
A polynomial algorithm for the Hamiltonian cycle
problem in semicomplete multipartite digraphs

Jørgen Bang-Jensen∗ Gregory Gutin † Anders Yeo‡

Abstract

We describe a polynomial algorithm for the Hamiltonian cycle problem for
semicomplete multipartite digraphs. The existence of such an algorithm was
conjectured in [16] (see also [15]).

1 Introduction

A semicomplete multipartite digraph is a digraph D = (V (D), A(D)) for which the
vertices of V (D) can be partitioned into a number k ≥ 2 of subsets (called colour
classes) such that every pair of vertices from the same colour class are non-adjacent
and every pair of vertices from different colour classes are adjacent (i.e. there is at least
one arc between them). In Figure 1, a semicomplete 3-partite digraph H is depicted.
The colour classes are {x1, x2, x3}, {y1, y2, y3}, {z}. The following is a Hamiltonian
cycle in H: zx3y3x1y1x2y2z.

Two well-known special cases are semicomplete digraphs (when k = |V (D)|) and
semicomplete bipartite digraphs (when k = 2). It is well-known that every strongly
connected semicomplete digraph is Hamiltonian [9] and that a Hamiltonian cycle in
a strong semicomplete digraph on n vertices can be found in time O(n2) [18]. For
semicomplete bipartite digraphs strong connectivity by itself is not enough to guarantee
the existence of a Hamiltonian cycle. Here we need to require another, obviously
necessary, condition that D has a factor, i.e., a spanning collection of vertex-disjoint
cycles. It was shown in [13] (see also [17]) that a semicomplete bipartite digraph is
Hamiltonian if and only if it is strong and has a factor. It follows from the proof in [13]
(see also [19]) that the existence of a Hamiltonian cycle in a semicomplete bipartite
digraph on n vertices can be checked in time O(n2 + M(n)) where M(n) is the time
required to decide the existence of a perfect matching in a bipartite graph and find one
if it exists.
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Figure 1: A semicomplete 3-partite digraph H.

Another special class of semicomplete multipartite digraphs for which a character-
ization of Hamiltonicity as well as a polynomial algorithm to find such a cycle (if it
exists) was known, is the class of extended semicomplete digraphs (also called ordinary
semicomplete multipartite digraphs in [14]). This is the class of digraphs one can obtain
by starting from some semicomplete digraph by replacing each vertex x by an indepen-
dent set of vertices Ix and adding all possible arcs from one such set Ix to another Iy

if and only if the original digraph contained the arc x→y. For extended semicomplete
digraphs the same characterization as for semicomplete bipartite digraphs holds and
a Hamiltonian cycle can be found within the same time bound as for semicomplete
bipartite digraphs [14].

The complexity of the Hamiltonian cycle problem for general semicomplete mul-
tipartite digraphs has attracted the interest of several researchers and has been open
for quite some time (it was first brought to the attention of the first author in a pri-
vate communication with C. Thomassen in 1987). While this problem has resisted a
number of attempts to solve it (see e.g. [3, 22]), the Hamiltonian path problem has a
surprisingly elegant solution for semicomplete multipartite digraphs. It was shown in
[12] that a semicomplete multipartite digraph D has a Hamiltonian path if and only if
it has a path P such that D−V (P ) has a factor and a Hamiltonian path can be found
if one exists in time O(n2 + M(n)) where n is the number of vertices and M(n) is as
defined above (we remark that the proof of this result is non-trivial). Another charac-
terization which is valid only for semicomplete multipartite digraphs with at most two
vertices in each colour class can be found in [10]. In contrast to the nice character-
ization of Hamiltonian paths in semicomplete multipartite digraphs, it was shown in
[3] that there is no k such that every k-strong semicomplete multipartite digraph with
a factor is Hamiltonian (a digraph D is k-strong if D has at least k + 1 vertices and
D −X is strongly connected for every subset X ⊂ V (D), where |X| ≤ k − 1).

It turns out that the key to solving the Hamiltonian cycle problem for semicomplete
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multipartite digraphs lies in understanding the structure of reducible factors. A factor
C1∪C2∪. . . ∪Ck of a digraph D is reducible if D has some other factor C ′

1∪C ′
2∪. . . ∪C ′

r,
r < k such that for every Ci, there is some C ′

j with V (Ci) ⊆ V (C ′
j). (In Figure 1 the

digraph H contains a factor F = C1∪C2∪C3, where Ci = xiyixi, i = 1, 2, C3 = x3y3zx3

and the factor F ′ = C ′
1 ∪ C ′

2 where C ′
1 = x1y1x2y2x1 and C ′

2 = x3y3zx3. The factor F
can be reduced to the factor F ′ which in turn can be reduced to a Hamiltonian cycle
of H). In [3] the first such step was taken and a sufficient condition for Hamiltonicity
of semicomplete multipartite digraphs, formulated in terms of reducible factors, was
obtained (see Theorem 3.4). Recently the third author was able to refine the condition
of Theorem 3.4 in such a way that we now have a very detailed understanding of
reducible factors in semicomplete multipartite digraphs [21] (see Theorem 3.7).

Theorem 3.7 has many important consequences [21]:

• Every regular semicomplete multipartite digraph is Hamiltonian.

• If the size of the largest independent set in a k-strong semicomplete multipartite
digraph D is at most 2k and D has a factor, then D is Hamiltonian.

• Any set of k vertices in a k-strong semicomplete multipartite digraph lie on a
common cycle.

For yet another application of Theorem 3.7 see [4].
The purpose of this paper is to give a constructive proof for the existence of a

polynomial algorithm for the Hamiltonian cycle problem for semicomplete multipartite
digraphs (Theorem 5.3). The algorithm is highly non-trivial and relies heavily on
Theorem 3.7, the main result of [21]. We have not tried to optimize the complexity
of the algorithm since we found it was quite complicated to describe and prove the
correctness of the algorithm, even without this goal in mind. For technical reasons we
prove the existence of a polynomial algorithm for a slightly more general problem (see
note 4.3).

2 Terminology

We shall assume that the reader is familiar with the standard terminology on digraphs
and refer to [8] for terminology not discussed here. Every cycle and path is assumed
simple and directed.

In this section, D denotes a digraph (in the whole paper we use n to denote the
number of vertices in the digraph currently studied), x and y are distinct vertices
of D, X and Y are disjoint sets of vertices in D. D is Hamiltonian if it contains a
Hamiltonian cycle, namely a cycle with n vertices. A k-path-cycle subgraph F of D
is a collection of k paths P1, P2, ..., Pk and a number, s ≥ 0, of cycles Z1, Z2, ..., Zs in
D such that no two of P1, P2, ..., Pk, Z1, Z2, ..., Zs have a vertex in common. We shall
write F = P1 ∪ P2 ∪ ... ∪ Pk ∪ Z1 ∪ Z2 ∪ ... ∪ Zs (we always list the paths before the
cycles.) If k = 0 then F is a cycle subgraph. A factor is a spanning cycle subgraph, i.e
one that covers all vertices of D.

