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Abstract Machine learning has become a powerful

approach in practical applications, such as decision mak-

ing, sentiment analysis and ontology engineering. To

improve the overall performance in machine learning tasks,

ensemble learning has become increasingly popular by

combining different learning algorithms or models. Popular

approaches of ensemble learning include Bagging and

Boosting, which involve voting towards the final classifi-

cation. The voting in both Bagging and Boosting could

result in incorrect classification due to the bias in the way

voting takes place. To reduce the bias in voting, this paper

proposes a probabilistic approach of voting in the context

of granular computing towards improvement of overall

accuracy of classification. An experimental study is

reported to validate the proposed approach of voting using

15 data sets from the UCI repository. The results show that

probabilistic voting is effective in increasing the accuracy

through reduction of the bias in voting. This paper con-

tributes to the theoretical and empirical analysis of causes

of bias in voting, towards advancing ensemble learning

approaches through the use of probabilistic voting.

Keywords Granular computing � Machine learning �
Ensemble learning � Bagging � Boosting � Probabilistic
voting

1 Introduction

Machine learning has become an increasingly powerful

approach in real applications, such as decision making (Das

et al. 2016; Xu and Wang 2016), sentiment analysis (Liu

2012; Pedrycz and Chen 2016) and ontology engineer-

ing (Pedrycz and Chen 2016; Roussey et al. 2011). In

practice, machine learning can be involved in classification

and regression, which are considered as supervised learn-

ing tasks. In other words, training data used in classifica-

tion and regression are labelled. Also, machine learning

can be involved in association and clustering, which are

considered as unsupervised learning tasks. In other words,

training data used in association and clustering are unla-

belled. This paper focuses on classification tasks.

In the context of classification, popular machine learn-

ing methods include decision tree learning (Quinlan 1986;

Chen et al. 2016), rule learning (Liu and Gegov 2016b; Du

et al. 2011; Rodrguez-Fdez et al. 2016), Bayesian learn-

ing (Zhang et al. 2009; Yager 2006), instance-based

learning (Tu et al. 2016; Gonzlez et al. 2016; Langone and

Suykens 2017) and perceptron learning (Shi et al. 2016;

da Silva and de Oliveira 2016). Both decision tree learning

and rule learning aim to learn a set of rules. The difference

between these two types of learning is that the former is

aimed at learning of rules in the form of a decision tree, e.g.

ID3 (Quinlan 1986) and C4.5 (Quinlan 1993), whereas the

latter aims to learn if-then rules directly from training

instances, e.g. Prism (Cendrowska 1987) and IEBRG (Liu

and Gegov 2016a). In particular, decision tree learning

typically follows the divide and conquer approach, whereas

rule learning mainly follows the separate and conquer

approach. Bayesian learning works based on the assump-

tion that all the input attributes are totally independent of

each other, e.g. Naive Bayes (Barber 2012). In this context,
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each attribute–value pair would be independently corre-

lated to each of the possible classes, which means that a

posterior probability is provided between the attribute–

value pair and the class. Instance-based learning generally

involves predicting test instances on the basis of their

similarity to the training instances, e.g. K nearest neigh-

bour (Liu et al. 2016a). In other words, this type of

learning does not involve learning models in the training

stage, but just aims to classify each instance to the category

to which the majority of its nearest neighbours (the

instances most similar to it) belong. Perceptron learning

aims to build a neural network topology that consists of a

number of layers, each of which has a number of nodes and

represents a perceptron. Some popular methods of neural

network learning include backpropagation and probabilistic

neural networks (Kononenko and Kukar 2007).

In general, each machine learning algorithm has its

advantages and disadvantages. To improve the overall

accuracy of classification, ensemble learning has been

adopted. Popular ensemble learning approaches include

Bagging (Breiman 1996) and Boosting (Freund and Scha-

pire 1996). Both approaches involve voting in the testing

stage towards the final classification. In particular, Bagging

employs majority voting (Kononenko and Kukar 2007; Li

and Wong 2004) by means of selecting the class with the

highest frequency towards classifying an unseen instance

and Boosting employs weighted voting (Kononenko and

Kukar 2007; Li and Wong 2004) by means of selecting the

class with the highest weight for the same purpose. Both

majority voting and weighted voting are considered to be

biased to always select the class with the highest frequency

or weight, which may result in overfitting of training

data (Barber 2012). The aim of this paper is to provide

theoretical and empirical analysis of bias in voting and

contribute towards reduction of the bias in voting through

the use of granular computing concepts. In particular, the

probabilistic voting approach, which has been proposed

in Liu et al. (2016a) for advancing individual learning

algorithms that involve voting, is used in this paper to

advance ensemble learning approaches. More details on the

probabilistic voting are presented in Sect. 3. How this

voting approach is linked to granular computing concepts

is also justified in Sect. 3.

