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ON THE TOTAL VARIATION AND HELLINGER DISTANCE

BETWEEN SIGNED MEASURES;

AN APPLICATION TO PRODUCT MEASURES1

TON STEERNEMAN

Abstract. Firstly, the Hellinger metric on the set of probability measures on a

measurable space is extended to the set of signed measures. An inequality between

total variation and Hellinger metric due to Kraft is generalized to the case of signed

measures. The inequality is used in order to derive a lower estimate concerning the

total variation distance between products of signed measures. The lower bound

depends on the total variation norms of the signed measures and the total variation

distances between the total variation measures of the single components.

1. Introduction. The set of finite signed measures on the measurable space (36, g)

will be denoted by Wl = 3)1(1, %) and 3)1 x = $flx(%, g) will be the set of probabil-

ity measures. 3R is a Banach lattice with respect to the so-called total variation norm

|| • ||. 3)1 is distinguished by the extra property that ||ju + v\\ = ||ju|[ + ||r|| for ¡u, v ;> 0

(see Yosida [7, pp. 369-370]). Apart from the total variation metric dv another

metric is defined in §2 by extending the Hellinger dH on 3)1 x. Kraft [4, Lemma 1]

provides the following important inequality:

(1.1) d2H(P,Q)^dv(P,Q)^2dH(P,Q)   VP,Q^Tlx.

In §2 this inequality is extended to 3)1. The result obtained will be applied in §3,

where the total variation distance between two products of finite signed measures is

estimated. For i = 1,..., k let (36,, g,) be measurable spaces, ¡u, e 3R(£,, g,-), then

Xk_xp¡ denotes the product measure on (Xk=xdL¡, 2T/-iS¡)- When (36,, g,) = (36, g)

and p¡ = p we write pk and (3ik, 5*). Hoeffding and Wolfowitz [3,(4.4) and (4.5)]

imply that

(1.2) dv(P,Q)^dc{Pk,Qk)<kdv(P,Q)   VjP.ßea»,.

The upper estimate is extended by Blum and Pathak [2, Lemma 1.3], and Sendler

[6, Lemma 2.1] to the product of k not necessarily identical finite signed measures.

An upper bound for a situation with nonidentical finite signed measures is given by

Reiss [5, Theorem 2.1], who uses the sup-metric instead of the total variation metric.

A lower estimate for nonidentical probability measures was found by Behnen and

Neuhaus [1] (see proof of proposition, pp. 1351-1352). In §3 we shall derive upper

and lower bounds for dv(Xk=xp¡, Xk=xv,), where p¡, p,, e 9W(36,, g(.) for i = I,..., k.
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2. Total variation and Hellinger metric. Let || • || denote the total variation norm on

3)1, that is 11/x 11 = | jtx |(36) where |/x| denotes the total variation measure of /x. For

ju, v g 3R let X be a a-finite measure on (36, g) such that it, v <k à and let

/ g du/dX, g g dv/dX, then

(2.1) dv(ii,w)=f\f-g\d\.

Note that |||ii|| - ||r||| < d„(/x, c) < ||/x|| + ||»'||. We may assume that À is a finite

measure, e.g. X = |/x| + |i>|. It can easily be seen that

(2.2) </0(/i,n)-2sup{|M(ii)-i'(^)MeS)   if M(3E) = r(3E).

We define the (generalized) Hellinger affinity between xi and c by

(2.3) p(ju, ̂ ) = /"l/g-l'^cYA,       A = {fg>0).
J A

Note that p(\i,v) does not depend on the particular choice of X. By Holder's

inequality:

0 < p(«x, »-) < ||/iHI/2|M|1/2-

The Hellinger distance on 3)1 is defined by

(2.4) dH(p,v)=[\\p\\ + \\v\\-2p(p,v)Y/2.

Note that Hl-xll'/2 - |M|'/2| < dH(p, v) < Q|fi|| + \\v\\)l/2.

In order to show that dH is a metric the following alternative expression turns out

to be useful

(2.5) dl(p, v)=f(fy2 - g^)2dX+j(rJ2 - g^fdX,

where x + = max(x,0) and x_= -min(jt,0). The triangle inequality can be verified

by using Minkowski's inequality and

(2.6) (ab)l/2 + (cd)]/2 ^ (a + c)v2(b + d)l/2,       a,b,c,d>0.

The following result is a generalisation of Kraft's inequality given in (1.1).

Theorem 2.1. For p,v e 2R(36, g)

(2.7) d2H(p, v) < dv(p, v) < [(IImII + \\v\\)2 - 4p2(M, v)]W

<(\\p\\1/2 + \\v\\l/2)dH(p,v).