If there is an arc from x to y then we say that x dominates y and write x→y. We
write X→Y if x→y for every pair x ∈ X, y ∈ Y of adjacent vertices. If X→Y , then
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Figure 2: A digraph D with two subgraphs Q,R such that Q'>R. Here Q = {q, x, y}
and R = {r, z}.

there may be a pair x ∈ X, y ∈ Y such that both x→y and y→x. Sometimes, we wish
to exclude that possibility: We write X⇒Y (X strongly dominates Y ) if X→Y and
there is no arc from Y to X.

Let R and Q be disjoint subdigraphs of D. We write Q'>R if
1) Q and R contain vertices q and r, respectively, such that q⇒V (R) and V (Q)⇒r;
2) every vertex in Q dominates a vertex in R and every vertex of R is dominated

by a vertex of Q (see Figure 2 for an example).
A path starting at x and terminating at y is an (x, y)−path. An (x, y)−path P

is a (Q,R)-path if x ∈ V (Q), y ∈ V (R) and |V (P ) ∩ (V (Q) ∪ V (R))| = 2. Let F
be a subgraph of D containing both Q and R. A (Q,R)-path P is a (Q,R)F -path if
|V (P ) ∩ V (F)| = 2, i.e. only the first and last vertex of P is in V (F). For example,
in Figure 2 the path qur is a (Q,R)F -path, where F is the subdigraph induced by
V (Q) ∪ V (R).

D is strongly connected (or just strong) if there exists an (x, y)−path in D for every
ordered pair of distinct vertices {x, y} of D. We say that D is k-strong if |V (D)| ≥ k+1
and D −X is strongly connected for all X ⊂ V (D) with |X| ≤ k − 1.

If P is a path containing a subpath from x to y we let P [x, y] denote that subpath.
Similarly, if C is a cycle containing vertices x and y, C[x, y] denotes the subpath of
C from x to y. D〈Q〉 is the subgraph induced by the vertices in Q. Let C be a
cycle containing z and a subset X ⊆ V (D). Then, z+

C (z−C ) denotes the successor
(predecessor, resp.) of z on C. Moreover, X+

C = {x+
C : x ∈ X}, X−

C = {x−C : x ∈ X}.
When the cycle C is determined from the context, we shall usually omit the subscript
C.

If Y is a subset of the vertices of a digraph D and H is a subdigraph of D such
that Y ⊂ V (H), then H covers Y .
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3 Preliminary results and outline of the main ideas

We start with a few results on efficient construction of cycle subgraphs covering speci-
fied vertices.

Lemma 3.1 Given any digraph D = (V (D), A(D)) on n vertices and m arcs and a
subset W ⊆ V (D), in time O(nm), we can either find a cycle subgraph F which covers
W or show that such a subgraph does not exist.

Proof: Let D = (V (D), A(D)) and W be given. Form a network N with lower
bounds and capacities on the arcs in the following way: V (N) = {x′, x′′|x ∈ V (D)}.
A(N) = {x′′→y′|x→y ∈ A(D)} ∪ {x′→x′′|x ∈ V (D)}. All arcs have capacity one. All
arcs of the kind w′→w′′, where w ∈ W , have lower bound one. All other arcs have
lower bound zero.

It is easy to see that D has the desired cycle subgraph if and only if N has an
integer valued feasible circulation. Furthermore, in the case when all capacities are
one and only |W | ≤ n arcs have lower bounds different from zero, we can find such
a circulation in time O(nm) (if one exists). For an explicit algorithm achieving this
complexity see e.g. [1, page 195]. ¦.

An easy consequence of Lemma 3.1 is the following:

Lemma 3.2 Let D = (V (D), A(D)) be a digraph on n vertices and m arcs, and subsets
R, S, T ⊆ V (D) (not necessarily disjoint). In time O(nm) we can either find a 1-path-
cycle subgraph P ∪C1∪ . . . ∪Ck which covers T such that P starts in R and terminates
in S or show that such a subgraph does not exist.

Proof: Let D′ be obtained from D by adding a new vertex x and all possible arcs from
x to vertices in R as well as all possible arcs from vertices in S to x. Now it is easy to
see that D has a 1-path-cycle subgraph with the required properties if and only if D′

has a cycle subgraph which covers T . Thus the claim follows from Lemma 3.1. ¦.

Note 3.3 In the rest of the paper the digraph D being considered is a semicomplete
multipartite digraph of order n with colour classes V1, V2, ..., Vc; the colour class contain-
ing a vertex x ∈ V (D) is denoted by Vcol(x), where col(x) stands for the corresponding
integer from {1, 2, ..., c}.

Note that if C,C ′ are disjoint cycles in a semicomplete multipartite digraph D,
then (up to switching the role of the two cycles) at least one of the following four cases
apply (see Figure 3):

(A) Every vertex on C has an arc to and from C ′.

(B) There exist vertices x ∈ V (C), y ∈ V (C ′) such that x⇒V (C ′) and y⇒V (C), or
V (C ′)⇒x and V (C)⇒y.

(C) C contains distinct vertices x, y such that x⇒V (C ′) and V (C ′)⇒y.
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Figure 3: The four possible situations (up to switching the role of the two cycles or
reversing all arcs) for arcs between two disjoint cycles in a semicomplete multipartite
digraph. In (A) every vertex on C has arcs to and from C ′. In (B)-(D) a fat arc
indicates that all arcs go in the direction shown from or to the specified vertex (i.e. in
(B) all arcs between x and C ′ leave x).

(D) C contains a vertex x such that x⇒V (C ′) and C ′ contains a vertex y such that
V (C)⇒y.

The following result was proved in [3]:

Theorem 3.4 If D is a semicomplete multipartite digraph with disjoint cycles C1, C2

for which one of the alternatives (A)-(C) above holds, then in time O(|V (C1)|×|V (C2)|)
one can find a cycle C in D with V (C) = V (C1) ∪ V (C2).

Since we shall use the existence of this algorithm a number of times in the rest of
the paper, we give it a name, Merge. The algorithm Merge takes as input the two
cycles C1, C2 and if one of the alternatives (A)-(C) holds, it replaces these with one
cycle C such that V (C) = V (C1)∪V (C2). If alternative (D) holds, then Merge leaves
the cycles unchanged (note that this does not necessarily mean that there is no cycle
C as above).

Let us return to the situation in Theorem 3.4. In the case when only alternative
(D) holds the third author [21] proved (as part of a stronger result on minimal factors
in semicomplete multipartite digraphs, see Theorem 3.7 below) that if there are arcs
in both directions between C1 and C2 then one can still merge the cycles into a cycle
C as above in the same time, unless the following holds for i = 1 or i = 2: there exists
a colur class Vχ of D such that all arcs x→y from C3−i to Ci satisfy that x+, y− ∈ Vχ.
Recall that x+ is the successor of x on C3−i and y− is the predecessor of y on Ci.

In order to formulate Theorem 3.7 we need the following very important definition
[21].

Definition 3.5 Let D be a semicomplete multipartite digraph, let X ⊂ V (D) and let
F = C1∪C2∪ ...∪Ct be a cycle subgraph of D. F is called X-singular if every cycle of
F contains a vertex from X, and either t = 1, or F satisfies the following properties:

(α) The cycles in F are labeled such that Ci'>Cj for every pair i, j (1 ≤ i < j ≤ t)
(i.e. only alternative (D) form Figure 3 holds for Ci and Cj).

