1, a2, a3) with the coefficients defined as θ1 = a2 + a3, θ2 =
a1 + a3, θ3 = a1 + a2, ak = ∫

B x2k dm (x), where θ1, θ2, θ3 are eigenvalues of the rigid body inertia tensor.
The kinetic energy of the body can be written as [98]

TB = 1

2
trace (ω̃bDω̃bT ) = trace (ṘDṘT ) (102)

where we use the left-trivialized Poisson equation Ṙ = Rω̃b,R ∈ SO (3). By introducing the conjugate
momenta

P = ∂TB
∂Ṙ

= ṘD, P (t) ∈ R
3,3 (103)

we obtain system Hamiltonian in the form

H (P,R) = 1

2
trace (PD−1PT ) +U (R) (104)

where we suppose a potential U (R). Then, the equation of motion for rigid body, modeled as a constrained
Hamiltonian system [88,105], can be written in canonical form as

Ṙ = ∇PH (P,R) = PD−1

Ṗ = −∇RH (P,R) − R� = −∇RU (R) − R�

0 = RTR − I (105)



Geometric methods and formulations 3345

where we use the notations ∇RU = (
∂U/∂Ri j

)
, ∇RH = (

∂H/∂Ri j
)
, and similarly for ∇PH . Here, the

independent coefficients of the symmetric matrix� correspond to the six Lagrange multipliers associated with
the constraint equation0 = RTR−I. The corresponding velocity constraint equation reads as0 = RT Ṙ+ṘTR,
which yields RTPD−1 + D−1PTR = 0. These two constraints imply that the equations (105) constitute a
Hamiltonian system constrained on the manifold

KH = {(P,R) ∈ R
3,3 × R

3,3|RTR = I,RTPD−1 + D−1PTR = 0} (106)

which, however, is not the cotangent bundle T ∗SO (3) of the manifold SO(3).
Discretization of (105) that is based on standard Störmer-Verlet integration algorithm [73,74,136] leads

to symplectic RATTLE scheme for rotational rigid body dynamics that exhibits excellent structure preserving
properties [88]. structure preserving scheme for rigid body dynamics that also treats rigid body as constrained
mechanical system is proposed in [13]. In the recent paper [152], Störmer-Verlet integration algorithm is a
departure point for derivation of another structure preserving integration algorithm for rigid body rotational
dynamics. This algorithm is formulated in Lie group setting and exactly preserves free rotating body angular
momentum and kinetic energy, along an excellent approximation of heavy top integrals of motion.

Future research will extend Lie group integration schemes to MBS with flexible bodies in particular for
flexible bodies undergoing large deformations. A Cosserat rod, for instance, is a curve in a Lie group.

8 Conclusions

The motion of a MBS evolves on a Lie group. It is hence most obvious to describe MBSmodels in a Lie group.
This poses new challenges but at the same time opens up new opportunities. It was the aim of this review
article to summarize these concepts and to point out some of the major issues. It has been shown that from
modeling perspective, Lie group methods offer more flexibility compared to classical modeling approaches.
It has also been discussed that it will be imperative to pursue research on the numerical integration using Lie
group schemes. This must, in particular, include flexible bodies undergoing large deformations. In this regard,
Lie group formulations were already (at least implicitly) used in [18–23,63] .
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Appendix: Notations

Let G be a Lie group. The Lie algebra, denoted with g, is identified with the tangent space of G at the group
identity, equipped with the Lie bracket of left-invariant vector fields. In case of matrix groups, the Lie bracket
is the matrix commutator. The left and right translation mappings is denoted with Lg and Rg , respectively. For
a matrix group G, they are Lg (h) = gh and Rg (h) = hg, for gh ∈ G.
Let exp : g → G be the exponential mapping on G. The right-trivialized differential of the exp mapping
dexpX : g → g is defined via

dexpX = Texp(−X)Rexp(−X) ◦ TX exp (107)

dexpX (Y ) = TX exp (Y ) · exp (−X) (108)

with the tangent mapping TX exp (Y ) = d
dt

∣∣∣
t=0

exp (X + tY ) : g → Texp xG. On a matrix Lie group G ⊂
GL (n), for g (t) = exp X (t), the following relation holds

dexpX
(
Ẋ

) = ġg−1 (109)

dexp−X

(
Ẋ

) = g−1ġ. (110)
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For g ∈ G, the adjoint action of G on its algebra g is Adg : G × g → g is defined via