Proof. Let À be a a-finite measure on (36, g) with ¡u, v « X, and /g dp/dX,

g g dv/dX. According to (2.5) and the inequality

(2.8) (a1/2 - ft1/2)2 < \a - b\,       a,b>0,

it can be written

= J\f-g\dX = dv(p,v),

because \x + — v + | + |x_— v_| = Ix — y\ for any x, j g R.
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The second part of inequality (2.7) can be established as follows.  Defining

A = {fg > 0), B = {fg < 0), Holder's inequality provides

d„(n, ") = f\f- g\ d\ = f\\f\ - \g\\dX + /(l/l + |g|) dX
J JA JB

= /ll/|1/2 - \g\V2\ ■ (l/l'/2 + |g|'/2) dX + /(l/l + \g\) dX
Ja J d

+

1/2

[fA(\f\l/2-\g\l/2fd\

Next by applying inequality (2.6) it follows

d2v(p,»)^

1/2

/■(m,/2 + igi,/2)2¿A   + f un + \g\) d\

i(\f\]/2-\g\V2fdX+f(\f\ + \g\)dX

f (\f\l/2 + \g\V2) d\ + f (\f\ + \g\) dX
Ja j rA

Mil + 11" 2p(M,»')][||/i|| + IMI + 2p(/i,>')]

= (IImII + II"II)2-V(m,'')-
The last inequality in (2.7) is found if, returning to the last but one formula, the first

factor is written as df¡(p, v) and the second is estimated by 1/2 \V2\2y. d

Remark 2.1. Formula (1.1) keeps valid for signed measures with total variation

norms equal to one, due to the definitions (2.3) and (2.4).

Remark 2.2. The Hellinger metric does not fit well into the linear structure of 3R.

However, it is often easier to calculate in practice. The total variation and Hellinger

metric induce the same topology on 3)1. Moreover, they induce the same uniformity

structure on 30Î, ; this is not true for 3)1 in general.

3. Approximating the total variation distance between products of signed measures.

Theorem 3.1. Let ix,, v¡ g 3R(Ih g,), i = I,..., k. Then

(3-1) nLwi + nikii-2'-* 'i=i TI [(IN+ kl ^2(lM,l,hl)]
1/2

<^(^-imí.j?-.",)<z(hwill n ii",-n)¿„g*i.'/).
«-i W-i     /w-'+i    /

Products with empty index sets are defined to be equal to one.

Proof. For i = 1,..., kiel X¡ be a a-finite measure on (36,, g,) with /x,, v¡ « A,

and/ g dpi/dXj, g¡ G dvJdX^ Using the formula

n n n    I i—\      \ 1      n \

n*,-ru = L TixM n yMx.-y,)
y=i       y=i       ,=i\7=i    /\y=i+i   /

and the triangle inequality the second part of (3.1) easily follows. Remark that

k

pUi,M,,*,t^)<np(iM,i>,i).
/=i
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By applying Theorem 2.1 two times we get

k k k

niicj + niHi - 4,(20-./*,, x'-i'i) < 2np(iM/i.Mi=i     /=i i-i

^
k

ri-i21-*n[(INI + ll"/ll)2-42(l/*.-l.k-l)]1/2-  °

Using the inequality 1 — x < exp(-x) we get

Corollary 3.1. Let /x„ v, g ^(36,., g,), i = 1,..., /c. T/zen

(3.2)
* A-

4U-ti»/.^*-i''í)>riiNi + riNi+/-i     i-i

n (iifi/ii + Ik,-- 21   - A

1=1

exp
1

I (INI + Ml)     42(lM,l,l",

An immediate consequence of Corollary 3.1 is

Corollary 3.2. Let P„ Q, g 30x,(36„ g,), , = l,...,k, then

(3.3)    2-2«p(-8-'Erf02(P,.ß,))< ^(2^-1^.2^,6,) < ¿4(^.0/).
\ i=i / i-i

This result is the same as (1.2) in Reiss [5] because of (2.2).

The following theorem provides another lower bound for dv(Xk=xp¡, Xk=xv¡).

Theorem 3.2. Let p„ v, g 2R(36„ g,), i = 1.k. Then

k k

rf.(2r*-iMí,2í-i»'í)>nii/»/ii + nii»'iii +i-i     i=i
k

n iNi-ii",- 2
(=i

1/2       / * \

exp  -S-'L^ÍA,.',)  .

where Pi = ||/x,||   l|M/U ", = Ml   V/l-

Proof. According to Theorem 2.1 we have

k k k

II INI + niNI - 4(2Ö-iM,.2^-1"/) < 2llllí*,ll1/2ll",ll,/2p(A„"¡)
1 = 1 1 = 1 1= 1

<2l-*nil/*/ll1/2MI,/2[4-4(/i/.i?/)]
( = 1

1/2

<2 iiinimi=i
\/2 I k \

exp  -8-1L42(A,?/)  .    D
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