(β) There are colours χR(Ci) ∈ {1, 2, ..., c} for i = 1, . . . , t − 1 and χL(Cj) ∈
{1, 2, ..., c} for j = 2, . . . , t such that every (Cj, Ci)F -path with j > i starting
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at some vertex z ∈ V (Cj) and terminating at some vertex y ∈ V (Ci) satisfies
that y− ∈ VχR(Ci) ∩X, z+ ∈ VχL(Cj) ∩X.

(γ) For every pair of cycles Ci, Cj with j > i, if there exists a (Cj, Ci)F -path, then
χR(Ci) = χL(Cj).

See Figure 4 for an illustration of the definition. In the rest of this paper, the
labeling of the cycles of a singular cycle subgraph (with at least two cycles) will be
always made according to (α).

For future reference, we state a useful consequence of Definition 3.5.

Proposition 3.6 If F = C1 ∪ C2 ∪ . . . ∪ Ct is X-singular, then

1. For all i = 1, . . . , t− 1 : V (Ci) ∩ VχR(Ci)⇒V (Ci+1) ∪ . . . ∪ V (Ct)

2. For all j = 2, . . . , t: V (C1) ∪ . . . ∪ V (Cj−1)⇒V (Cj) ∩ VχL(Cj).

3. For all j = 2, . . . , t: (
⋃j−1

i=1 V (Ci)) ∩ VχL(Cj)⇒V (Cj).

Proof: We only prove 1. as the proofs of 2. and 3. are analogous. Suppose there is
an arc x→y such that x ∈ V (Cj), j ≥ i + 1 and y ∈ V (Ci) ∩ VχR(Ci). Then it follows
from Definition 3.5 (β) that y− ∈ VχR(Ci), hence, y− and y belong to the same colour
class; a contradiction. ¦.

The importance of singular cycle subgraphs is evident from the following theorem.

Theorem 3.7 [20, 21] Let D be a semicomplete multipartite digraph and X a specified
subset of V (D).

(a) If D has a cycle subgraph covering X, then every cycle subgraph of D covering
X with the minimum number of cycles is X-singular.

(b) There is an O(n3)-time algorithm which given a cycle subgraph, F ′ = C ′
1 ∪ C ′

2 ∪
. . . ∪ C ′

l , of D covering X, constructs an X-singular cycle subgraph, F = C1 ∪
C2 ∪ . . . ∪ Ct covering X with the property that for every i ∈ {1, 2, ..., l} there is
a j ∈ {1, 2, ..., t} such that X ∩ V (C ′

i) ⊆ V (Cj) (i.e. vertices from X which are
on one cycle in F remain on one cycle in F ′).

Note 3.8 We shall use the name Singular for the algorithm of Theorem 3.7. Singu-
lar is an iterative algorithm. In each iteration, Singular starts with a cycle subgraph
H covering X and tries to merge two or more cycles of H into one cycle, using among
other subroutines the algorithm Merge. When we merge some cycles, we may lose
some vertices of the cycles but only some which are not in X. If Singular succeeds in
merging some cycles, then we obtain a new cycle subgraph covering X but with fewer
cycles. The new cycle subgraph is the input for the next iteration. If however Singular
has not succeeded to merge any set of two or more cycles in H, then H is X-singular
and Singular returns H.
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Figure 4: A semicomplete 3-partite digraph H with a X-singular cycle subgraph F =
C1 ∪ C2 ∪ C3, where C1 = xyx, C2 = vwv, C3 = uzu. Here X = V (H)

If Singular is given, as input, the digraph H in Figure 4 with X = V (H) − {v}
(instead of X = V (H)) and F = C1 ∪ C2 ∪ C3, as indicated in the figure, then it will
return the cycle subgraph F ′ = C ′

1 ∪ C ′
2 with C ′

1 = xywx, C ′
2 = uzu. Note that this

cycle subgraph is X-singular and contains the minimum number of cycles among all
cycle subgraphs covering X.

Even though being able to convert a given cycle subgraph F ′ covering the set X
(which we wish to cover) into an X-singular cycle subgraph F is quite useful, it does
not seem to make finding a possible cycle covering X much easier. Consider for example
the semicomplete multipartite digraph H ′ in Figure 5. Here X = V (H ′) and the unique
Hamiltonian cycle shows no nice patern with respect to the last cycle in F . Clearly
more complicated examples with even worse structure of a Hamiltonian cycle can be
constructed.

In order to simplify the search for a more suitable structure on our cycle subgraph
covering X, we introduce the notion of a leftshifted cycle subgraph in the next section.
As we shall see in Lemma 4.2, if we combine the two properties of being X-singular and
X-leftshifted, then we obtain a very special structure on the last cycle Ct of our cycle
subgraph. This property in turn allows us to look only for cycles covering X with a
very special structure in terms of vertices from the cycle Ct, the so-called F -canonical
cycles (see Lemma 5.2 and Figure 6). Once we have all this structure we will show
in Theorem 5.3 that the desired cycle can be found using a recursive approach (via
redefining X). The main obstruction – how to create an X-singular and X-leftshifted
cycle subgraph covering X — is handled in Section 6.

4 Leftshifted singular cycle subgraphs

As pointed out in Section 3, we need some tool to transform a given X-singular cycle
subgraph into one which can be used efficiently when searching for a cycle covering X.
As we shall see in Lemma 4.2 and Lemma 5.2 the notion of leftshifted defined below is
the desired tool for this.

8



y1

z1

x1

x2

z2

y2

w2

y1

z2

w2

x1

y2

z1

x2

(a) (b)

Figure 5: A semicomplete 4-partite digraph H ′. Let X = V (H ′). Part (a) shows an X-
singular cycle subgraph F = C ∪ C ′ with C = x1y1z1x1, C

′ = z2x2w2y2z2. The unique
Hamiltonian cycle in H is y1z1x1y2x2w2z2y1. Part (b) shows another cycle subgraph
F ′ = C1 ∪ C2 with C1 = z1x1z2y1z1, C2 = x2w2y2x2. Note that F ′ is not X-singular,
because C1'>C2, but w2→z2 and w+

2 and z−2 are adjacent.

Definition 4.1 A cycle subgraph F = C1∪C2∪...∪Ct is X-leftshifted if either t = 1,
or it has the following property for every choice of i, j with 1 ≤ i < j ≤ t: There is no 1-
path-cycle subgraph F ′ = P∪Z1∪. . .∪Zk such that X∩V (Cj) ⊆ V (F ′)∩V (F) ⊆ V (Cj),
P is a (u, v)-path and there exists w ∈ V (Ci) such that w→u and v→w+.

Notice that if F is not X-leftshifted then, for some choice of i, j with 1 ≤ i < j ≤ t,
there is a 1-path-cycle subgraph F ′ with P as its path, such that the cycle Ci can be
replaced by a cycle C ′

i where V (Ci) ∪ V (P ) = V (C ′
i) and Cj can be replaced by the

cycle subgraph F ′−P such that C ′
i ∪ (F −Ci∪Cj)∪ (F ′−P ) is a new cycle subgraph

which covers V (F) ∩ X. For example, if we let X = V (H) − v, then with respect to
the ordering C1, C2, C3, the cycle subgraph F in Figure 4 is not X-leftshifted since the
vertex w can be inserted in the cycle xyx while leaving out the non-important vertex
v. Similarly, with the ordering C, C ′ the cycle subgraph F in Figure 5 is also not
X-leftshifted, as the vertex z2 can be inserted in C while leaving the cycle C2.