Adg (X) := TeLg R
−1
g · X, X ∈ g, g ∈ G. (111)

The differential of the adjoint mapping at the group identity e defines the operator adX : g → g. This is given
by Lie bracket

adX (Y ) = [X, Y ] . (112)

If g = exp (t X), then

adX (Y ) = d

dt
Adexp(t X) (Y )

∣∣
t=0 = [X, Y ] . (113)

Moreover, Adexp(X) = exp (adX ), and dexpX (X) = (I+ 1
2!adX+ 1

3!ad
2
X+ 1

4!ad
4
X+· · · ) (Y ) = Y+ 1

2! [X, Y ]+
1
3! [X, [X, Y ]] + 1

4! [X, [X, [X, Y ]]] + . . ..
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63. Gaćeša, M., Jelenić, G.: Modified fixed-pole approach in geometrically exact spatial beam finite elements. Finite Elem.

Anal. Des. 99, 39–48 (2015)
64. Garofalo, G., Ott, C., Albu-Schäffer, A.: On the closed form computation of the dynamic matrices and their differentiations
65. Gibson, C.G., Hunt, K.H.: Geometry of screw systems–1: screws: genesis and geometry. Mech. Mach. Theroy 25(1), 1–10

(1990)
66. Gibson, C.G., Hunt, K.H.: Geometry of screw systems–2: classification of screw systems. Mech. Mach. Theroy 25(1),

11–27 (1990)
67. Gonzales, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)
68. Grassmann, H.: Ausdehnungslehre. Vollstandig und in strenger Form bearbeitet, Verlag T.C.F. Enslin, Berlin (1862); also

in Engel, Fr.: Gesammelte mathematische und physikalische Werke, 1, Part. 2, Teubner, Leipzig (1896)



3348 A. Müller, Z. Terze

69. Grechka, G.P.: Determining the angular motion of a solid described by stochastic kinematic poisson equations. Sov. Appl.
Mech. 26(10), 1009–1014 (1990)

70. Grosch, P., Thomas, F.: A bilinear formulation for the motion planning of non-holonomic parallel orienting platforms. 2013
IEEE/RSJ international conference on intelligent robots and systems (IROS). November 3–7, pp. 953–958. Tokyo, Japan
(2013)

71. Grosch, P.,DiGregorio,R., Thomas, F.:Generation of under-actuatedmanipulatorswith non-holonomic joints fromordinary
manipulators. J. Mech. Robot. 2(1), 8 (2009)

72. Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Robot. Res. 5(2),
1986 (1986)

73. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer.
12, 399–450 (2003)

74. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)
75. Holm, D.D.: Geometric Mechanics. Rotating, Translating and Rolling. Imperial College Press, London, Part II (2008)
76. Holm, D.D.: Geometric mechanics, vol. 2. World Scientific Publication, Singapore (2011)
77. Hunt, K.H.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1978)
78. Ionescu, T.: International federation for the promotion of mechanism and machine science (IFToMM): terminology for the

mechanism and machine science. Mech. Mach. Theory 38 (2003)
79. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numerica, pp. 215–365 (2000)
80. Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer, Berlin (2011)
81. Jain, A.: Graph theoretic foundations ofmultibody dynamics. Part I: structural properties.Multibody Syst. Dyn. 26, 307–333

(2011)
82. Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 971–984 (1995)
83. Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Verlag von Andreas Deichert, Erlangen

(1872)
84. Krysl, P.: Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint lie algorithm.