The rest of this paper is organised as follows: Sect. 2

presents ensemble learning concepts and the two popular

approaches namely Bagging and Boosting; Sect. 3 presents

a probabilistic approach of voting in the context of granular

computing and argues that this approach can effectively

reduce the bias in voting towards classifying an unseen

instance; Sect. 4 reports an experimental study to validate

the proposed approach of voting, and the results are also

discussed to show the extent to which the accuracy of

classification is improved through the reduction of the bias

in voting. Section 5 summarises the contributions of this

paper and suggests further directions for this research area

towards further advances in ensemble learning.

2 Related work

This section describes in depth the concepts of ensemble

learning and reviews two popular approaches, namely

Bagging and Boosting. It also highlights how the voting

involved in these two approaches can lead to incorrect

classification.

2.1 Ensemble learning concepts

The concepts of Ensemble learning are usually used to

improve overall accuracy, i.e. in order to overcome the

limitations that each single learning algorithm has its own

disadvantages and the quality of original data may not be

good enough. In particular, this purpose can be achieved

through scaling up algorithms (Kononenko and Kukar

2007) or scaling down data (Kononenko and Kukar 2007).

The former means a combination of different learning

algorithms which are complementary to each other. The

latter means pre-processing of data towards the improve-

ment of data quality. In practice, ensemble learning can be

done both in parallel and sequentially.

In the context of classification, the parallel ensemble

learning approach works by combining different learning

algorithms, each of which generates a model independently

on the same training set. In this way, the predictions of the

models learned by these algorithms are combined toward

classifying unseen instances. This way belongs to scaling

up algorithms because different algorithms are combined to

generate a stronger hypothesis. In addition, the parallel

ensemble learning approach can also be achieved using a

single learning algorithm to generate models independently

on different sample sets of training instances. In this con-

text, the sample set of training instances can be provided by

horizontally selecting the instances with replacement or

vertically selecting the attributes without replacement. This

way belongs to scaling down data, because it is aimed to

pre-process data towards reducing the variability of the

data, leading to the reduction of the variance in classifi-

cation results.

In the sequential ensemble learning approach, accuracy

can also be improved through scaling up algorithms or

scaling down data. In the former way, different algorithms

are combined in such a way that the first algorithm learns to

build a model and then the second algorithm learns to

correct the model and so on. In this way, there are no

changes made to the training data. In the latter way, in

contrast, the same algorithm is used iteratively on different
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versions of the training data. At each iteration, there is a

model learned, which is then evaluated on the basis of the

validation data. According to the estimated quality of the

model, the training instances are weighted to different

extents and then used for the next iteration. In the testing

stage, these models learned at different iterations make

predictions independently and their predictions are then

combined towards classifying unseen instances.

For both parallel and sequential ensemble learning

approaches, voting is involved in the testing stage to

combine the independent predictions of different learning

algorithms or models towards classifying an unseen

instance. Some popular methods of voting include majority

voting and weighted voting. As mentioned in Sect. 1, the

former one is typically used for the Bagging approach and

the latter is typically used for the Boosting approach

(Kononenko and Kukar 2007; Li and Wong 2004). More

details on these approaches of ensemble learning and vot-

ing are presented in the following subsections.

2.2 Bagging

The term Bagging stands for bootstrap aggregating. It is a

popular method developed by Breiman (1996) and follows

the parallel ensemble learning approach. Bagging involves

sampling of data with replacement. In particular, the Bagging

method typically takes n samples, with each sample of sizem,

where m is the size of the training set, in which the instances

from the training set are randomly selected into each sample

set. This indicates that some instances in the training set may

appear more than once in one sample set and some other

instances may never appear in that sample set. On average, a

sample is expected to contain 63.2% of the training instan-

ces (Kononenko and Kukar 2007; Li and Wong 2004). In the

training stage, the classifiers, each resulting from a particular

sample set mentioned above, are parallel to each other. In the

testing stage, their independent predictions are combined

towards predicting the final classification through majority

voting (also known as equal voting).

