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ABSTRACT
To examine N-isotope ratios (15N/14N) in tissues and shell organic matrix of bivalves as
a proxy for natural and anthropogenic nutrient fluxes in coastal environments, Pinctada
imbricata, Isognomon alatus, and Brachidontes exustus bivalves were live-collected and
analyzed from eight sites in Bocas del Toro, Panama. Sites represent a variety of coastal
environments, including more urbanized, uninhabited, riverine, and oceanic sites.
Growth under differing environmental conditions is confirmed by δ18O values, with
open ocean Escudo de Veraguas shells yielding the highest average δ18O (−1.0h) value
and freshwater endmember Rio Guarumo the lowest (−1.7h). At all sites there is no
single dominant source of organic matter contributing to bivalve δ15N and δ13C values.
Bivalve δ15N and δ13C values likely represent amixture of mangrove and seagrass N and
C, although terrestrial sources cannot be ruled out. Despite hydrographic differences
between end-members, we seeminimal δ15Nand δ13Cdifference between bivalves from
the river-influenced Rio Guarumo site and those from the oceanic Escudo de Veraguas
site, with no evidence for N from open-ocean phytoplankton in the latter. Populated
sites yield relative 15N enrichments suggestive of anthropogenic nutrient input, but low
δ15N values overall make this interpretation equivocal. Lastly, δ15N values of tissue and
shell organic matrix correlate significantly for pterioideans P. imbricata and I. alatus.
Thus for these species, N isotope studies of historical and fossil shells should provide
records of ecology of past environments.

Subjects Aquaculture, Fisheries and Fish Science, Ecosystem Science, Marine Biology
Keywords Anthropocene, Caribbean, Eutrophication, Molluscs, Nitrogen isotopes, Carbon
isotopes

INTRODUCTION
Deforestation of rainforest and mangrove forest, pollution from industrial farming, and
wastewater influx from a growing human population are contributing to the eutrophication
of coastal ecosystems in the Bocas del Toro Archipelago of Panama (Cramer, 2013;
Aronson et al., 2014; Schlöder, O’Dea & Guzmán, 2013). This anthropogenic influence
creates changes in nutrient conditions and habitat that result in significant detrimental
impacts on coastal marine biodiversity, fisheries, and tourism (e.g., Jackson, 2001;
Jackson et al., 2001; Lin & Dushoff, 2004; Seemann et al., 2014). In Bocas del Toro especially,
there is a correlation between high runoff and high chlorophyll-a concentrations
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(D’Croz, Rosario & Gondóla, 2005). Identifying both natural and anthropogenic nutrient
sources to the coastal watersmay aid in efforts to reduce eutrophication in the area. Oneway
to characterize spatial and temporal variations in carbon and nitrogen sources to this and
other coastal marine ecosystems is through the stable isotopes that are assimilated by, and
accumulate in, coastal marine organisms (e.g., Torres-Rojas et al., 2014; Fertig, Carruthers
& Dennison, 2014).

The carbon and nitrogen isotopic compositions in the tissues of marine organisms are a
function of the isotopic compositions of the food source, as well as fractionation associated
with biochemical processes (Minagawa &Wada, 1984; Peterson & Fry, 1987). Carbon and
nitrogen isotope compositions are reported in δ notation. This is expressed as

δ15N(h)=
(
Rx−Rstd

Rstd

)
×1000 (1)

where R is the isotopic ratio (e.g., 13C/12C, 15N/14N, or 18O/16O) of the sample (Rx) and
the standard (Rstd). The δ13C and δ15N values of tissue depend on various parameters
such as carbon or nitrogen concentration, growth rate, trophic level, tissue composition
(e.g., protein versus lipids), and food source. Shell δ13C values primarily reflect δ13CDIC,
although a small percentage of metabolic carbon (CM ) is also incorporated into the
shell (Gillikin et al., 2007;McConnaughey & Gillikin, 2008). In contrast, δ15N increases by
∼3.4h at each trophic level because of preferential excretion of 15N-depleted nitrogen in
urine (Minagawa &Wada, 1984; Peterson & Fry, 1987). In filter feeders like most bivalves,
food source can vary temporally. This can impart a time-dependent isotopic signal that may
be integrated differently depending on the turnover rate of the tissue analyzed (Carmichael
et al., 2008; Torres-Rojas et al., 2014).

