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ABSTRACT
Understanding the processes that give rise to genomic variability in extant species is
an active area of research within evolutionary biology. With the availability of whole
genome sequences, it is possible to quantify different forms of variability such as
variation in gene copy number, which has been described as an important source of
genetic variability and in consequence of phenotypic variability. Most of the research
on this topic has been focused on understanding the biological significance of gene
duplication, and less attention has been given to the evolutionary role of gene loss.
Gremlin 2 is a member of the DAN gene family and plays a significant role in tooth
development by blocking the ligand-signaling pathway of BMP2 and BMP4. The goal
of this study was to investigate the evolutionary history of gremlin 2 in cetartiodactyl
mammals, a group that possesses highly divergent teeth morphology. Results from our
analyses indicate that gremlin 2 has experienced amixture of gene loss, gene duplication,
and rate acceleration. Although the last common ancestor of cetartiodactyls possessed
a single gene copy, pigs and camels are the only cetartiodactyl groups that have retained
gremlin 2. According to the phyletic distribution of this gene and synteny analyses, we
propose that gremlin 2 was lost in the common ancestor of ruminants and cetaceans
between 56.3 and 63.5 million years ago as a product of a chromosomal rearrangement.
Our analyses also indicate that the rate of evolution of gremlin 2 has been accelerated
in the two groups that have retained this gene. Additionally, the lack of this gene could
explain the high diversity of teeth among cetartiodactyl mammals; specifically, the
presence of this gene could act as a biological constraint. Thus, our results support
the notions that gene loss is a way to increase phenotypic diversity and that gremlin 2
is a dispensable gene, at least in cetartiodactyl mammals.

Subjects Genetics, Genomics
Keywords Gene loss, Tooth development, Differential gene retention, Gene duplication, Gene
family evolution, Rate acceleration

INTRODUCTION
One of the main goals of evolutionary biology is to understand the genetic basis of
phenotypic diversity. To address this question, scientists have made efforts to identify
genes that are linked to phenotypes and to explore the phenotypic consequences of genetic
variability.With the availability of whole genome sequences, it has been possible to compare
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different forms of variability, and variation in gene copy number has been described as
an important source of genetic variability. To date, most of the research on this topic has
been focused towards understanding the biological significance of gene duplication, and
less attention has been given to the evolutionary role of gene loss (Olson, 1999; Albalat &
Cañestro, 2016). In the literature, there are examples of gene loss being associated with
positive impacts on fitness. For example, the loss of the CCR5 gene in humans is associated
with resistance to AIDS (Dean et al., 1996), and the loss of hair keratin genes in cetaceans
is interpreted as an adaptation associated with the transition from terrestrial to aquatic
life (Nery, Arroyo & Opazo, 2014; Yim et al., 2014). Thus, evolutionary studies of genes
that possess a clear link to a given phenotype represent an opportunity to understand the
phenotypic effects of gene loss and gene dispensability.

Gremlin 2, previously known as a protein related to Dan and Cerberus (PRDC), is a
member of the DAN gene family, a group of extracellular bone morphogenetic protein
(BMP) inhibitors, which was originally identified in a gene trap screen for developmentally
significant genes (Minabe-Saegusa et al., 1998). Gremlin 2, as an antagonist of BMPs
(Kattamuri et al., 2012), plays a role in several developmental processes including
organogenesis, body patterning, and tissue differentiation. In embryonic stages, this gene
is expressed in the reproductive, nervous, respiratory, musculoskeletal, and integumentary
systems (Müller, Knapik & Hatzopoulos, 2006). Alternatively, during adulthood, it is a
widely expressed gene found in high levels in ovaries, brain, and spleen (Sudo et al., 2004).