The detailed procedure of Bagging is illustrated in

Fig. 1. As concluded in Kononenko and Kukar (2007), Li

and Wong (2004), Bagging is robust and does not lead to

overfitting due to the increase of the number of generated

models. Therefore, it is useful especially for those non-

stable learning methods with high variance. A popular

example of Bagging is Random Forests (Breiman 2001),

which is illustrated in Fig. 2.

Although the Bagging approach has the advantages

mentioned above, it still has bias in voting, which may

result in incorrect classification. In particular, the majority

voting involved in Bagging works based on the assumption

that the training data is complete and, thus, the class most

frequently predicted by base classifiers is the most accurate

one. However, it is fairly difficult to guarantee that the

above assumption is reliable. Section 3 will present how

this problem can be addressed using probabilistic voting.

2.3 Boosting

Boosting follows the sequential learning approach, which

is introduced in Freund and Schapire (1996), Kononenko

and Kukar (2007), Li and Wong (2004). In other words, the

generation of a single classifier depends on the experience

gained from its former classifier (Li and Wong 2004). Each

single classifier is assigned a weight depending on its

accuracy estimated using validation data. The stopping

criteria are satisfied while the error is equal to 0 or greater

than 0.5 (Li and Wong 2004). In the testing stage, each

single classifier makes an independent prediction in a

similar way to Bagging, but the final prediction is made

based on weighted voting among these independent

predictions.

As concluded in Kononenko and Kukar (2007), Boost-

ing frequently outperforms Bagging, and can also be

applied with those stable learning algorithms with low

variance in addition to unstable ones, in contrast to Bag-

ging. However, Boosting may generate an ensemble lear-

ner that overfits training data. In this case, the performance

of the ensemble learner is worse than that of a single

learner. A popular example of Boosting is referred to as

Adaboost, which is illustrated below (Freund and Schapire

1996):

Fig. 1 Bagging approach (Liu et al. 2016c) Fig. 2 Random forests (Liu et al. 2016c)
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Given: (x1, y1),..., (xm, ym) where xi 2 X, yi 2 Y =

{�1, þ1}

Initialise D1ðiÞ ¼ 1=m.

For t ¼ 1; . . .; T :

• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X ! {-1, ?1} with error

�t ¼ Pri½htðxiÞ 6¼ yi�.
• Choose at ¼ 1

2
lnð1��t

�t
Þ.

• Update:

Dtþ1ðiÞ ¼
DtðiÞ
Zt

�
e�at ; ifhtðxiÞ ¼ yi

eat ; ifhtðxiÞ 6¼ yi

� �

¼DtðiÞexpð�atyihtðxiÞÞ
Zt

where Zt is a normalisation factor (chosen so that Dtþ1

will be a distribution).

Output the final hypothesis: HðxÞ ¼ signð
PT athtðxÞÞ

In the above illustration, xi indicates an input vector and yi
indicates the class label assigned to xi, where i is the index of

an instance. Also, X and Y represent the domain and range of

the given data set, respectively. In addition, the distribution

Dt reflects how each instance is weighted at each particular

iteration of the procedure for the Adaboost. The symbol t

represents the number of the current iteration and at repre-
sents the weight of the classifier learned at the iteration t.

However, similar to Bagging, Boosting also has bias in

voting although it has the advantages mentioned above. In

particular, the weighted voting involved in Boosting also

works based on the assumption that the training data are

complete and, thus, the most highly weighted class is the

most accurate one. However, it is fairly difficult to guar-

antee that the above assumption is reliable. This problem

can be addressed using the probabilistic voting and the

details are given in Sect. 3.

3 Granular computing-based approach for voting

As pointed out in Sects. 2.2 and 2.3, both majority voting

and weighted voting are considered to be biased leading to

incorrect classifications. In other words, the above two

types of voting can be seen as deterministic voting, since

they both work in the context of deterministic logic by

assuming that there is no uncertainty for classifying an

unseen instance. This section describes the concepts of

granular computing including the link to probabilistic

logic, and then proposes to use probabilistic voting as a

granular computing-based approach towards reduction of

the bias in voting. The significance of the probabilistic

voting is also outlined by analysing the advantages of

granular computing.