Nitrogen isotopes also can be effective tracers for nitrogen sources and cycling in marine
and terrestrial environments. Terrestrial nitrogen is derived from many different sources
and undergoes many chemical processes, nevertheless it is often distinguishable from
marine nitrogen (Fertig, Carruthers & Dennison, 2014). Nitrate from the decomposition
of human and animal waste has unusually high δ15N values (δ15N = 10 to 22h;
Kreitler, 1975; Heaton, 1986) due to volatilization of ammonia and microbial processes
such as denitrification (e.g., Kreitler, 1975;McClelland, Valiela & Michener, 1997;Montoya,
2007; Fertig et al., 2010; Torres-Rojas et al., 2014; Fertig, Carruthers & Dennison, 2014). A
study of contrasting tropical coastal environments showed that the δ15N of groundwater
nitrate from an urbanized site (Jobos Bay, Puerto Rico) had groundwater values up to 12h,
indicative of wastewater nitrogen, whereas an undeveloped site (Playa Limon, Panama) had
more natural values around−3h (Bowen & Valiela, 2008).

The large nitrogen isotope fractionations associatedwithmicrobially-facilitated reactions
enrich and complicate the application of nitrogen isotopes in marine systems. For instance,
denitrification preferentially consumes 15N-depleted nitrate, resulting in fractionations
of 25–40h, whereas nitrification of ammonia can impart a fractionation of about
−35h (e.g., Cline & Kaplan, 1975; Mariotti et al., 1981). Of course, in substrate-limited
environments, complete conversion of ammonia or nitrate erases any fractionation effects
due to nitrification or denitrification.
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Carbon isotopes are used in combination with nitrogen isotopes to trace sources of
organic carbon input to coastal ecosystems. In Brazil,marine invertebrates and fish had δ13C
values (−17.4 to −12.7h) much higher than those of terrestrial organic matter entering
the ecosystem (−29.4 ± 0.3h), indicating organic carbon sourced from local marine
particulate organicmatter (POM;−18.6± 0.5h) andmacroalgae (−15.5± 1.8h;Corbisier
et al., 2006). An isotopic study of Caribbean estuarine ecosystems found phytoplankton
δ13C values from Jamaica’s Hunts Bay to be slightly more negative than average marine
POM at −23.1h (Andrews, Greenway & Dennis, 1998), reflecting minor assimilation of
terrestrially-derived carbon.

In this study we evaluate nitrogen, carbon, and oxygen isotope ratios in three
bivalve species to better understand habitat and nutrient dynamics in tropical coastal
environments. Four specific objectives are: (1) ascertain whether N and C isotopes can be
used in combination to identify the primary carbon and nitrogen sources consumed in
tropical coastal environments; (2) determine if N and C isotopes can distinguish between
anthropogenically-influenced and uninhabited sites; (3) validate the use of shell δ15Nvalues
as a proxy for tissue δ15Nvalues in pterioideans; and (4) verify that shell δ18Ovalues correlate
with salinity and thus inferred environments. Our results demonstrate that shell δ15Nvalues
are a reliable proxy for bivalve tissue δ15N values in pterioideans P. imbricata and I. alatus.
They also determine that bivalve δ15N and δ13C values primarily reflect local mangrove and
seagrass sources at all sites, although terrestrial influences cannot be ruled out.

HYDROLOGIC SETTING
The Bocas del Toro Archipelago is comprised of two oceanographic features, Almirante
Bay (446 km2) and the significantly larger Chiriquí Lagoon (941 km2; D’Croz, Rosario
& Gondóla, 2005; Fig. 1). These semi-enclosed areas are bordered by mangroves and
have restricted exchange with Caribbean waters (Quiroz et al., 2011). Seasonal variations in
freshwater inputs to Almirante Bay andChiriquí Lagoon is dominated by runoff and rainfall
regimes. Almirante Bay is exposed to the Caribbean Sea near Boca del Drago. Almirante
Bay also has small outlets near Isla Colón and Isla Popa. Chiriquí Lagoon is exposed to the
Caribbean Sea near Cayo Agua, however the lagoon receives significant freshwater from
the Cricamola River, Rio Guarumo, and numerous others (Quiroz et al., 2011). Chiriquí
Lagoon’s drainage basin is also significantly larger than that of Almirante Bay (Fig. 1;Quiroz
et al., 2011). Thus, despite being better connected to the open ocean, Chiriquí Lagoon is
more turbid and nutrient-rich (N, P, Si) than Almirante Bay (D’Croz, Rosario & Gondóla,
2005; Kaufmann & Thompson, 2005). Because of very low nutrient concentrations in local
marine waters, river discharge is the primary control on nutrient content in both Almirante
Bay and Chiriquí Lagoon (D’Croz, Rosario & Gondóla, 2005).