The following technical lemma plays an important role in our algorithm in Section
5 as it forms the basis for Lemma 5.2.

Lemma 4.2 Let X be a subset of V (D), and let F = C1 ∪ . . . ∪ Ct, t ≥ 2 be a X-
leftshifted X-singular cycle subgraph which covers X. Let also R = C1 ∪ . . .∪Ct−1 and
W = {w ∈ V (Ct) : ∃(Ct, R)-path starting at w in D}. Suppose W 6= ∅. There exists a
non-empty set S ⊂ V (Ct) with the properties below:

S ⊆ VχL(Ct) ∩X ∩ V (Ct), (1)

S⇒V (Ct)− S−, (2)
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W ⊆ S−, (3)

for every u ∈ V (D)− (V (F) ∪ VχL(Ct)), either S⇒u or D − V (R) has no (Ct, u)-path.
(4)

Proof: For every w ∈ W we define the following: Sw
0 = ∅, Sw

1 = {w+} and Sw
i =

{r ∈ V (Ct) : ∃q ∈ Sw
i−1 such that r−→q} for i = 2, 3, . . . , |V (Ct)|. Observe that there

exists nw (w ∈ W ), such that Sw
0 ⊂ Sw

1 ⊂ Sw
2 ⊂ . . . ⊂ Sw

nw
= Sw

nw+1 = . . . = Sw
|V (Ct)|.

Let Sw = Sw
nw

(= Sw
|V (Ct)|) and S =

⋃
w∈W Sw. Let

T ′ = {v ∈ V (Ct) : ∃q ∈ V (D)− V (F)− VχL(Ct) such that (VχL(Ct) ∩ V (R))⇒q→v}
and

T = {v ∈ V (Ct) : v 6∈ VχL(Ct) ∩X} ∪ T ′.

Claim: T ∩ S = ∅

Proof of claim: Suppose that this is false, and let w ∈ W be chosen such that
T ∩ Sw 6= ∅. We can now find a sequence of distinct vertices x1, x2, . . . , xa (xi ∈
Sw

i − Sw
i−1, i = 1, ..., a, a ≥ 1), such that x−i+1→xi and xi 6∈ T for i = 1, 2, . . . , a − 1

and xa ∈ T .
A spanning 1-path-cycle subgraph P ∪Z1 ∪ ...∪Zc of D〈V (Ct)〉 such that the path

P starts in T and terminates in W can be constructed as follows: start with the cycle
Ct, delete the arcs x−i →xi, i = 1, 2, . . . , a and add the arcs x−i →xi−1, i = 2, 3, . . . , a. In
the digraph obtained in this way all vertices except x−1 and xa have in- and out-degree
one, x−1 has out-degree zero and in-degree one and xa has in-degree zero and out-degree
one. Thus the digraph described is a spanning 1-path-cycle subgraph of D〈V (Ct)〉 with
the path P starting in xa ∈ T and ending in x−1 = w ∈ W .

Let
U = {u ∈ V (D)− V (R)− VχL(Ct) : VχL(Ct) ∩ V (R)⇒u},

Z = {z ∈ V (D)− V (R) : (VχL(Ct) ∩ V (R))+ 6⇒z},
Let P = p1p2 . . . pb. Since pb ∈ W there is a (Ct, R)-path, U ′ = u′1u

′
2 . . . u′d, with pb =

u′1. By the definition of a (Ct, R)-path, u′d−1 ∈ V (D)−V (R) and (VχL(Ct) ∩R)+ 6⇒u′d−1

(since u′d ∈ (VχL(Ct) ∩ R)+ by Definition 3.5 and the fact that F is X-singular), which
implies that u′d−1 ∈ Z. Now consider the following possibilities:

If p1 6∈ VχL(Ct), then p1 ∈ U by Proposition 3.6 (3) and P ′ = PU ′[u′1, u
′
d−1] is a path

from U to Z.

If p1 ∈ VχL(Ct) and p1 6∈ X, then p2 ∈ U , by Proposition 3.6 (3) and P ′ = P [p2, pb]U
′[u′1, u

′
d−1]

is a path from U to Z (observe that b ≥ 2, since pb 6∈ VχL(Ct) because
W ∩ VχL

(Ct) = ∅ by Proposition 3.6 (2)).

If p1 ∈ VχL(Ct) ∩X , then, by the definition of T , p1 ∈ T ′ and there is a vertex q ∈
V (D) − V (F) − VχL(Ct) such that (VχL(Ct) ∩ R)⇒q→p1, thus q ∈ U and P ′ =
qPU ′[u′1, u

′
d−1] is a path from U to Z.
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Observe that P ′∪Z1∪ ...∪Zc is a 1-path-cycle subgraph in D−V (R) which covers
V (Ct) ∩X and whose path P ′ starts in U and terminates in Z. By the definitions of
U and Z, there exists y ∈ V (R) such that y dominates the first vertex of P ′ and y+

is dominated by the last vertex of P ′. Thus, the existence of P ′ ∪ Z1 ∪ ... ∪ Zc is a
contradiction against the assumption that F is leftshifted. This concludes the proof of
the claim.

We will now prove properties (1), (2), (3) and (4). Since S ∩ T = ∅ we get S ⊆
VχL(Ct)∩X∩V (Ct), which proves (1). From the definition of S we get that S⇒V (Ct)−
S− and W ⊆ S−, which proves (2) and (3). To prove (4) suppose u ∈ V (D)− V (F)−
VχL(Ct) is a vertex such that S 6⇒u. Let s ∈ S be arbitrary with u→s. We must have
(VχL(Ct) ∩ R)6⇒u, since otherwise s ∈ T ′ which is a contradiction by the claim. Let
q ∈ (VχL(Ct)∩R) be arbitrary such that u→q. If there is a (Ct, u)-path, P , in D−V (R),
then Pq is a (Ct, R)-path, p1p2 . . . pluq, with q− 6∈ VχL(Ct) which is a contradiction
against the the fact that F is singular, by Definition 3.5 (the definition of VχL(Ct)).
Therefore, if S 6⇒u, then there is no (Ct, u)-path in D − V (R). This proves (4) and
completes the proof of the lemma. ¦.

Note 4.3 In the rest of this paper we distinguish a subset X of V (D); let the vertices in
X be called X-vertices and make the following assumptions about X if X̄ = V (D)−X 6=
∅:

|X̄| ≥ 2, (5)

X→X̄ (6)

X̄ ⊆ Vχ for some colour χ ∈ {1, 2, . . . , c} (7)

There is a pair of vertices xα, xβ in X such that xα ∈ Vcol(X̄), |Vcol(xβ)| = 1, (8)

and

X − {xβ}⇒xβ⇒X̄, X − {xβ}⇒xα. (9)

Notice, in particular, that by (7), every cycle of D contains a vertex from X.
For future reference we state two easy consequences of these assumptions.