3.1 Overview of granular computing

Granular computing is an emerging approach of informa-

tion processing. It is applied with two main aims as stressed

in Yao (2005). One aim is to adopt structured thinking at

the philosophical level and the other one is to conduct

structured problem solving at the practical level. As

described in Hu and Shi (2009), granular computing gen-

erally involves decomposition of a whole into several parts.

In practice, this means to decompose a complex problem

into several simpler sub-problems.

The fundamentals of granular computing generally

involve information granulation which includes proba-

bilistic sets, fuzzy sets and rough sets. Deterministic sets

can be seen as special cases of all the three above types of

sets. In particular, a probabilistic set is judged as a deter-

ministic set while each element has a 100% chance to

belong to the set. Also, a fuzzy set is judged as a deter-

ministic set while each element has a full membership to

the set, i.e. the fuzzy membership degree is 100%. Simi-

larly, a rough set is judged as a deterministic set while each

element unconditionally belongs to the set. The above

description indicates that deterministic sets are used in the

context of deterministic logic, whereas the other three

types of sets are used in the context of non-deterministic

logic.

In the context of probabilistic sets, as described in Liu

et al. (2016b), each set employs a chance space which can

be partitioned into a number of subspaces. Each of these

subspaces can be viewed as a granule that can be randomly

selected towards enabling an event to occur. In this context,

all these granules make up the whole chance space. As also

described in Liu et al. (2016b), each element in a proba-

bilistic set is granted a probability towards getting a full

membership to the set. In the context of granular com-

puting, the probability can be viewed as a percentage of the

granules that make up the chance space. For example, if an

element is given a probability of 80% towards getting a full

membership to a set, then the element would be assigned

80% of the granules that enable the full membership to be

granted.

In the context of fuzzy sets, as described in Liu et al.

(2016b), each element in a fuzzy set has a certain degree of

membership to the set, i.e. an element belongs to a set to a

certain extent. In the context of granular computing, the

membership can be partitioned into a number of parts.

Each part of the membership can be viewed as a granule.

For example, if an element is given a membership degree

of 80% to a set, then the element would be assigned 80% of

the granules that certainly belong to the set. This is very

similar to the example that a club offers different levels of

memberships, which provides the members with different

levels of access to the resources and the facilities.
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In the context of rough sets, as described in Liu et al.

(2016b), each rough set employs a boundary region to

allow some elements to be restored conditionally on the

basis of the insufficient information. In other words, all

these elements within the boundary region are only given

conditional memberships to the set. This is because these

elements have only partially met the conditions towards

being members of the set. Once the conditions have been

fully met, these elements would be granted full member-

ships to the set. In the context of granular computing, the

condition for an element to belong to the set can be par-

titioned into a number of subconditions. Each of these

subconditions can be viewed as a granule. As defined

in Liu et al. (2016b), possibility is aimed to measure the

extent to which the condition is met. For example, if the

possibility that an element belongs to a set is 80%, then the

element would be assigned 80% of the granules, each of

which leads to the partial fulfilment towards getting the

membership.

In practice, the concepts of granular computing have

been applied broadly in many areas such as artificial

intelligence (Wilke and Portmann 2016; Skowron et al.

2016), computational intelligence (Dubois and Prade 2016;

Kreinovich 2016; Livi and Sadeghian 2016), and machine

learning (Min and Xu 2016; Peters and Weber 2016;

Antonelli et al. 2016). In addition, ensemble learning is

also considered as a granular computing approach since it

involves decomposition of a data set into a number of

overlapping samples in the training stage and a combina-

tion of predictions by different classifiers towards classi-

fying a test instance. The similar perspective has also been

pointed out in Hu and Shi (2009). The next section presents

in detail how the concepts of granular computing can be

used towards reduction of bias in voting in the context of

ensemble learning.

3.2 Probabilistic voting

Probabilistic voting (Liu et al. 2016a) is considered to be

inspired by nature and biology in the context of granular

computing, since the voting is made on the basis of the

hypothesis that the class with the highest frequency or

weight only has the best chance of being selected towards

classifying an unseen instance. In other words, it is not

guaranteed that the class with the highest frequency or

weight will definitely be selected to be assigned to the

unseen instance. In this paper, probabilistic voting is used

for both Bagging and Boosting towards improving the

overall classification accuracy. In particular, majority vot-

ing (involved in Bagging) and weighted voting (involved in

Boosting) are both replaced with probabilistic voting. The

procedure of probabilistic voting is illustrated below:

Step 1: calculating the weight Wi for each single class

i.