SAMPLE COLLECTIONS
Five live specimens of bivalves Pinctada imbricata (Röding, 1798), Isognomon alatus
(Gmelin, 1791), and Brachidontes exustus (Linnaeus, 1758) were hand-collected in July
2013 from mangrove roots or docks at eight locations in the Bocas del Toro Archipelago,

Graniero et al. (2016), PeerJ, DOI 10.7717/peerj.2278 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.2278


Figure 1 Map of the Bocas del Toro Archipelago, Panama. Almirante Bay and Chiriquí Lagoon water-
sheds are represented by green shading. Reef extent is represented by orange shading and mangrove extent
is represented by light green shading. Sample sites are labeled with black circles.

Panama (Fig. 1). Collection permits were approved by the Autoridad de los Recursos
Acuáticos de Panamá (permiso con fines científicos N◦55). Previous studies indicate five
individuals are the optimum sample size for isotopic studies of bivalves as bioindicators
(Fertig et al., 2010). The study sites target locations with varying degrees of development
and a range of salinities. Escudo de Veraguas, a mature forested island that is virtually
uninhabited, serves as an open-ocean end-member, whereas the Rio Guarumo site is most
affected by river runoff (Fig. 1). Additional study sites span a range of land use types. The
most populated sites are Bocas Town and Bocas (Town)Marina, which are characterized by
developed land use with a notable percentage of impervious surfaces (e.g., roads, buildings,
etc.) interspersed with mangroves. These urban sites are known to be affected by high
sedimentation rates and urban runoff (Hilbun, 2009). Intermediately impacted sites Boca
del Drago and STRI Lagoon (Matumbal) are semi-enclosed lagoons draining logged forests
and stubble boardedbymangroves.Minimally impacted sites Punta Sumwood and Isla Popa
sites are characterized by logged forest and stubble, mangroves, and subsistence agriculture.

SAMPLE PREPARATION AND ANALYSIS
Water temperature, conductivity, and dissolved oxygen (DO) were measured at the time of
collection using a YSI Pro 2030 multiparametric sonde from sample sites at approximately
0.5 m water depth (Table 1).

The bivalves were dissected and tissues were separated by gill, muscle, mantle, and
stomach, and subsequently dried overnight at 60–65 ◦C. Samples were then sealed in
airtight microcentrifuge tubes and crushed and homogenized using a mortar and pestle.
Approximately 1 mg of the powdered sample was analyzed for δ13C and δ15N using a
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Table 1 Physical characteristics of the eight sample sites in Bocas del Toro, Panama at the time of sampling.Dashes occur where data were not
collected.

Escudo
de
veraguas

Punta
sumwood

Isla
popa

Rio
guarumo

Boca
del
drago

STRI
facility

Bocas
town

Bocas
town
marina

Avg. Standard
deviation

DO (mg/L) 5.3 5.5 3.9 4.4 5.2 6.7 5.1 4.4 5.0 0.8
DO% 83 80 57 68 78 104 78 67 77 13
T (◦C) 28.5 28.1 28.7 29.3 28.2 30.0 28.8 28.7 28.8 0.6
SPC (mS/cm) 51.8 47.9 48.5 – 48.4 48.1 49.2 49.7 49.1 1.3
Sal (ppt) 34.0 31.1 31.5 31.6 31.5 31.3 32.0 32.4 31.9 0.9
Mangroves (Y/N) Y Y Y Y Y Y N Y – –
Seagrass (Y/N) Y N Y – Y – N – – –
Algae (Y/N) Y N Y – Y Y Y Y – –
Species available (I, P, Br) P I, P I, P, Br P, Br I, P, Br I, P, Br I, P I, P – –

Carlo Erba NA1500 elemental analyzer (EA) coupled to a Thermo Finnigan DeltaplusXP
isotope ratio mass spectrometer (IRMS) at the Stable Isotope Geosciences Facility at
Texas A&M University (http://geosciences.tamu.edu/facilities/stable-isotope-geosciences-
facility/index.php). At least every fifth sample was run in duplicate. Carbon and nitrogen
isotope values were calibrated with USGS40 (−26.39h and −4.52h respectively) and
USGS41 (37.63h and 47.57h respectively) L-glutamic acid standards, and reported versus
VPDB and air respectively. Analytical precision was 0.08h for δ15N and 0.13h for δ13C
based on replicates of standards. Conventionally, studiesmeasure the δ15Nofmuscle and/or
mantle tissue, therefore these values are averaged for δ15Ntissue versus δ15Nshell comparisons
in this paper.