In the literature, it has been shown that gremlin 2 interacts with BMP2 and BMP4
by blocking their ligand-signaling pathway (Sudo et al., 2004). Human genetic studies
have indicated that gremlin 2 variation can influence one’s susceptibility of having a
common tooth malformation (Kantaputra et al., 2015). Mutational analysis in seven out
of 263 patients with different dental anomalies has revealed the presence of mutations
predicted to cause disease. Five patients of this study carried the same heterozygous
mutations (Ala13Val) while the other two were carriers of two different heterozygous
missense mutations (Gln76Glu and Glu136Asp) (Kantaputra et al., 2015). This genetic
study supports the notion that inheritance of hypodontia is autosomal dominant, and this
is related to gremlin 2. Despite this, the study also gives evidence of incomplete penetrance
and variable expressivity. Genetic experiments provide further support for the role of
gremlin 2 in tooth development (Brommage et al., 2014); it has been shown that gremlin
2 deficient mice have upper and lower incisor teeth with markedly reduced breadth and
depth, and the upper incisors are more severely affected than lower ones (Vogel et al.,
2015). According to Vogel et al. (2015) no other significant phenotypic effects have been
observed in grem2−/− individuals, indicating that this gene could be dispensable. From
a developmental perspective, it has been shown that the pathway that controls tooth
differentiation is conserved in most mammals other than cetaceans, xenarthrans, and
phocid seals (Armfield et al., 2013). In dolphins, it has been shown that expression of
BMP4, which is one of the main targets of gremlin 2 (Sudo et al., 2004), is extended to the
caudal region of the developing jaw, a region where the fibroblast growth factor 8 gene
(FGF8) is express in most mammals (Armfield et al., 2013). This developmental difference
could be related to the divergent dental phenotype of cetaceans. Similar results have been
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found during epibranchial placode development (Kriebitz et al., 2009). Within the same
mammalian clade, other groups also have different dental morphologies. For example,
ruminants do not possess incisors in the upper jaw; instead, they possess a dental pad.
Canines are also absent in most ruminant species with the exception of elk and red deer.
This particular dental phenotype has consequences in the way these animals process food,
which is different compared to related species (herbivores) that possess incisors in the upper
jaw (e.g., horse). Finally, pangolins and baleen whales, both edentulous (i.e., toothless)
groups, represent the most extreme cases of dental modification in this group of mammals.
The lack of teeth in these groups has been related to the inactivation of tooth-specific genes
(e.g., C4orf26 ; Springer et al., 2016).

The main goal of this study was to investigate the evolutionary history of gremlin 2, a
gene that plays a significant role in the tooth development, in cetartiodactyl mammals a
group that possesses divergent tooth morphologies. Results from our analyses show that
gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration.
Although the last common ancestor of cetartiodactyls possessed a single gene copy, pigs
and camels are the only cetartiodactyl groups that have retained gremlin 2. According to
the phyletic distribution of this gene and synteny analyses, we propose that gremlin 2 was
lost in the common ancestor of ruminants and cetaceans between 56.3 and 63.5 million
years ago as a product of a chromosomal rearrangement. Our analyses also indicate that the
rate of evolution of gremlin 2 in pigs and camels has been accelerated, and the possession
of gremlin 2 clearly differentiates these groups from all other cetartiodactyl mammals.

MATERIALS AND METHODS
DNA data collection and phylogenetic analyses
We annotated gremlin 2 genes in representative species of laurasiatherian mammmals.
Our study included representative species from the orders Carnivora: cat (Felis catus),
Siberian tiger (Panthera tigris), dog (Canis familiaris), ferret (Mustela putorius), Weddell
seal (Leptonychotes weddellii), Pacific walrus (Odobenus rosmarus), panda (Ailuropoda
melanoleuca); Perissodactyla: Przewalsk’s horse (Equus ferus), horse (Equus caballus),
donkey (Equus asinus), Eulipotyphla: European hedgehog (Erinaceus europaeus);
Chiroptera: Black flying fox (Pteropus alecto), Large flying fox (Pteropus vampyrus),
Egyptian fruit bat (Rousettus aegyptiacus); Cetartiodactyla: pig (Sus Scrofa), alpaca (Vicugna
pacos), dromedary (Camelus dromedarius) and Bactrian camel (Camelus bactrianus); and
Pholidota (Manis javanica) (Table S1). Mouse and kangaroo rat sequences were used as
outgroups. Amino acid sequences were aligned using the L-INS-i strategy from MAFFT
v.6 (Katoh & Standley, 2013). Nucleotide alignment was generated using the amino acid
alignment as a template using the software PAL2NAL (Suyama, Torrents & Bork, 2006).
Phylogenetic relationships were estimated using maximum likelihood and Bayesian
approaches. We used the propose model tool of IQ-Tree (Trifinopoulos et al., 2016) to
select the best-fitting models for each codon position (TVMe+I, K2P+G4 and HKY+G4,
for first, second and third codon positions, respectively). We performed a maximum
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likelihood analysis to obtain the best tree using the program IQ-Tree (Trifinopoulos et
al., 2016); and nodes support was assessed with 1,000 bootstrap pseudoreplicates using
the ultrafast routine. Bayesian searches were conducted in MrBayes v.3.1.2 (Ronquist
& Huelsenbeck, 2003); two independent runs of six simultaneous chains for 20× 106