Step 2: calculating the total weight W over all classes.

Step 3: calculating the percentage of weight Pi for

each single class i, i.e. Pi ¼ Wi �W .

Step 4: Randomly selecting a single class i with the

probability Pi towards classifying an unseen

instance.

The following example relating to Bayes Theorem is used

for the illustration of the above procedure:

Inputs (binary): x1; x2; x3
Output (binary): y

Probabilistic correlation:

Pðy ¼ 0jx1 ¼ 0Þ ¼ 0:4;Pðy ¼ 1jx1 ¼ 0Þ ¼ 0:6;

Pðy ¼ 0jx1 ¼ 1Þ ¼ 0:5;Pðy ¼ 1jx1 ¼ 1Þ ¼ 0:5;

Pðy ¼ 0jx2 ¼ 0Þ ¼ 0:7;Pðy ¼ 1jx2 ¼ 0Þ ¼ 0:3;

Pðy ¼ 0jx2 ¼ 1Þ ¼ 0:6;Pðy ¼ 1jx2 ¼ 1Þ ¼ 0:4;

Pðy ¼ 0jx3 ¼ 0Þ ¼ 0:5;Pðy ¼ 1jx3 ¼ 0Þ ¼ 0:5;

Pðy ¼ 0jx3 ¼ 1Þ ¼ 0:8;Pðy ¼ 1jx3 ¼ 1Þ ¼ 0:2;

While x1 ¼ 0; x2 ¼ 1; x3 ¼ 1; y ¼ ?
Following Step 1, the weight Wi for each single value of

y is:

Pðy ¼ 0jx1 ¼ 0; x2 ¼ 1; x3 ¼ 1Þ ¼ Pðy ¼ 0jx1 ¼ 0Þ
� Pðy ¼ 0jx2 ¼ 1Þ
� Pðy ¼ 0jx3 ¼ 1Þ ¼ 0:4� 0:6� 0:8 ¼ 0:192

Pðy ¼ 1jx1 ¼ 0; x2 ¼ 1; x3 ¼ 1Þ ¼ Pðy ¼ 1jx1 ¼ 0Þ
� Pðy ¼ 1jx2 ¼ 1Þ
� Pðy ¼ 1jx3 ¼ 1Þ ¼ 0:6� 0:4� 0:2 ¼ 0:048

Following Step 2, the total weight W is

0:24 ¼ 0:192þ 0:048.

Following Step 3, the percentage of weight Pi for each

single value of y is:

Percentage for y ¼ 0: P0 ¼ 0:192� 0:24 ¼ 80%

Percentage for y ¼ 1: P1 ¼ 0:048� 0:24 ¼ 20%
Following Step 4, y ¼ 0 (80% chance) or y ¼ 1 (20%

chance).

In the above illustration, both majority voting and

weighted voting would result in 0 being assigned to y due

to its higher frequency or weight shown in Step 4. In

particular, in the context of majority voting, Step 4 would

indicate that the frequency for y to equal 0 is 80% and the

one for y to equal 1 is 20%. Also, in the context of

weighted voting, Step 4 would indicate that over the total

weight the percentage of the weight for y to equal 0 is 80%

and the percentage of the weight for y to equal 1 is 20%.

Therefore, both types of voting would choose to assign

y the value of 0. However, in the context of probabilistic

voting, Step 4 would indicate that y could be assigned
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either 0 (with 80% chance) or 1 (with 20% chance). In this

way, the bias in voting can be effectively reduced towards

improvement of overall accuracy of classification in

ensemble learning.

The probabilistic voting approach illustrated above is

very similar to natural selection which is one step of the

procedure of genetic algorithms (Man et al. 1996), i.e. the

probability of a class being selected is very similar to the

fitness of an individual involved in natural selection. In

particular, the way of selecting a class involved in Step 4 of

the above procedure is inspired by the Roulette Wheel

Selection (Lipowski and Lipowska 2012).

In the context of granular computing, the frequency of a

class can be viewed as an information granule that enables

the class to be selected for being assigned to a test instance.