Bivalve shells were cleaned by lightly sanding and scrubbing with dilute soap and water
to remove surface contaminants. Using the lowest speed (5000/min) on a Dremel 3000 tool
carbonate powder was milled on the shell exterior, parallel to the direction of growth, to
obtain an average δ15Nvalue for each shell. For small shells, the entire outer layer of the shell
was removed and homogenized with a mortar and pestle. Care was taken to avoid the inner
aragonitic (nacreous) shell layer. Roughly 40–100 µg of powdered shell was analyzed for
δ13C and δ18O using a Thermo Scientific MAT 253 IRMS coupled to a Kiel IV automated
carbonate reaction system. For δ15N, 5 mg of powdered shell was analyzed using the same
EA-IRMS system mentioned above. The only difference is that sample gas was passed
through a NaOH/silica trap to remove CO2 due to the relatively small amount of nitrogen
in the shell compared with carbon. Carbon and oxygen isotope analyses were calibrated
using the NBS-19 standard (δ13C= 1.95h; δ18O=−2.20h) and reported versus VPDB.
Nitrogen isotope calibration is the same as above. At least every fifth sample was run in
duplicate. Analytical precision was 0.11h for δ15N, 0.06h for δ13C, and 0.08h for δ18O
based on replicates of standards.
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Figure 2 Boxplots of muscle, mantle, stomach, and gill tissue δ15N and δ13C values including all loca-
tions for P. imbricata, I. alatus, and B. exustus.

RESULTS
Tissue δ13C and δ15N values
Analysis of variance indicated that at 95% confidence, there was no significant difference
between mean δ15N values (F = 2.69, df = 3, p= 0.06) or mean δ13C values (F = 2.34,
df = 3, p= 0.09) between tissue types for P. imbricata, however there was a significant
difference inmeanδ15Nvalues (F = 10.44,df = 3,p<0.001)andmeanδ13Cvalues (F = 8.55,
df = 3,p< 0.001)between tissue types for I. alatus (Fig. 2).Therewere significant taxonomic
differences between P. imbricata and I. alatus in average δ13Ctissue values (Welch’s t -test,
t = 3.33, df = 88.30, p< 0.01; Fig. 2). However, there was no significant difference between
P. imbricata and I. alatus average δ15Ntissue values (Welch’s t -test, t = 0.81, df = 89.89,
p< 0.42). For B. exustus, tissue δ15N values were not significantly different between mantle

Graniero et al. (2016), PeerJ, DOI 10.7717/peerj.2278 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.2278


Figure 3 Location averages for muscle andmantle tissue δ15N versus δ13C for each respective location.
Error bars shown are±2 SE of replicate samples for each site.

and muscle tissues (Welch’s t -test, t = 0.02, df = 5.95, p= 0.98), but mean mantle and
muscle δ13Cvalueswere significantly different (Welch’s t -test, t = 2.48, df = 6.64, p< 0.05).

Considering all species and tissue types, Bocas Marina tissue δ15N values range from 2.5
to 6h, Boca del Drago values range from 3 to 4.5h, and STRI Facility values range from
3.5 to 5.3h (Appendix S1). In the case of Bocas Marina, this range is roughly equivalent
to an increase in trophic level (∼3h). Narrowing the focus to muscle and mantle tissues
decreased variability substantially.

Between study sites there were no consistent taxonomic trends between P. imbricata
and I. alatus in mean δ13Ctissue or δ15Ntissue values (Fig. 3). For δ15N in muscle and mantle
tissues, some sites show notable differences between P. imbricata and I. alatus species (Bocas
Marina, Isla Popa,), but not others (Punta Sumwood, STRI Facility, Boca del Drago) (Fig.
4). Open-ocean end-member Escudo de Veraguas is unpopulate except for low numbers
of seasonal fisherman and has a distinctly low average δ15Ntissue value (∼3h), in contrast
with more populated sites (≥4h).