Lemma 4.4 If F = C1 ∪ C2 ∪ . . . ∪ Ct is an X-singular cycle subgraph of D, then
V (C1 ∪ C2 ∪ . . . ∪ Ct−1) ⊆ X.

Proof: Suppose there exists a vertex q ∈ V (C1 ∪ C2 ∪ . . . ∪ Ct−1) ∩ X̄. Let
x ∈ X ∩ V (Ct) be chosen such that col(x) 6= col(q) (this is possible since X̄ ⊆ Vχ

for some colour χ). Then x→q, since X→X̄ (see Note 4.3). By Definition 3.5, x+,
q− ∈ X∩VχL(Ct). Since col(x+) = col(q−) and x+ ∈ X, x+→q. By Definition 3.5, we get
x++ ∈ VχL(Ct). Thus we conclude that both x+ and x++ are in VχL(Ct); a contradiction.
¦.
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Lemma 4.5 If X̄ 6= ∅ and F = C1 ∪ . . . ∪ Ct is an X-singular cycle subgraph which
covers X, with R = C1 ∪ . . . ∪ Ct−1, then the following holds:

The arc xα→xβ is an arc of Ct (10)

V (R)⇒V (D)− V (F) (11)

Proof: As xβ is the only out-neighbour of xα, by (8) and (9), the arc xα→xβ

belongs to a cycle in F and since the only out-neighbours of xβ are in X̄ it follows
from Lemma 4.4 that xα→xβ is an arc of Ct. Assume that (11) is false and, thus, there
exist y ∈ V (D)− V (F), z ∈ R such that y→z. As y is not in X, xβ→y. Hence, xβyz
is a (Ct, R)-path. Thus, by Lemma 4.2, x+

β ∈ X; a contradiction.

Our goal is to describe a polynomial algorithm for deciding whether D has a cycle
covering X. For this we need to be able to make a given cycle subgraph covering X
X-singular and X-leftshifted. The highly technical proof of the following crucial result
is postponed to Section 6:

Theorem 4.6 Given any cycle subgraph in D which covers X, in O(n6) time, we can
find an X-singular X-leftshifted cycle subgraph, F = C1 ∪ C2 ∪ . . . ∪ Ct which covers
X.

5 The main algorithm

Below, we shall use the notation adopted in the formulation of Lemma 4.2.
In this section F = C1 ∪ ... ∪ Ct (t ≥ 2) denotes an X-singular X-leftshifted cycle

subgraph of D which covers X, R = C1 ∪ . . . ∪ Ct−1 and S is the set determined in
Lemma 4.2.

Definition 5.1 A cycle C in D is called F-canonical if there exists a subset L =
{v1, ..., vl} of S− such that Ct[vi, vi+1] contains no vertices from L − {vi, vi+1} for all
i = 1, ..., l and with the property that C has the form

C = Ct[v
+
l , v1]T1Ct[v

+
1 , v2]T2...Tl−1Ct[v

+
l−1, vl]Tlv

+
l , (12)

where Ti is a path in D〈R〉 for all i = 1, 2, ..., l (see Figure 6).

The following lemma shows the usefulness of F -canonical cycles and also justifies
the definition of an X-leftshifted cycle subgraph.

Lemma 5.2 Suppose that D contains a cycle covering X, and that F = C1 ∪ ... ∪ Ct

(t ≥ 2) is an X-leftshifted X-singular cycle subgraph of D covering X. Then D has an
F-canonical cycle covering X.

Proof: Let Q = V (D)−V (F) and V ∗ = VχL(Ct). Let Z be a cycle of D covering X
and let Z〈D − V (R)〉 = P1 ∪ P2 ∪ ... ∪ Pl, where P1, ..., Pl are pairwise vertex disjoint
paths. Recall that, by Note 4.3,
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Figure 6: An example of an F -canonical cycle for some X-singular X-leftshifted cycle
subgraph F = C1 ∪ . . . ∪ Ct which covers X. Each Pi is of the form Pi = Ct[v

+
i , vi+1],

all ei, e
′
i denote arcs and each Ti is a path in D〈R〉

all vertices of Q are from the same colour class Vcol(X̄). (13)

By (11), the last vertex vi of Pi is from Ct and the successor wi of vi on Z must be
from R. Therefore, by the definition of W in Lemma 4.2 and by (3), vi ∈ S−. Thus,
since |S| = |S−| and S ⊆ X, there are l vertices from S whose predecessors on Z are
not from S−. Suppose s ∈ S on Pi and is not the first vertex of Pi. We show that
the predecessor u of s on Pi is in S−. Assume that u /∈ S−. By (2), u ∈ Q. By (1)
and (4), there is no (Ct, u)-path in D− V (R). However, by (6), s→u; a contradiction.
This implies that the first vertex ui of Pi is in S for each i = 1, 2, . . . , l. Observe that
by the definition of the paths P1, . . . , Pl, the predecessor ri of ui on Z is from R.

Without loss of generality, assume that v1, v2, ..., vl are labeled such that the subpath
Ct[vi, vi+1] contains no vertices from the set {v1, ..., vl}−{vi, vi+1} for all i = 1, ..., l. Let
v+

i be the successor of vi on Ct. Since ri→ui and ui ∈ S ⊆ V ∗ (see (1)), ri is not in V ∗.
As vi ∈ S−, v+

i ∈ S ⊆ V ∗ and thus ri→v+
j for all i and j by Proposition 3.6 (2). Replace

the subpaths Pi[ui, vi] with the subpaths Ct[v
+
i−1, vi] in Z for all i = 1, 2, ..., l. By the

arguments above, the subgraph obtained after these substitutions is an F -canonical
cycle in D covering X. ¦.

Theorem 5.3 We can verify whether D contains a cycle covering X (and construct
one if it exists) in time O(n7).
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Proof: A short scheme of the algorithm is as follows: Using Lemma 3.1 try to con-
struct a cycle subgraph F ′ of D covering X. If none exists, then D has no cycle covering
X. Otherwise, applying Theorem 4.6 we can transform F ′ into an X-leftshifted X-
singular cycle subgraph F = C1∪ ...∪Ct using the algorithms Singular and Leftshift
(see the definition of Leftshift in Section 6). If t = 1, we are done. Otherwise, using
Lemma 5.2, we reduce the problem of finding a cycle in D covering X into the problem
of finding a cycle covering a new set X∗ in a new semicomplete multipartite digraph
D∗ with fewer vertices. As the reduction takes O(n6) time (see Theorem 4.6) and we
perform O(n) reductions, the complexity of our algorithm is O(n7).

Note that by Definition 5.1 and Lemma 5.2 we may assume that F is a spanning
cycle subgraph, since no F -canonical cycle contains vertices from V (D) − V (F). Let
V ∗ = VχL(Ct) and let Z = {z ∈ S− : R 6⇒z}. If Z is empty, then by (3) there is no path
from Ct to R, which means that D has no cycle covering X (recall that every cycle
contains a vertex from X (see Note 4.3)). In the rest of the proof we assume that Z is
not empty.