Similarly, the weight of a class can be viewed as a part of

information granules that enable the class to be selected

towards classifying an unseen instance. From this point of

view, the class with the highest frequency of being pre-

dicted by base classifiers means to have been assigned the

most information granules that enable the class to be

selected for being assigned to a test instance. Similarly, the

class with the highest weight means to have been assigned

the highest percentage of the information granules that

enable the class to be selected towards classifying an

unseen instance. More details on information granules can

be found in Pedrycz and Chen (2011, 2015a, b).

As mentioned in Sect. 1, for classifying test instances,

the Bagging method is biased to always select the most

frequently occurring class and the Boosting method is

biased to always select the most highly weighted class.

This is due to the assumption that all the independent

predictions by the base classifiers provide a complete and

highly trusted set of information granules, each of which

votes towards one class and against all the other classes.

However, it is fairly difficult to guarantee that a set of

granules is complete, due to the fact that the training and

validation sets are very likely to be incomplete in practice.

Also, it is commonly known that a training set may be

imbalanced, due to insufficient collection of data, which is

likely to result in a class being assigned much more

information granules than the other classes. In addition, a

learning algorithm may not be suitable to learn a model on

a particular sample set. In this case, the information gran-

ules, which are provided from the predictions by the

models learned by that algorithm, would be much less

trusted.

In the context of machine learning, it has been argued

in Liu et al. (2016a) that voting based on heuristics such as

frequency or weight is biased. In particular, as mentioned

in Sect. 1, the probabilistic voting approach has been

applied to two popular single learning algorithms (Naive

Bayes and K Nearest Neighbour) for reduction of bias in

voting and the experimental results were encouraging.

Since this type of voting is involved in ensemble learning

as well, probabilistic voting could also lead to improved

results in this context.

In ensemble learning, Bagging needs to draw a number

of samples of the original data on a random basis and

Boosting needs to iteratively evaluates the weight of

training instances. The nature of the Bagging method may

result in poor samples of training data being drawn in terms

of incompleteness and imbalance. The nature of the

Boosting method may result in poor evaluation of training

instances in terms of their weights. If the employed

learning algorithms are not suitable to the sampled data for

Bagging or the weighted data for Boosting, then the fre-

quency or the weight of classes would be much less trusted

for classifying test instances. Therefore, the majority vot-

ing involved in Bagging and the weighted voting involved

in Boosting are considered to be biased. This is very sim-

ilar to the human reasoning approach that people generally

make decisions and judgements based on their previous

experience without the guarantee that the decisions and

judgements are absolutely right (Liu et al. 2016a). How-

ever, the frequency or the weight of a class can fairly be

used to reflect the chance of the class being selected

towards classifying a test instance, especially when the

above conjecture concerning low-quality training data

cannot be proved in a reasonable way. The impact of

probabilistic voting on the Bagging and Boosting approa-

ches is investigated experimentally in the following

section.

4 Experimental results

The probabilistic voting illustrated in Sect. 3.2 is validated

in an experimental study to investigate its impact on the

Bagging and Boosting approaches, by comparing the

results with traditional Bagging (with majority voting) and

Boosting (with weighted voting) in terms of classification

accuracy. In particular, the Random Forests and Adaboost

methods are used for this experimental study due to the fact

that they are the popular examples of Bagging and

Boosting, respectively, in practical applications.

The experiments are conducted on 15 data sets retrieved

from the UCI repository (Lichman 2013). The character-

istics of these data sets are shown in Table 1. In general, all

the chosen data sets have lower dimensionality (less than

100) and smaller number of instances (less than 1000)

except for the hypothyroid data set. The choice of these

data sets was made on the basis of the computational

complexity of the two ensemble learning methods used,

namely Random Forests and Adaboost. In particular, as

mentioned in Sect. 2.2, the Bagging approach needs to
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draw n samples with the same size of m, where m is the size

of the training set. Therefore, the computational com-

plexity of the Random Forests can be considered to be

n times the complexity of a single learning algorithm such

as decision tree learning, if no parallelisation is adopted.

The same also applies to Adaboost, especially when con-

sidering that the nature of the Boosting approach is not

parallelism. In addition, these data sets contain both dis-

crete and continuous attributes as shown in Table 1. This is

to investigate the impact of probabilistic voting in the case

of both types of attributes.