Int. J. Numer. Methods Eng. 63(15), 2171–2193 (2005)
85. Krysl, P.: Dynamically equivalent implicit algorithms for the integration of rigid body rotations. Commun. Numer. Methods

Eng. 24(2), 141–156 (2008)
86. Krysl, P., Endres, L.: Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies.

Int. J. Numer. Meth. Eng. 62, 2154–2177 (2005)
87. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)
88. Leimkuhler, B.J., Skeel, R.D.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112,

117–125 (1994)
89. Lewis, D., Simo, J.C.: Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups. J. Nonlinear Sci. 4,

253–299 (1994)
90. Li, S., Qin, M.: Lie-Poisson integration for rigid body dynamics. Comput. Math. Appl. 30, 105–118 (1995)
91. Liu, Y.: Screw-matrix method in dynamics of multibody systems. Acta Mech. Sin. 4(2), 165–174 (1988)
92. Lurie, A.I.: Analytical Mechanics. Series, Foundations of Engineering Mechanics), Springer, Berlin (2002)
93. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. VII,

649–673 (1954)
94. Maißer, P.: AnalytischeDynamik vonMehrkö rpersystemen. J. Appl.Math.Mecha./Zeitschrift f ürAngewandteMathematik

und Mechanik (ZAMM) 68(10), 463–481 (1988)
95. Maisser, P.: Differential-geometric methods in multibody dynamics. Nonlinear Anal. Theory Methods Appl. 30(8), 5127–

5133 (1997)
96. Mäkinen, J.: Critical Study of Newmark-scheme on manifold of finite rotations. Comp. Methods Appl. Eng. 191, 817–828

(2001)
97. Ma, Z., Rowley, C.W.: Lie-Poisson integrators: a Hamiltonian, variational approach. Int. J. Numer. Methods Eng. 82(13),

1609–1644 (2010). doi:10.1002/nme.2812
98. Marsden, J.E., Holm, D.D.: The Euler-Poincaré equations and semidirect products with applications to continuum theories.

Adv. Math. 137, 1–81 (1998)
99. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994)

100. Marsden, J., Scheurle, J.: The reduced Euler-Lagrange equations. Fields Inst. Commun. 1, 139–164 (1993)
101. Marthinsen, A., Munthe-Kaas, H., Owren, B.: Simulation of ordinary differential equations on Manifolds–some numerical

experiments and verifications. Model. Identif. Control 18(1), 75–88 (1997)
102. McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)
103. McCarthy, J.M.: Geometric Design of Linkages. Springer, New York (2000)
104. McLachlan, R.I.: Explicit Lie-Poisson integration and the Euler equations. Phys. Rev. Lett. 71, 3043–3046 (1993)
105. Equivariant constrained symplectic integration: McLachlan, R.I., Scovel., C. J. Nonlinear Sci. 5, 233–256 (1995)
106. Mladenova, C.D.: Group-theoretical methods in manipulator kinematics and symbolic computations. J. Intell. Robot. Syst.

8, 21–34 (1993)
107. Mladenova, C.D.: Applications of lie group theory to the modeling and control of multibody systems. Multibody Syst. Dyn.

3(4), 367–380 (1999)
108. Mladenova, C.D.: Group theory in the problems of modeling and control of multi-body systems. J. Geom. Symmetry Phys.

8, 17–121 (2006)
109. Mozzi, G.: Discorso matematico sopra il rotamento momentaneo dei corpi. Napoli: Stamperia di Donato Campo (1763)
110. Müller, A.: A note on the motion representation and configuration update in time stepping schemes for the constrained rigid

body. BIT Numer. Math. 56(3) (2016)
111. Müller, A.: Partial derivatives of the inverse mass matrix of multibody systems via its factorization. IEEE Trans. Robot.