Case 1: Z = {z}. Set V (D∗) = V (R) ∪ {z}, A(D∗) = A(D〈R〉) ∪ {z→r : r ∈
V (R), z→r in D} ∪ {r→z : r ∈ V (R) − V ∗} and X∗ = V (R) ∪ {z}. Suppose D
has a cycle covering X. Then, by Lemma 5.2, D has an F -canonical cycle C covering
X. Since |Z| = 1, C must contain the path Ct[z

+, z] and by the definition of an F -
canonical cycle, the predecessor r of z+ on C does not belong to V ∗. Hence we get a
cycle containing X∗ in D∗ just by replacing the path rCt[z

+, z] in C by the arc r→z.
Conversely, if C∗ is a cycle covering X∗ in D∗, then the predecessor r∗ of z on C∗

does not belong to V ∗ and hence we can convert C∗ to a cycle covering X in D by
substituting the path r∗Ct[z

+, z] for the arc r∗→z. Thus we have shown that D∗ has a
cycle covering X∗ if and only if D has a cycle covering X. Clearly, |V (D)| > |V (D∗)|.

Case 2: |Z| ≥ 2. First construct a new digraph D′ as follows: Set V (D′) =
V (R) ∪ Z ∪ {a′, b′}, where a′ and b′ are new vertices, A(D′) = A(D〈R〉) ∪ {z→r : z ∈
Z, r ∈ V (R), z→r in D} ∪ {r→z : r ∈ V (R)− V ∗, z ∈ Z} ∪ {a′→b′} ∪ {r→b′ : r ∈
V (R)} ∪ {r→a′ : r ∈ V (R) − V ∗} ∪ {b′→z : z ∈ Z}, X ′ = V (R) ∪ {a′, b′}. Observe
that in D′ the vertex a′ and all vertices of Z are in the colour class V ∗ (compare with
Note 4.3, a′, b′ play the role of xα and xβ).

Claim :D contains a cycle covering X if and only if D′ has a cycle covering X ′.

Proof of claim: Suppose that D has a cycle covering X. Then, by Lemma 5.2,
D contains a F -canonical cycle C covering X. Let C have the form given in (12).
Transform C into a cycle C ′ in D′ covering X ′ as follows: For every i = 1, 2, ..., l,
replace the path Ct[v

+
i−1, vi]Ti in C with the path viTi. By the definition of an F -

canonical cycle, the terminal vertex ri in Ti is not in V ∗ (as v+
i ∈ V ∗). Thus, by the

definition of D′, ri−1→vi in D′ since vi ∈ Z (for all i = 1, 2, ..., l). Therefore, after all
substitutions above, we obtain a cycle. Since ri−1→a′ and b′→vi in D′ for i = 1, 2, . . . , l,
the arc a′→b′ can be inserted into this cycle to form a cycle C ′ covering X ′.

Suppose now that D′ has a cycle C ′ covering X ′. Since b′ is the only out-neighbour
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of a′, the arc a′→b′ is on C ′. Thus, since b′ only dominates vertices in Z, Z ′ =
Z ∩ V (C ′) 6= ∅. Let z ∈ Z be the successor of b′ on C ′ and let r be the predecessor of
a′ on C ′. By the definition of D′, r→z in D′. Set C ′′ = C ′[z, r]z.

Let Z ′ = {z1, z2, ..., zl}, where the vertices z1, ..., zl are labeled such that no vertex
from {z1, z2, ..., zl} − {zi, zi+1} is on Ct[zi, zi+1] for all i = 1, 2, ..., l. Let ri be the
predecessor of zi on C ′′. By the definition of D′, ri ∈ V (R)−V ∗. Thus, by Proposition
3.6 (2) and (1), ri→z+

i−1 in D (recall that z+
i−1 is the successor of zi−1 on Ct). Replace

every arc ri→zi in C ′′ with the path riCt[z
+
i−1, zi]. Clearly, the resulting cycle in D

covers X. Note that above we actually proved how to construct the cycle C from C ′.
This completes the proof of the claim. ¦.

If D′ contains fewer vertices than D, then set D∗ = D′ and X∗ = X ′. Assume now
that |V (D′)| ≥ |V (D)|. Observe that then |Z| ≥ 2 implies that V (Ct) = S ∪ S− and
|V (Ct)| = 4, thus we must have |V (D′)| = |V (D)|.

Suppose that X̄ 6= ∅. Then, by Lemma 4.5, the arc xα→xβ is on Ct. Note that
xβ 6∈ S−, since S ⊂ X and X−{xβ}⇒xβ. Hence by the remark above (V (Ct) = S∪S−),
we must have xβ ∈ S. However, then we would get |Z| ≤ 1 (by (1), (8) and Definition
3.5 (β)), a contradiction. Thus we must have X̄ = ∅. Apply the construction of
D′, X ′ once more to D′ and X ′ instead of D and X starting, from a new X ′-leftshifted
X ′-singular cycle subgraph of D′ (if there is no cycle subgraph covering X ′ in D′,
then by the claim, D has no cycle covering X). Finally, set D∗ = (D′)′, X∗ = (X ′)′.
Observe that, by construction, V (D′)−X ′ 6= ∅ and hence |V (D)| = |V (D′)| > |V (D∗)|.
Furthermore, by the arguments above, D has a cycle covering X if and only if D∗ has
a cycle covering X∗.

This completes the description of our algorithm and the proof of its correctness. ¦.

Clearly, Theorem 5.3 implies our main goal:

Corollary 5.4 The Hamiltonian cycle problem is solvable in polynomial time for semi-
complete multipartite digraphs. ¦.

6 Constructing leftshifted singular cycle subgraphs

The purpose of this section is to prove Theorem 4.6.

Lemma 6.1 Suppose X̄ 6= ∅ and that C and C ′ are disjoint cycles such that the arc
xα→xβ is on C and C ′ contains a vertex z ∈ X̄, then there exists a cycle C∗ with
V (C∗) = V (C) ∪ V (C ′).

Proof: Since xβ only dominates vertices in X̄, its sucessor u on C belongs to X̄.
By Note 4.3, xβ dominates z and the predecessor z− of z on C ′ dominates u, implying
that C[u, xβ]C ′[z, z−] is the desired cycle. ¦.

Lemma 6.2 Let F = C1∪C2∪ . . .∪Ct be an X-singular cycle subgraph and let B be a
cycle in D−V (F). Let A ⊆ X̄−V (F∪B), D′ = D〈V (F∪B)∪A〉 and X ′ = X∩V (D′).
Suppose that every cycle Ci ∈ F (1 ≤ i ≤ t) has a vertex qi ∈ V (Ci) ∩ X, such that

15



qi⇒V (Ci+1∪Ci+2∪ . . .∪Ct∪B). Then, in O(n4) time, we can find an X-singular cycle
subgraph, F ′ = Z1 ∪Z2 ∪ . . .∪Zl ∪B′ of D′ covering X ′, where l ∈ {0, 1, ..., t}, B′ is a
cycle with V (Cl+1 ∪ Cl+2 ∪ . . . ∪ Ct ∪B) ∩X ⊆ V (B′) and Zi = Ci for i = 1, 2, . . . , l.

Proof: We first describe a procedure Left-B-growth which transforms F into F ′

defined above. Then we shall prove the correctness of Left-B-growth and determine
its complexity. Let G be a cycle subgraph of D. In the procedure we apply Singular
(see Note 3.8) to G in the digraph D〈G〉 in order to find an X-singular subgraph L
of D〈G〉 which covers X ∩ V (D〈G〉). We denote this as follows: L :=Singular(G).
Similarly, we also apply the algorithm Merge from Theorem 3.4. Note that only Step
3 involves vertices from A.