generations were set, and every 2,500 generations were sampled using default priors. The
run was considered to have reached convergence once the likelihood scores reached an
asymptote and the average standard deviation of the split frequencies remained <0.01. We
discarded all trees that were sampled before convergence, and we evaluated support for the
nodes and parameter estimates from a majority rule consensus of the last 4,000 trees.

Assessments of conserved synteny
We examined genes found up- and downstream of gremlin 2 in the laurasiatherian
mammal representative species. Synteny analyses were conducted for dog (Canis familiaris),
panda (Ailuropoda melanoleuca), horse (Equus caballus), donkey (Equus asinus), European
hedgehog (Erinaceus europaeus), Large flying fox (Pteropus vampyrus), Egyptian fruit
bat (Rousettus aegyptiacus), alpaca (Vicugna pacos), dromedary (Camelus dromedarius),
pig (Sus scrofa), sheep (Ovis aries), goat (Capra hircus), cow (Bos taurus), minke whale
(Balaenoptera acutorostrata), killer whale (Orcinus orca), baiji (Lipotes vexillifer), and
Malayan pangolin (Manis javanica). Initial ortholog predictions were derived from the
EnsemblCompara database (Herrero et al., 2016) and were visualized using the program
Genomicus v85.01 (Muffato et al., 2010). In other cases, the genome data viewer platform
from the National Center for Biotechnology information was used.

RESULTS AND DISCUSSION
Gremlin 2 is a protein-coding gene located on the reverse strand that has two exons,
where the first is the one that possesses the information for the final protein. In most
laurasitherian mammals and humans the length of the coding portion of the gene (507 bp)
is well conserved while some variation is found in cetartiodactyl mammals.

Phylogenetic relationships
We constructed a phylogenetic tree in which we included representative species of
laurasiatherian mammals (Fig. 1). Our phylogenetic analysis recovered the monophyly of
each laurasiatherian order included in our sampling (Fig. 1). Although the phylogenetic
relationships among laurasiatherianmammals at the ordinal level are still amatter of debate,
the most important departures from current hypotheses detected here was the sister group
relationship between Eulipotyphla and Carnivora (Fig. 1) and the sister group relationship
between Pholidota and Cetartiodactyla. Specifically, in most studies, eulipotyphlan species
appear sister to all other laurasiatherian mammals (Nery et al., 2012; Foley, Springer &
Teeling, 2016), and Pholidota is recovered as sister to Carnivora (Meredith et al., 2011; Du
Toit et al., 2014). The synteny analysis provided further support for the identity of the
gremlin 2 gene lineage in this group of mammals (Fig. 2); genes found downstream were
well conserved in all examined species (Fig. 2). According to our survey, most species
included in this study possessed four downstream genes (RGS7, FH, KMO and OPN3) that
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Figure 1 Maximum likelihood phylogenetic tree depicting relationships among gremlin 2 genes in
laurasiatherian mammals.Numbers on the nodes correspond to Bayesian posterior probabilities and
maximum likelihood bootstrap support values. Sequences of mouse and kangaroo rat were used as out-
groups.
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Figure 2 Patterns of conserved synteny in the genomic regions that harbor gremlin 2 genes in
laurasiatherian mammals. (A) Genomic region that harbors gremlin 2 genes. (B) Conserved synteny in
the genomic region that would be the putative location of the gremlin 2 gene in ruminants and cetaceans.

define the identity of this genomic region (Fig. 2). Although the genes found upstreamwere
more variable, they were to some degree more conserved in the different groups (Fig. 2).
For example, in both camelid species four upstream genes (RNF2, TRMT1L, SWT1 and
IVNS1ABP) were detected that were well conserved (Fig. 2). Similar results were found
for sheep, goat, cow, minke whale, killer whale, and baiji (Fig. 2).