23(1), 164–168 (2007)

http://dx.doi.org/10.1002/nme.2812


Geometric methods and formulations 3349

112. Müller, A.: Higher derivatives of the kinematic mapping and some applications. Mech. Mach. Theory 76, 70–85 (2014)
113. Müller, A.: Derivatives of screw systems in body-fixed representation. In: Lenarcic, J., Khatib, O. (eds.) Advances in Robot

Kinematics (ARK). Springer, Berlin (2014)
114. Müller, A.: Coordinate mappings for rigid body motions. Comput. Nonlinear Dyn. ASME J (2016). doi:10.1115/1.4034730
115. Müller, A., Maisser, P.: Lie group formulation of k inematics and dynamics of constrained MBS and its application to

analytical mechanics. Multibody Syst. Dyn. 9, 311–352 (2003)
116. Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time

integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)
117. Munthe-Kaas, H.: Runge Kutta methods on Lie groups. BIT 38(1), 92–111 (1998)
118. Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29, 115–127 (1999)
119. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1993)
120. Ordan, J.C.G.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection.

Nonlinear Dyn. 60(1–2), 49–62 (2010)
121. Orin, D., Schrader, W.: Efficient computation of the Jacobian for robot manipulators. Int. J. Robot. Research 3(4) (1984)
122. Orin, D., et al.: Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods. Math. Biosci. 43,

107–130 (1979)
123. Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based in rigid frames. BIT 39, 116–142 (1999)
124. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; For Engi-

neers, Physicists, and Mathematicians. Oxford University Press, Oxford (2002)
125. Park, F.C.: Computational aspects of the product-of-exponentials formula for robot kinematics. IEEE Trans. Autom. Contr

39(3), 643–647 (1994)
126. Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)
127. Park, F.C., Choi, J., Ploen, S.R.: Symbolic formulation of closed chain dynamics in independent coordinates. Mech. Mach.

Theory 34(5), 731–751 (1999)
128. Park, J., Chung, W.K.: Geometric integration on Euclidean group with application to articulated multibody systems. IEEE

Trans. Robot. Autom. 21(5), 850–863 (2005)
129. Park, F.C., Kim, M.W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies. Z. Angew. Math. Phys.

51, 820–834 (2000)
130. Ploen, S.R.: Geometric Algorithms for the Dynamics and Control of Multibody Systems. Ph.D. thesis, Mechanical and

Aerospace Engineering, University of California, Irvine (1997)
131. Ploen, S.R., Park, F.C.: A Lie group formulation of the dynamics of cooperating robot systems. Robot. Auton. Syst. 21,

279–287 (1997)
132. Ploen, S.R., Park, F.C.: Coordinate-invariant algorithms for robot dynamics. IEEE Trans. Robot. Autom. 15(6), 1130–1135

(1999)
133. Plücker, J.: On a geometry of space. Philos. Trans. R. Soc. Lond. A155, 725–791 (1865)
134. Plücker, J.: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Teubner,

Leipzig (1868)
135. Reich, S.: Momentum conserving symplectic integrators. Physica D Nonlinear Phenom. 76, 375–383 (1994)
136. Reich, S.: Symplectic methods for conservative multibody systems. Integr. Algorithms Class. Mech. 10, 181–192 (1996)
137. Reuleaux, F.: Theoretische Kinematik: Grundzüge einer Theorie des Maschinenwesens. Vieweg, Braunschweig (1875)
138. Reuleaux, F.: Kinematics of Machinery. Dover, New York (1963)
139. Rodriguez, G.: Kalman filtering, smoothing, and ecursive robot arm forward and inverse dynamics. IEEE J. Robot. Autom.

RA–3(6), 624–639 (1987)
140. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modelling and control. Int. J. Robot.