Procedure Left-B-growth

Step 1. For j from t down to 1 do the following: C:=Singular(B ∪ Cj), if C is a cycle
then B := C (otherwise, B is not changed). Let I = {i1, ..., ik} be the set of
subscripts of the cycles in F which have been merged with a current B in the
loop above. If I = ∅ then set µ := t + 1, H := F ∪ B and go to Step 3. Set
µ := min I. If |I| = t, then return F ′ := B.

Step 2. While there is j ∈ {µ + 1, µ + 2, ..., t}− I do the following: B :=Merge(B ∪Cj),
I := I ∪ {j}. If µ = 1 then return F ′ := B.

After the execution of Step 2 we have obtained the cycle subgraph H = C1∪C2∪
... ∪ Cµ−1 ∪ B. (Below we prove that every application of Merge to a subgraph
B ∪ Cj in Step 2 results in a new cycle B).

Step 3. Apply only the first iteration of Singular to H in D′ (recall Note 3.8). If the
output of the iteration is H itself, then return H. Otherwise, Singular has
replaced two or more cycles from H by one new cycle C. If V (B) ∩X 6⊆ V (C),
i.e. B was not involved in this merging, then let B := Merge(B ∪ C) (as we
shall prove later, B will, in fact, be a cycle after this step). Otherwise let B := C
Add the subscripts of those cycles Cj (j < µ), merged into C above, to the set
I, µ := min I and go to Step 2.

First note that the call Singular(B ∪Cj) may release some vertices from X̄ which
can be used to merge other cycles Cp, Cq (for some 1 ≤ p < q ≤ t). This is why we
may need to repeat Step 2 and Step 3.

Now we prove the correctness of Left-B-growth. Clearly, the procedure is correct
if every call involving Merge in Steps 2 and 3 provides us with a new cycle B. Below
we show that this is indeed so.

Assume that just after execution of Step 1 |I| < t, i.e. there exists an index
j ∈ {1, 2, ..., t} − I. This means that in the (t − j + 1)’th execution of Step 1 Left-
B-growth has tried to merge Cj and the cycle B = Bj, existing at that moment
of time, but has not succeeded because Cj ∪ Bj is X-singular in D〈Cj ∪Bj〉 (see
Note 3.8). Thus, by Definition 3.5, either Cj'>Bj or Bj'>Cj. However, Bj'>Cj is
impossible since before the algorithm starts, the vertex qj strongly dominates V (Bj) ⊆
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V (Cj+1) ∪ ... ∪ V (Ct) ∪ V (B). Thus Cj'>Bj. If Cj⇒Bj, then clearly V (Cj)⇒wj for
all wj ∈ V (Bj). Otherwise let b→c be an arc from Bj to Cj. By Theorem 3.7 and
Proposition 3.6, V (Cj)⇒b+ and b+ ∈ X. Thus we have shown that Bj has an X-vertex
wj such that V (Cj)⇒wj. Observe that the vertex wj will remain in the current B till
the end of the execution of the algorithm (see Note 3.8).

Now we prove that every application of Merge to the subgraph B ∪ Cj in Step
2 results in a new cycle B. By Theorem 3.4, it is sufficient to show that one of the
alternatives (A)-(C) hold for the cycles B, Cj. We have proved the existence of a vertex
wj ∈ X ∩ B strongly dominated by Cj. On the other hand, B contains the vertex qµ

which strongly dominates Cj. Therefore alternative (B) holds and, by Theorem 3.4,
Merge will merge B and Cj into one cycle.

It remains to prove that every call B :=Merge(B∪C) in Step 3 results in a cycle B.
Since V (C)∩V (B) = ∅ and since any subset of cycles of an X-singular cycle subgraph
is X-singular (as always with respect to the corresponding induced subgraphs), C must
contain some vertices from X̄, i.e. vertices that where left out in a previous merging
using Singular (recall that F is X-singular and we use only one iteration of Singular
in Step 3). Thus, since C contains a vertex ql (for some l ≤ µ − 1) which strongly
dominates B and a vertex u ∈ X̄, we see (by Note 4.3) that alternative (C) of Theorem
3.4 holds for the pair C,B after deleting possible arcs from u to B. Hence, by Theorem
3.4, Merge will indeed return a cycle as desired.

It is easy to check that, by Theorem 3.7, the complexity of our procedure is as
claimed. Indeed, the performance of Step 1 takes O(n4) time by Theorem 3.7 and the
fact that t < n. In Steps 2 and 3, each call of Merge or the first iteration of Singular
either results in fewer cycles to be considered or halts the procedure. Again, t < n and
Theorems 3.4 and 3.7 imply O(n4) time for the total performance of Steps 2 and 3. ¦.

We shall now prove Theorem 4.6, by showing that the following algorithm Leftshift
returns the desired cycle subgraph. In the algorithm we use procedure Left-B-growth
from the previous lemma and the following procedure Right-B-growth. It is easy to
check that the complexity of Right-B-growth is O(n5).

Procedure Right-B-growth
Input: A digraph D, a cycle B and a cycle subgraph R of D − V (B).
Output: A cycle B′ and a cycle subgraph R′ such that X ∩V (B∪R) ⊆ V (B′∪R′)

and V (B) ⊆ V (B′). Furthermore, there is no 1-path-cycle subgraph P ′ ∪C1 ∪ . . .∪Cl

of D−V (B′) covering X ∩V (R′) with the property that P ′ is an (a, b)-path and there
exists some q ∈ V (B′) such that q→a and b→q+.

Step 1. Using Lemma 3.2, for every q ∈ V (B), try to construct a 1-path-cycle subgraph
P ∪C1∪ ...∪Cs of D−V (B) covering X ∩V (R) such that the path P terminates
at a vertex dominating q+ and starts at a vertex dominated by q. If such a
subgraph exists, then set B := B[q+, q]Pq+ and R := C1 ∪ ... ∪Cs and go to the
beginning of Step 1.

Step 2. Return B′ := B and R′ := R.
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Algorithm Leftshift

Step 1. Let F ′ = C ′
1 ∪ ... ∪ C ′

l be an X-singular subgraph of D which covers X. If l = 1
then return F := C ′

1; halt. Set A := ∅, B := C ′
1, R = C ′

2 ∪ ... ∪ C ′
l , a := 0 and

let p1 be any vertex in VχR(C′1) ∩ V (C ′
1).

Step 2. Call Right-B-growth with input D − V (A), B and R. Let the output be B′

and R′. Set B := B′, R := R′. If A = ∅ and R = ∅, then return F := B; halt.

Step 3 If X̄ 6= ∅, the arc xα→xβ is on B and R 6= ∅, then sucessively merge each cycle of
R into B, using Merge. Let B∗ denote the cycle obtained this way (Note that
V (B∗) = V (B) ∪ V (R)). Let B := B∗ and R := ∅.