Molecular rates in cetartiodactyls and pholidotans
The rate of molecular evolution, as measured here using branch lengths, was variable
(Fig. 1), though the most striking result was that of the accelerated evolution of
cetartiodactyls and to a lesser extent that of pholidotans (Fig. 1). To test whether the
rate of gremlin 2 evolution in these groups of species is significantly higher, we performed
a relative rate test (Tajima, 1989) using the software MEGA 7 (Kumar, Stecher & Tamura,
2016). We compared the rate of evolution of cetartiodactyl and pholidotan sequences using
the cat sequence as a reference and the mouse sequence as the outgroup. Results of this
analysis confirmed what was observed in our phylogenetic tree, i.e., the rate of evolution
of cetartiodactyls and pholidotans is significantly higher than that of other laurasiatherian
mammals (Table S2). This rate acceleration seems to be specific to this locus, since the
same test in other members of the gene family (GREM1, CER1 and DAND5) did not
reveal evidence of rate acceleration in these groups (Table S3). To further investigate
the evolutionary pattern of gremlin 2 in cetartiodactyls and pholidotans, we made an
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Figure 3 An alignment of gremlin 2 amino acid sequences from laurasiatherian mammals. Amino acid positions in bold denote the 11 amino
acid synapomorphies that define the sequences of pigs and camels.

amino acid alignment that included, in addition to the cetartiodactyl and pholidotan
sequences, representative species of the laurasiatherian orders Perissodactyla, Carnivora,
Chiroptera, and Eulipotyphla. From this, we found that there are 13 synapomorphies that
define the gremlin 2 genes in cetartiodactyls (Fig. 3). Among these, we identified 11 amino
acid changes and two deletions (Fig. 3). Of all of the amino acid substitutions, changes
at positions 34 (Tyr to Arg), 109 (His to Pro), 131 (Thr to Ala), and 132 (Ser to Ala)
represent changes affecting hydrophobicity (Fig. 3). Of the 13 synapomophies observed in
cetartiodactyls, only one is shared with pholidotans (Ser165Gly) (Fig. 3). Amino acid 110
also represents a synapomorphy in pangolins however the amino acid identity is different
from that of cetartiodactyls (Fig. 3).

Gene copy number variation and differential retention in
cetartiodactyls
Most laurasiatherian species possess a single copy of the gene with the exception of pig (Sus
scrofa) that has two copies on chromosome 10 (Fig. 4). As in all examined species, in pig,
one of the copies (gremlin 2-T1) was found on the 5′ side of the regulator of the G-protein
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Figure 4 Schematic representation of the gremlin 2 syntenic region in pigs.One of the copies (gremlin
2-T1) is located on the 5′ side of the regulator of the G-protein signaling 7 gene (RGS7) whereas the sec-
ond copy (gremlin 2-T2) is located within the RGS7 gene, specifically between exons 13 and 14.

signaling 7 gene (RGS7) (Fig. 2). The second copy (gremlin 2-T2) was found within the
RGS7 gene, specifically between exons 13 and 14 (Fig. 4). At the amino acid level both
copies differed in one amino acid (position 155); gremlin 2-T1 possessed an arginine, and
gremlin 2-T2 possessed a lysine.

Among cetartiodactyls, we observed that gremlin 2 was differentially retained (Fig. 2).
Species belonging to the suborders Tylopoda (the group that includes camels, alpacas,
vicuñas, and guanacos) and Suiformes (the group that includes pigs and peccaries) were
the only groups in which gremlin 2 was present (Fig. 2). In cetaceans and ruminants,
gremlin 2 was not present. Thus, according to the phyletic distribution of gremlin 2 within
the main groups of cetartiodactyls, the most likely scenario is that the deletion of the
gene occurred between 56.3 and 63.5 million of years ago in the common ancestor of the
clade that includes ruminants, hippopotamuses, and cetaceans (Fig. 5). However, until
information regarding gremlin 2 in hippopotamuses is obtained, caution must be taken
when interpreting these results. If, in the future, the hippopotamus genome is found to
possess gremlin 2, we can determine that two independent gene losses occurred, one in the
ancestor of ruminants and a second in the ancestor of cetaceans. For now, a single gene
loss event is assumed.