Bivalve tissue δ13C values from all sites range from about−21 to−16h (Fig. 3). Escudo
de Veraguas specimens had a high δ13C value (∼−16h) compared with human occupied
sites (<−17.5h) (Fig. 3). The δ15Nand δ13Cdifferences between the open-ocean Escudo de
Veraguas site and the human occupied sites drive a negative correlation between δ15Ntissue

and δ13Ctissue values in P. imbricata (R2
= 0.40) and I. alatus (R2

= 0.60), the taxa best
represented in the sample set (Fig. 3).

Shell δ15N values and tissue-shell comparisons
Bivalve shells analyzed from urban sites (Bocas Town and Bocas Town Marina) had the
highest δ15Nshell values on average (all species), 4.5h and 4.7h, respectively (Fig. 5). The
river-influenced Rio Guarumo site had the next highest average δ15N values (4.5h). STRI
Facility and Boca del Drago had intermediate δ15N values of 3.7h and 3.6h, respectively.
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Figure 4 Boxplots displaying variability between different species at study sites where two or more
species were present.

Isla Popa has a low average δ15N value of 3.1h, similar to open-ocean end-member Escudo
de Veraguas (3.2h). The site with the lowest δ15N value was Punta Sumwood (2.8h).
There were no significant differences in shell δ15N values between P. imbricata and I. alatus
at all sites except Bocas Marina (Welch’s t -test, t =−3.78, df = 8.00, p< 0.05).

On average,P. imbricata and I. alatus shell contained 0.01%N,whileB. exustus contained
0.06% N. Average δ15N values in shells co-vary with, and are statistically identical to, those
in tissues for pterioideans P. imbricata and I. alatus (Fig. 6). Muscle and mantle tissue
δ15N values were not significantly different from B. exustus shell δ15N values. Correlations
between δ15Ntissue and δ15Nshell values were significant for P. imbricata, I. alatus, and
combined P. imbricata and I. alatus (Fig. 6).

Shell δ18O and δ13C values
The average shell δ18O values for each species from each site range from −1.0 to −2.0h
(Fig. 7). The open-ocean site at Escudo de Veraguas has the highest average δ18O value
(−1.0h), whereas the Rio Guarumo site yields the lowest (−1.5h; Figs. 2A and 2C). The
Isla Popa site (−1.4h P. imbricata; −1.5h I. alatus), enclosed within Chiriquí Lagoon,
exhibits intermediate δ18Ovalues. BocasMarina shells differ in δ18Oaccording to taxon and
show intermediate values, with I. alatus values averaging −1.5h and P. imbricata values
averaging−1.2h. Sites Bocas Town, Boca del Drago, STRI Lagoon (Matumbal), and Punta
Sumwood are all intermediate and similar in value (average −1.1 to −1.3h). I. alatus
and P. imbricata species from the same site yielded δ18O values that were not statistically
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Figure 5 Location averages for muscle andmantle tissue δ15N versus δ13C for each respective location.
Error bars shown are±2 SE of replicate samples for each site.

different except at Bocas Marina (Fig. 7). Escudo de Veraguas and Rio Guarumo did not
have any I. alatus specimens present.

Overall, shell δ13Cvalues from theBocas del Toro region range from−1.7 to 1.8h and do
not covarywith δ18O. Shell δ13Cvalues vary byup to∼2hwhen comparingP. imbricata and
I. alatus specimens from the same site (Fig. 7). δ13C values of I. alatus shells are significantly
different (Welch’s t -test, p< 0.05) than those of P. imbricata shells at STRI Facility, Isla
Popa, and Punta Sumwood, whereas no significant differences occur at Bocas Town, Bocas
Town Marina, and Boca del Drago.

DISCUSSION
Previous studies provide δ15N and δ13C values for potential nitrogen and carbon sources
in the Bocas del Toro Archipelago. In Almirante Bay, coastal sources have δ15N and δ13C
values of respectively 2.5h and−12.1h for terrestrial grass, 1.5h and−8.5h for seagrass
Thalassia testudinum, and 1.7h and −26.5h for mangrove (Rhizophora) peat (Hilbun,
2009). Carbon isotope data for forest floor litter and grassland carbon, derived from Barro
Colorado Island in Lago Gatun in central Panama, average −30.1 ± 0.5h and −16.2 ±
4.2h respectively (Schwendenmann & Pendall, 2006). These values help to interpret the
organic matter sources indicated by bivalve δ15N and δ13C values.