Step 4. If A = ∅, then go to Step 6. Otherwise (A = Z1 ∪ ... ∪ Za), call Left-B-growth
for A∪B with qi = pi, i = 1, 2, ..., a (recall that qi is defined in Lemma 6.2) and
A = V (D)− (V (A∪B ∪R), to convert it into an X-singular cycle subgraph F∗

of D〈V (A ∪ B)〉 covering X ∩ V (A ∪ B), such that F∗ = Z1 ∪ ... ∪ Ze ∪ B′ for
some e ∈ {0, 1, ..., a} (see Lemma 6.2). If R = ∅, then return F := F∗; halt.

Step 5. If e < a then set B := B′, A := Z1 ∪ ... ∪ Ze, a := e and go to Step 2.

Step 6. Use Singular to obtain an X-singular cycle subgraph H = H1 ∪ . . . ∪ Hh (of
D−V (A∪B)) from R. If h ≥ 2, then let pa+2 be any vertex of VχR(H1)∩V (H1).
(Here χR(H1) is defined with respect to H.)

Step 7. Let Za+1 := B, A := Z1∪...∪Za+1, B := H1, R := H2∪...∪Hh and let a := a+1.
If R = ∅, then go to Step 4, otherwise go to Step 2.

Below we prove the correctness of Leftshift and determine its time complexity.

To prove the correctness of the algorithm it is enough to prove that, in every
performance of Step 4, pi is a proper choice for qi in Lemma 6.2 for all i = 1, . . . , a
(that is we can actually apply the algorithm Left-B-growth as we claim), and that
the output of the algorithm, F = C1 ∪ ... ∪ Ct, is X-leftshifted. The first part follows
from the following claim.

Claim: The following properties hold during the execution of Leftshift:

(i) If V (B) ∩ X̄ becomes non-empty (in Step 2 or Step 4) this will lead to the
execution of Step 3 and hence render R = ∅.

(ii) At all times during the execution of Leftshift we have V (A) ⊆ X.

(iii) The vertex pi is a proper choice for qi in Lemma 6.2 for all i = 1, . . . , a

Proof of the claim: Suppose V (B)∩X̄ becomes non-empty during the algorithm.
If this happens (for the first time) in Step 4, then Step 2 will be executed just after
this (via Step 5). Otherwise V (B) ∩ X̄ becomes non-empty in Step 2. Now consider
that execution of Step 2 when V (B) ∩ X̄ becomes non-empty for the first time, or
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has just become non-empty in Step 4. Note that at this point we have V (A) ⊆ X,
since vertices are only added to A in Step 7 and after Step 5 A ⊂ X, by Lemma
4.4. Furthermore, we claim that the arc xα→xβ will be an arc of B before the current
execution of Step 2 finishes. Indeed, By Lemma 4.5, xα→xβ was an arc of Cl after
Step 1 and hence is currently on some cycle C ′ in R; B has a vertex of X, thus, the
proof of Lemma 6.1 shows that Right-B-growth will merge B and C ′. Lemma 6.1
implies that when xα→xβ has become an arc of B, then Step 2 will either terminate
with R = ∅, or with V (R) ⊆ X. In the last case Step 3 will be executed and since B
contains a vertex p that strongly dominates every vertex in R (one of the pi’s defined in
an earlier execution of Step 7; compare with proposition 3.6) and B also contains the
vertex xα which is strongly dominated by every vertex in R, it follows from Theorem
3.4 (alternative (C) holds for B and every cycle of R) that after excution of Step 3 we
have R = ∅. Observe that (i) and (ii) follow easily from this, since after R becomes
empty A will not be redefined anymore.

To prove (iii), we first observe that at all executions of Step 4, except the last one we
have V (A ∪ B) ⊆ X. This implies that no vertex was lost when any earlier execution
of Step 4 was performed. Secondly, no pi is defined after the (unique) execution of Step
3. Thus it follows from the choice of pa+2 in Step 7 and the definition of p1 that (iii)
holds (note that when some cycles of the current A are merged into B in Step 4 only
the vertex pi with the smallest index among these will survive as a pi that can later be
referred to). This completes the proof of the claim.

We now prove that the output of the algorithm, F = C1 ∪ ...∪Ct, is X-leftshifted.
Suppose that F is not X-leftshifted. Then there exist 1 ≤ i < j ≤ t and a 1-path-cycle
subgraph F ′ = P ∪M1 . . . ∪Mk such that X ∩ V (Cj) ⊆ V (F) ∩ V (F ′) ⊆ V (Cj), P is
a (u, v)-path and there exists w ∈ V (Ci) such that w→u and v→w+.

Consider that performance of Step 7, where Ci enters A. Just before this step
of the algorithm B = Ci. Consider also the last performance of Step 2 before the
above-mentioned performance of Step 7. Clearly, B′ = B = Ci is the output of Right-
B-growth in this performance of Step 2. Let k < i. By Lemma 4.4 and the fact that
every subset of the cycles of a singular cycle subgraph is singular, V (Ck) ⊆ X. Thus,
by Note 3.8 and part (ii) of the claim above, the cycle Ck has not been changed since it
entered A. Moreover, Ck was constructed before Ci. Hence, after the above-mentioned
performance of Step 2 A = C1 ∪ ... ∪ Ci−1. Thus, the vertices of F ′ were available to
”enlarge” B in the above-mentioned performance of Right-B-growth, contradicting
the fact that Right-B-growth did not change B.

It is easy to see that the complexity of the algorithm is O((n2 + 1)n5), where n2 is
the number of executions of Step 2. To bound n2, we introduce a potential function
L = a(A)+2|X∩V (R)|, where a(A) denotes the number of cycles in A. We can return
to Step 2 from either Step 5 or Step 7. If we return from Step 5, then a(A) decreases
and 2|X ∩V (R)| remains unchanged. If we return from Step 7, then a(A) increases by
one, but 2|X ∩ V (R)| decreases by at least two. Thus, every time we return to Step
2, the function L decreases. Moreover, 0 ≤ L ≤ 3n. Hence, n2 = O(n). Thus, the
complexity of the algorithm is O(n6). ¦.

19



7 Open problems and conjectures

The existence of a polynomial algorithm for the Hamiltonian cycle problem in semicom-
plete multipartite digraphs indicates the possible existence of a ”nice” mathematical
characterization of Hamiltonian semicomplete multipartite digraphs. So far we have
not managed to find one.

We believe that some more general problems for semicomplete multipartite digraphs
D are also polynomial time solvable:

Conjecture 7.1 There are polynomial algorithms for the following problems:
1) Given set X ⊆ V (D) find a cycle covering X.
2) Construct a longest cycle in D.
3) Given set X ⊆ V (D) find a cycle containing the maximum number of vertices

from X.

Conjecture 7.1.1 seems quite difficult, even in the case of semicomplete bipartite
digraphs it is still open (see [5]). However, the case of extended semicomplete digraphs
is solved in [3]. Conjecture 7.1.2 is settled for both semicomplete bipartite digraphs
and extended semicomplete digraphs (cf. [16]).

Another interesting problem is to characterize weakly Hamiltonian-connected semi-
complete multipartite digraphs, i.e. semicomplete multipartite digraphs having a
Hamiltonian path between every pair of vertices. The problem was settled for bipartite
semicomplete and extended semicomplete digraphs in [6] and [2], respectively.
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