To gain insight into the genetic mechanisms that gave rise to the deletion of gremlin 2,
we compared the chromosomal location of genes found up- and downstream of gremlin 2
in human, cow, and sheep (Fig. 6). We identified a chromosomal region of approximately
12Mb, which in human was on the 5′ side of gremlin 2 (Fig. 6; pink box), while in cow and
sheep it was found in a different chromosome in relation to other genes that are linked
to gremlin 2 (Fig. 6; pink box). In cow, this region was moved from chromosome 16 to
28, while in sheep it was moved from chromosome 12 to 25 (Fig. 6). As a consequence of
this chromosomal rearrangement, the regions that are located up- and downstream of the
chromosome piece that wasmoved are now located together in both cow and sheep (Fig. 6).
Thus, in these species, the gene that is found on the 5′ side of gremlin 2 (FMN2) was part
of the chromosomal block that was moved to a different chromosome (Fig. 6) whereas the
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Figure 5 An evolutionary hypothesis regarding the evolution of the gremlin 2 gene in cetartiodactyl
mammals. According to this model, the last common ancestor of cetartiodactyls possessed a single copy
of the gene. Species belonging to the suborders Tylopoda, the group that includes camels, alpacas, vicuñas
and guanacos, and Suiformes, the group that includes pigs and peccaries, were the only groups that re-
tained gremlin 2. According to the phyletic distribution of gremlin 2, we propose that this gene was lost
in the common ancestor of ruminants, hippopotamuses, and cetaceans between 56.3 and 63.5 million of
years ago as a product of a chromosomal rearrangement.

gene located on the 3′ side (RGS7) was not. From this, we suggest that one of the break
points that gave rise to the chromosomal rearrangement was the chromosomal region
where gremlin 2 was located (Fig. 6). Information regarding the chromosomal location of
genes found up- and downstream of gremlin 2 in cetaceans would be an important piece
of information not only to understand the genetic mechanisms responsible for the deletion
of gremlin 2, but also to shed light on the number of gene loss events that have occurred
in the clade including cetaceans, hippopotamuses and ruminants. Thus, if cetaceans and
ruminants show similar patterns, we could speculate that this genetic event occurred
in the last common ancestor of the group and was inherited by all descendant lineages
(cetaceans, hippopotamuses and ruminants). However, if cetaceans and ruminants show
different patterns, we can postulate two deletion events. Preliminary information from baiji
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Figure 6 Schematic representation of the chromosomal regions that harbor genes located up- and
downstream of gremlin 2 (A) Chromosomal region that harbors genes that are up- and downstream of
gremlin 2 in humans. (B) Chromosomal regions (chrs 16 and 28) that harbor genes that are located up-
and downstream of the putative location of gremlin 2 in cow. (C) Chromosomal regions (chrs 25 and 12)
that harbor genes that are located up- and downstream of the putative location of gremlin 2 in sheep.

shows a similar pattern to that seen in ruminants, supporting the hypothesis that one gene
loss occurred in the last common ancestor of cetaceans, hippopotamuses and ruminants
(Fig. S1).

From a biomedical perspective, the loss of gremlin 2 (e.g., in cow, sheep, goat, dolphins,
whales) represents a natural gene knockout (evolutionary mutant models according to
Albertson et al., 2009), thus presenting an outstanding opportunity to understand gremlin
2 biology. From a physiological standpoint, this phenomenon is interesting as gremlin 2
plays a role in several developmental processes, including organogenesis, body patterning,
and tissue differentiation. Thus, several questions regarding the mode of action of this
gene could be investigated considering the lack of this gene in certain species. For example,
what happens with BMP2 and BMP4 in the absence of gremlin 2? Are these BMPs free of
any antagonist action? Or does another member of the DAN gene family fulfill gremlin 2’s
molecular role? From a phenotypic perspective, it has been shown that BMP2 and BMP4
are involved in the signaling pathway that regulates tooth development (Aberg, Wozney
& Thesleff, 1997; Nadiri et al., 2004). Genetic manipulation experiments have shown that
gremlin 2 deficient mice have upper and lower incisor teeth with markedly reduced
breadth and depth, and the upper incisors are more severely affected than the lower ones
(Kantaputra et al., 2015; Vogel et al., 2015). This supports the argument that the lack of
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gremlin 2 contributes to the divergent dental phenotype of ruminants and cetaceans.
Ruminants do not have incisors in the upper jaw; instead they have a dental pad. With
the exception of elk and red deer, canines are also absent in most species. This particular
dental phenotype affects how ruminants eat, which differ from phylogenetically related
species that have incisors in the upper jaw (e.g., horse). For example, cows use their tongue
to wrap and pull leaves into their mouths between the incisors of the lower jaw and the
dental pad; thus, plants are not clearly cut during feeding. This contrasts with the feeding
method of phylogenetically related species that have upper and lower incisors; these species
cut plants and graze deeply. Once the food is in their mouths, cows swing their heads to
chew the food slightly and mix it with saliva before swallowing. This lateral chewing action
is required to cut plant tissues because molars and premolars of the maxillary jaw are wider
than those located on the mandibular jaw. Conversely, sheep use their lips and teeth as
their primary tools for food prehension. Their lips are used to bring food into their mouths
and the incisors of the lower jaw in combination with the dental pad allow them to cut
leaves. As a consequence, sheep can bite closer to the ground and have the ability to be
more selective.