Nitrogen and carbon isotope analyses of bivalve shells and tissue in the Bocas del
Toro Archipelago record spatial variations in dietary sources of nitrogen and carbon.
Variations in δ15N values cannot simply be explained by the degree of terrestrial or marine
influence. Bivalve δ15N values for Escudo de Veraguas, the marine end-member, do not
show evidence for N from open ocean POM (4–7h; e.g., Cifuentes et al., 1996; Montes et
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Figure 6 δ15N comparison for muscle andmantle tissues and corresponding species average shell
value for (A) P. imbricata, I. alatus, and (B) combined (compared to average shell values for both
species). Brachidontes exustus were not available in enough abundance for statistical analysis. Each point
represents the average value of specimens at one location.

al., 2013), especially considering trophic enrichment (3.4h; Minagawa &Wada, 1984),
but instead appear to indicate a mixture of coastal marine sources (e.g., T. testudinum and
R. mangle). The Rio Guarumo site, on the other hand, should be most influenced by river
processes and terrestrial N sources, being located within 50 m of the river mouth. Riverine
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Figure 7 Average shell δ13C versus δ18O values shell carbonate values for each location. Average
shell δ13C versus δ18O values shell carbonate values for each location including (A) Pinctada imbricata,
(B) Isognomon alatus, and (C) Brachidontes exustus (n= 73). Location symbols are the same for remaining
figures unless stated otherwise. Ti, tissue; Sh, shell. Error bars shown are±2 SE of replicate samples for
each site.
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sources of organic matter typically include vegetation from the catchment area (Bouillon
& Connolly, 2009). Therefore, one would expect greater contribution of N from terrestrial
primary producers (3.7h; Corbisier et al., 2006), including terrestrial grass (2.5h; Hilbun,
2009), forest leaf fragments (1.5 to 3h;Hietz et al., 2011), and banana leaf fragments (5.7h;
Hilbun, 2009). Despite hydrographic differences between end-members Rio Guarumo and
Escudo deVeraguas, average δ15Nvalues differ by only 1.3h, suggesting a similarmixture of
N sources, probably reflecting the dominance of mangrove and seagrass in both. Similarly,
δ15N measurements of Thalassia shoots show small and insignificant differences between
specimens from the ocean-facing outer lagoon (3.6± 0.2h,±1 SE), Almirante Bay (3.2±
0.3h), and Chiriquí Lagoon (2.5 ± 0.4h; Carruthers et al., 2005). These δ15N values are
greater than those found byHilbun (2009), suggesting spatial and/or temporal heterogeneity
in Thalassia δ15N values across the region. Samples from urbanized sites in Almirante Bay
(Bocas Town, STRI Facility, BocasMarina) have the highest values (3.7 to 5.2h). These sites
are susceptible to human influence, but are not heavily urbanized. The sitesmay be subject to
anthropogenic nutrient influx in the form of sewage or septic waste, which could contribute
N with very high δ15N (10 to 22h; Kreitler, 1975; Heaton, 1986). The 2.0h difference in
δ15Nbetween Pinctada values fromBocasMarina and Escudo de Veraguas samples could be
explained by∼20% contribution of anthropogenic N with a δ15N of 10h(e.g.,McClelland,
Valiela & Michener, 1997).

When trophic enrichment is considered (−3.4h;Minagawa &Wada, 1984), δ15Nvalues
for Bocas del Toro bivalve tissue suggest a N source of <1.5h, similar to or lower than the
δ15N of natural N sources. Even considering lower δ15N values for septic-influenced sites,
like those found in a study of lower Florida Keys macroalgae (3 to 5h; Lapointe, Barile
& Matzie, 2004), the evidence for significant sewage influence N at populated sites (Bocas
Marina, Bocas Town, and the STRI Facility) is equivocal (Fig. 8). Although δ15N values at
human-influenced sites are higher than those at uninfluenced sites, we have demonstrated
that there are many potential sources that contribute to shell and tissue δ15N values, and
these sources also vary across the region. In agreement with the wide variety of organic δ13C
sources in the area, it is apparent that no single source dominates the δ15N signal in bivalve
shells and tissues from the Bocas del Toro Archipelago, Panama.