Res. 10(4), 371–381 (1991)
141. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multibody system dynamics. J. Astron Sci. 40,

27–50 (1992)
142. Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics. Geometry and Mechanics. Springer,

New York (1993)
143. Selig, J.M.: Geometric Fundamentals of Robotics (Monographs in Computer Science Series). Springer, New York (2005)
144. Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990)
145. Selig, J.M.: A class of explicitly solvable vehicle motion problems. IEEE Trans. Robot. 31(3), 766–777 (2015)
146. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing undergoing large motions–geometrically exact

approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1986)
147. Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and

momentum. Int. J. Numer. Methods Eng. 31(1), 19–52 (1991)
148. Sohl, G.A., Bobrow, J.E.: A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains. ASME

J. Dyn. Syst. Meas. Control 123, 391–399 (2001)
149. Song of the Screw, Memorabilia Mathematica or the Philomath’s Quotation-Book. Robert Edouard Moritz, pp. 320–322

(1914)
150. Stramigioli, S.: Modeling and IPC Control of Interactive Mechanical Systems. A Coordinate-Free Approach. Springer,

Berlin (2001)
151. Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody

Syst. Dyn. 34(3), 275–305 (2014)
152. Terze, Z., Müller, A., Zlatar, D.: An angular momentum and energy conserving lie-group integration scheme for rigid body

rotational dynamics originating from Störmer-Verlet algorithm. J. Comput. Nonlinear Dyn. 10(5), 11 (2015)
153. Terze, Z., Müller, A., Zlatar, D.: Singularity-free time integration of rotational quaternions using non-redundant ordinary

differential equations. Multibody Syst. Dyn. 37(3), 1–25 (2016)
154. Uicker, J.J.: On the dynamics analysis of spatial linkages using 4×4matrices. Ph.D. Thesis, Nothwestern University (1965)

http://dx.doi.org/10.1115/1.4034730


3350 A. Müller, Z. Terze

155. Uicker, J.J., Ravani, B., Sheth, P.N.: Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems.
Cambridge University Press, Cambridge (2013)

156. von Mises, R.: Motorrechnung ein neues Hilfsmittel der Mechanik. Zeitschrift für Angewandte Mathematik und Mechanik
4(2), 124–155 (1924)

157. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)
158. Wu, Y., Löwe, H., Carricato, M., Li, Z.: Inversion symmetry of the euclidean group: theory and application to robot

kinematics. IEEE Trans. Robot. 32(2), 312–326 (2016)


	Geometric methods and formulations in computational multibody system dynamics
	Abstract
	1 Introduction
	2 The geometry of rigid body motions
	2.1 Semidirect product representation of finite motions as screw motions
	2.1.1 Rigid body motions as frame transformations
	2.1.2 Instantaneous screws and canonical coordinates
	2.1.3 Frame transformations of screws
	2.1.4 Rigid body velocities: twists
	2.1.5 Kinematic reconstruction

	2.2 Direct product representation of rigid body motions
	2.2.1 Canonical coordinates
	2.2.2 Rigid body velocities
	2.2.3 Kinematic reconstruction


	3 Rigid body dynamics on a lie group
	3.1 Euler--Poincaré equations on SE( 3) 
	3.2 Rigid body equations of motion on SO( 3) timesmathbbR3
	3.3 Note on the kinematic reconstruction

	4 The geometry of relative motions
	4.1 Relative motions as screw motions
	4.2 Partitioning and canonical coordinates
	4.3 Open issues

	5 Relative coordinate modeling of multibody systems in Lie group setting  
	5.1 Configuration of a kinematic chain using the product of exponentials
	5.2 Velocity of tree topology MBS
	5.3 Acceleration of tree topology MBS
	5.4 Motion equations in closed form
	5.5 Open issues

	6 Absolute coordinate modeling of multibody systems in Lie group setting
	6.1 Ambient space of an MBS
	6.2 Configuration space of an MBS as subvariety
	6.3 Equations of motion in lie group setting

	7 Geometric integration of MBS models in absolute coordinates
	8 Conclusions
	Acknowledgements
	Appendix: Notations
	References