The loss of gremlin 2 in cetaceans is more complicated to interpret considering that
one subgroup (toothed whales) has teeth while another subgroup (baleen whales) does
not. To further complicate this scenario, it has been argued that it is impossible to define
teeth homology between toothed whales and non-cetacean mammals (Armfield et al.,
2013). From a developmental perspective, it has been demonstrated that the pathway
that controls tooth differentiation and number in cetaceans is different from the typical
mammalian pattern (Armfield et al., 2013). Particularly interesting is that the expression
pattern of BMP4, one of the main targets of gremlin 2, differs between cetaceans and
non-cetacean mammals (Sudo et al., 2004). The case of hippopotamuses remains an open
question until the genome is sequenced. However, we can speculate that, as has been shown
in cetaceans, the tooth morphology of this group could be related to different regulatory
pathways controlling teeth development as a consequence of the absence gremlin 2.

Finally, the fact that pangolins, a group of species that do not have teeth, possess a
putatively functional copy of gremlin 2 highlights that the toothless phenotype has been
achieved by genetic modifications in tooth-specific genes (e.g., C4orf26 ; Springer et al.,
2016). The presence of toothless species that possess (e.g., pangolins) and do not possess
(e.g., baleen whales) gremlin 2 supports this idea. Following the same argument, and given
the relationship between gremlin 2 and upper jaw incisor development (Kantaputra et al.,
2015; Vogel et al., 2015), we should expect that species that lack upper jaw incisors (e.g.,
ruminants) but retain all other teeth should not share the modification in tooth-specific
genes present in toothless species (Springer et al., 2016). Outside Laurasiatheria, armadillos
could be seen as an exception to this as they do not possess incisors but they have a
putatively functional gremlin 2 gene. However, it has been described that armadillos have
four to six primordial incisors at birth, which means that incisors are developed during
embryogenesis but are absorbed shortly after birth (Capizzo et al., 2016).
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Concluding remarks
Our results show that in cetartiodatyl mammals gremlin 2 has experienced a mixture of
gene loss, gene duplication, and rate acceleration. Although the last common ancestor
of cetartiodactyls possessed a single copy of the gene, species belonging to the suborders
Tylopoda (the group that includes camels, alpacas, vicuñas, and guanacos) and Suiformes
(the group that includes pigs and peccaries) are the only groups that have retained gremlin
2 (Fig. 5). These groups also experienced acceleration in the rate of evolution of this gene,
and it is this that, clearly differentiates them from all other laurasiatherians (Fig. 3). The
fact that all amino acid changes that define the gremlin 2 gene in Tylopoda and Suiformes
are present in both groups suggests that this gene and its corresponding protein were
remodeled in the last common ancestor of cetartiodactyls and subsequently inherited by
all descendant lineages (Fig. 5). After that gremlin 2 was probably lost in the ancestor of
ruminants, hippopotamuses, and cetaceans between 56.3 and 63.5 million of years ago
(Fig. 5). By removing a biological constraint imposed by the presence of gremlin 2, the lack
of this gene could explain teeth diversity in these groups of mammals. Thus, the results
presented here support the argument that gene loss is a way to increase phenotypic diversity
(Olson, 1999; Albalat & Cañestro, 2016) and that gremlin 2 is a dispensable gene at least in
this group of mammals.
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