There is a significant correlation between shell and tissue δ15N values in tropical
pterioideans P. imbricata and I. alatus (Fig. 7), supporting the use of shell δ15N values
as a proxy for tissue δ15N values. Small shell-tissue offsets (115Ntissue-shell≤ 1.2h) may be
partially attributed to the averaging of seasonal signal in shell organic matrix compared to
the short-term δ15N recorded in tissues (Table 2). These findings agree with other studies
that have used a different technique, acidification, to extract shell organic matrix from
the CaCO3 (O’Donnell et al., 2003; Carmichael et al., 2008;Watanabe, Kodama & Fukuda,
2009; Versteegh, Gillikin & Dehairs, 2011). However, differences in 115Ntissue−shell values
have been observed that are likely the result of irregular tissue turnover rates and seasonal
variations in metabolism (Versteegh, Gillikin & Dehairs, 2011). Nevertheless, these studies
and ours clearly show the utility of N isotopes in mollusk shells to examine nutrient sources
and trophic structure in modern and past ecosystems.
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Figure 8 Location averages for δ15N versus δ13C including all species, compared with values for
potential N and C sources. Error bars shown are±2 SE. Symbols are defined in Fig. 2. Banana leaf,
R. mangle, terrestrial grass and T. testudinum δ15N and δ13C values are from Almirante Bay, Panama
(Hilbun, 2009). The gray-shaded rounded rectangle indicates potential δ15N values of sewage (up to
20h; Lapointe, Barile & Matzie, 2004;McClelland, Valiela & Michener, 1997). The green-shaded rounded
rectangle estimates the forest leaf range in δ15N values in legumes and non-legumes from Barro Colorado
Island, Panama in 2007 (1.5 to 3.0h; Hietz et al., 2011). The yellow rounded rectangle represents δ15N
values of open ocean POM (4–7h; Cifuentes et al., 1996;Montes et al., 2013). The blue-shaded rectangle
represents coastal POM values from the Bocas del Toro Archipelago (−21.2 to−19.6h; Seemann et
al., 2014). The vertical solid green line denotes grassland δ13C values and the vertical dashed brown line
denotes forest floor litter δ13C values from Barro Colorado Island, Panama (Schwendenmann & Pendall,
2006). The represents the δ15N value of terrestrial organic matter entering a coastal ecosystem in Brazil
(Corbisier et al., 2006). The horizontal purple dashed line represents δ15N values of T. testudinum shoots
from Almirante Bay and horizontal red solid line represents δ15N values of T. testudinum in Chiriqui
Lagoon (Carruthers et al., 2005).

The range of bivalve tissue δ13C values, about −20 to −16h, encompasses average
δ13C values for marine POM from the open Caribbean (−21 to −19h; Eadie & Jeffrey,
1973; Fry et al., 1982) and Bocas del Toro Archipelago (−21.2 to −19.6h; Seemann et
al., 2014), and for grassland residue from Panama (−16.2h; Schwendenmann & Pendall,
2006). Bivalve tissues in our study are enriched in 13C relative to Panamanian leaf litter
(−30.1 ± 0.5h; Schwendenmann & Pendall, 2006), banana leaf (-26.5h; Hilbun, 2009),
and Rhizophora mangle leaves and peat (−30.0 and −26.5h respectively; Hilbun, 2009)
(Fig. 8). Conversely, tissues are depleted in 13C with respect to terrestrial grass (−12.1h)
and Thalassia testudinum (−8.5h) from Almirante Bay (Hilbun, 2009). As might be
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Table 2 Average tissue-species offset (1δ15Ntissue-shell (%)) for various bivalve species. Table modified
from Versteegh, Gillikin & Dehairs (2011).