The experiments are conducted by splitting a data set

into a training set and a test set in the ratio of 70:30. For

each data set, the experiment is repeated 10 times and the

average of the accuracies is taken for comparative valida-

tion. As mentioned above, due to the higher computational

complexity of ensemble learning approaches, cross vali-

dation (Kononenko and Kukar 2007) is not used in this

experimental study. The results are shown in Table 2.

In Table 2, the second and third columns (Random

Forest I and II) indicate the results for Random Forests

with majority voting (Breiman 2001) and Random Forests

with probabilistic voting (proposed in Sect. 3.2), respec-

tively. Similarly, the fourth and fifth columns (Adaboost I

and II) indicate the results for Adaboost with weighted

voting (Freund and Schapire 1996) and Adaboost with

probabilistic voting (proposed in Sect. 3.2), respectively.

The results show that, except for the hypothyroid data

set, probabilistic voting can help both Random Forest and

Adaboost to effectively improve the overall accuracy of

classification. Regarding the case on the hypothyroid data

set, it is the only data set that has a large number of

instances (higher than 1000) as shown in Table 1, but the

classification accuracy stays the same when using proba-

bilistic voting for both Random Forest and Adaboost. A

possible explanation regarding this phenomenon may be

that larger data would usually be of higher completeness

and the classification result is, thus, less impacted by the

bias in voting compared with the use of smaller data sets. A

similar point has been given in Liu et al. (2016a) in terms

of the likelihood of overfitting.

In addition, while the UCI data sets are a good bench-

mark for judging new approaches, they are known to be

cleaner (i.e. contain fewer errors in the data) and more

complete than data used in real-life applications, especially

when considering the current vast volumes of data and the

need to analyse data streams. Consequently, the benefits of

probabilistic voting could be higher on this type of data

where the assumptions of completeness and sample rep-

resentativeness are rarely met; however, further experi-

mentation is required to assess the benefits of probabilistic

voting in this context.

5 Conclusion

In this paper, we have discussed in the context of granular

computing how the current deterministic ways of voting in

ensemble learning methods are biased through the

assumptions of completeness of data and sample repre-

sentativeness, which are rarely met, especially in the con-

text of big data.

Table 1 Data sets

Name Attribute types Attributes Instances Classes

breast-cancer Discrete 9 286 2

breast-w Continuous 10 699 2

ecoli Continuous 8 336 8

glass Continuous 10 214 6

haberman Mixed 4 306 2

heart-c Mixed 76 920 4

heart-h Mixed 76 920 4

heart-statlog Continuous 13 270 2

hypothyroid Mixed 30 3772 4

ionosphere Continuous 34 351 2

iris Continuous 5 150 3

labor Mixed 17 57 2

sonar Continuous 61 208 4

vote Discrete 17 435 2

wine Continuous 14 178 3

Table 2 Classification accuracy

Data set Random

forest I (%)

Random

forest II (%)

Adaboost

I (%)

Adaboost

II (%)

breast-

cancer

70 78 74 77

breast-w 95 96 94 96

ecoli 83 85 65 68

glass 69 80 45 52

haberman 68 74 72 78

heart-c 78 81 82 84

heart-h 82 87 79 80

heart-

statlog

77 84 82 88

hypothyroid 98 98 95 95

ionosphere 89 94 89 90

iris 94 96 93 97

labor 90 95 91 95

sonar 76 83 75 83

vote 95 97 95 98

wine 94 98 88 91
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To address this issue, we proposed probabilistic voting,

which is conceptually close to the idea of natural selection

in genetic algorithms. To validate the proposed voting

approach and its impact on classification accuracy, we

experimented with 15 UCI data sets and two popular

ensemble approaches, i.e. Bagging and Boosting. More

specifically, the Random Forest and Adaboost algorithms

were used. In both cases, the results show an increase in

accuracy with probabilistic voting.

In this paper, we addressed the bias involved in the

testing stage, i.e. in voting. However, as argued in Liu and

Gegov (2015), it is also significant to effectively employ

learning algorithms that are combined on a competitive

basis and used in the training stage of ensemble learning,

towards improvements in the overall accuracy of classifi-

cation. From this point of view, a further direction for this

work is to propose a probabilistic approach, similar to

probabilistic voting, towards natural selection of learning

algorithms on the basis of their fitness, and to investigate

further how this probabilistic approach impacts on the

performance of ensemble learning.
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