Species 1δ15Ntissue-shell (h) Tissue type Study

Ruditapes philippinarum 1.1± 0.4 Whole Watanabe, Kodama & Fukuda, 2009
Mercenaria mercenaria 2.4± 0.3 Whole Carmichael, Brenda & Valiela (2004)
Mercenaria mercenaria 0.2± 0.7 Mantle O’Donnell et al. (2003)
Arctica islandica 2.7 Whole LeBlanc (1989)
Mytilus edulis −0.1± 0.2 Whole LeBlanc (1989)
Mytilus edulis −2.2 to−1.5 Mantle Versteegh, Gillikin & Dehairs (2011)
Pinctada imbricata 0.0± 0.4 Muscle This study
Pinctada imbricata 0.0± 0.5 Mantle This study
Isognomon alatus −0.3± 0.2 Muscle This study
Isognomon alatus −0.4± 0.2 Mantle This study
Brachidontes exustus 0.2± 0.2 Muscle This study
Brachidontes exustus 0.2± 0.3 Mantle This study

predicted, the range of organic matter δ13C values from this study suggests a mixture of
contributing sources, with no single source dominating. Escudo de Veraguas experiences
the least terrestrial influence and thus the site’s high bivalve tissue δ13C values (−16.1 ±
0.4h) relative to terrestrially-influenced sites such as Bocas Town (−18.9 ± 0.0h) and
Bocas Marina (−18.9 ± 0.8h) suggest perhaps a greater influence from seagrass carbon.
Indeed, seagrasses are dense on the large fringing reef surrounding the island. In contrast, the
13C depletion in bivalve tissue at Bocas Town and Bocas Marina sites likely reflects greater
influence of mangrove carbon. Carbon isotope studies of seagrasses from Florida support
this hypothesis, showing that mineralization of mangrove organic matter can significantly
impact the δ13C of organic matter near mangrove forests (Lin, Banks & Sternberg, 1991;
Anderson & Fourqurean, 2003). The lack of a distinctive terrestrial δ13C signature in the Rio
Guarumo samples suggests that terrestrial organic carbon is not a dominant influence near
the river mouth.

Oxygen isotope ratios (18O/16O) in shell carbonate provide a record of sea surface
temperature (SST) and seawater δ18O, which covaries with salinity. Since annual variation
in SST in the southwest Caribbean is low (∼2 ◦C), the primary driver of variability in
δ18O values is salinity (Tao et al., 2013). The δ18O values of bivalve shells in the Bocas del
Toro Archipelago are consistent with the spatial variations in salinity. The open-ocean end-
member EscudodeVeraguas has the highest average δ18O(−1.0h) value and the freshwater
end-member Rio Guarumo (Chiriquí Lagoon) shows the lowest δ18O (−1.7h; average
of P. imbricata and B. exustus). These results confirm our environmental interpretations
and are consistent with the recently updated δ18O-salinity relationship for the southwest
Caribbean which suggests that Escudo de Veraguas seawater (salinity 34.0h) would be
0.25–0.5h higher in δ18O than Rio Guarumo seawater (salinity 31.6h) (Tao et al., 2013).
Isla Popa (−1.4h) is enclosed within Chiriquí Lagoon showing characteristic freshwater
influence similar to Rio Guarumo (D’Croz, Rosario & Gondóla, 2005). Bocas Town, Boca
del Drago, STRI Lagoon (Matumbal), and Bocas Town Marina are semi-enclosed bodies
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of water and have shell δ18O values that lie closer to the marine end-member than the
freshwater end-member. These transitional coastal sites are indistinguishable based on shell
δ18O values.

CONCLUSIONS
No single dominant source of organic matter contributes to δ15N and δ13C values in
shallow-water mollusk tissues from Bocas del Toro. Mollusk δ15N and δ13C values are
heavily influenced by local effects from mangrove and seagrasses, although the influence
of C3 and C4 terrestrial N and C cannot be ruled out. Despite hydrographic differences
indicated by δ18O values, there are only minor differences in δ15N and δ13C values between
river-influenced end-member Rio Guarumo and open-ocean end-member Escudo de
Veraguas, reinforcing the conclusion that C and N from the locally-abundant mangrove
and seagrasses have relatively higher influence. High relative δ15N values are observed at
populated sites, consistent with influences from sewage or septic waste, but the relatively low
δ15N values overall (4.0–5.3h) mean that the anthropogenic signature, if it exists, is dilute.

Shell δ15N values are a reliable proxy for organic matter δ15N values in bivalves in
tropical coastal environments. There are strong correlations between the nitrogen isotopic
compositions of tissue and shell organic matrix for P. imbricata data, I. alatus data, and
combined P. imbricata and I. alatus data. Thus, for these species, N isotope studies of
well-preserved historical and fossil shells should provide reliable records of nutrient sources
and trophic structure in modern and past ecosystems.
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