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The approximately analytical bound state solutions of the l-wave Schrödinger equation for the
Manning-Rosen (MR) potential are carried out by a proper approximation to the centrifugal
term. The energy spectrum formula and normalized wave functions expressed in terms of the
Jacobi polynomials are both obtained for the application of the Nikiforov-Uvarov (NU) method
to the Manning-Rosen potential. To show the accuracy of our results, we calculate the eigenvalues
numerically for arbitrary principal and orbital quantum numbers n and lwith two different values
of the potential screening parameter α. It is found that our results are in good agreement with
the those obtained by other methods for short potential range, lowest values of orbital quantum
number l, and α. Two special cases of much interest are investigated like the s-wave case and
Hulthén potential case.

1. Introduction

One of the important tasks of quantum mechanics is to find exact solutions of the wave
equations (nonrelativistic and relativistic) for certain type of potentials of physical interest
since they contain all the necessary information regarding the quantum system under con-
sideration. For example, the exact solutions of these wave equations are only possible in a
few simple cases such as the Coulomb, harmonic oscillator, pseudoharmonic, and Mie-type
potentials [1–10]. For an arbitrary l-state, most quantum systems could be only treated by
approximationmethods. For the rotatingMorse potential, some semiclassical and/or numeri-
cal solutions have been obtained by using Pekeris approximation [11–15]. In recent years,
many authors have studied the nonrelativistic and relativistic wave equations with certain
potentials for the s- and l-waves. The exact and approximate solutions of these models have
been obtained analytically [12–24].

Many exponential-type potentials have been solved like the Morse potential [14, 18,
21], the Hulthén potential [19, 25–29], the Pöschl-Teller potential [30], the Woods-Saxon
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potential [31–34], the Kratzer-type potentials [16, 35–44], the Rosen-Morse-type potentials
[45, 46], theManning-Rosen potential [47–52], generalizedMorse potential [17, 18], and other
multiparameter exponential-type potentials [53, 54]. Various methods are used to obtain the
exact solutions of the wave equations for this type of exponential potentials. These methods
include the supersymmetric (SUSY) and shape invariant method [28, 29, 55], the variational
[56], the path integral approach [49], the standard methods [50–52], the asymptotic iteration
method (AIM) [57, 58], the exact quantization rule (EQR) [15, 59–62], the hypervirial pertur-
bation [63], the shifted 1/N expansion (SE) [64–75] and the modified shifted 1/N expansion
(MSE) [76], series method [77], smooth transformation [78], the algebraic approach [79], the
perturbative treatment [80–86] and the Nikiforov-Uvarov (NU) method [25–27, 30–43, 87–
91], and others. The NU method [91] is based on solving the second-order linear differential
equation by reducing to a generalized equation of hypergeometric type. It has been used to
solve the Schrödinger [16, 21, 25, 30, 32, 33, 37, 39, 83–85], Dirac [17, 18, 27, 35–38, 45, 87–89],
Klein-Gordon [12, 20, 22, 31, 32, 35, 37, 38, 92] wave equations for such kinds of exponential
potentials.

The NU method has shown its power in calculating the exact energy levels of all
bound states for some solvable quantum systems. Motivated by the considerable interest in
exponential-type potentials [14–19, 24–54], we attempt to study the quantum properties of
another exponential-type potential proposed by Manning and Rosen (MR) [46–52]:

V (r) = ε0

(
α(α − 1)e−2r/b(
1 − e−r/b)2 − Ae−r/b

1 − e−r/b
)
, ε0 =

�
2

2μb2
, (1.1)

where A and α are two-dimensionless parameters, but the screening parameter b has
dimension of length and corresponds to the potential range [51, 52]. Also, an energy scale
ε0 has been introduced for the potential part. This potential is used as a mathematical model
in the description of diatomic molecular vibrations [93, 94], and it constitutes a convenient
model for other physical situations. Figure 1 shows the variation of the MR potential (1.1)
with r for various screening distances b = 0.025, 0.050, and 0.100 considering the cases (a)
α = 0.75 and (b) α = 1.50. It is known that for this potential the Schrödinger equation can
be solved exactly for s-wave (i.e., l = 0) [50]. Unfortunately, for an arbitrary l-states (l /= 0),
the Schrödinger equation does not admit an exact analytic solution. In such a case, the
Schrödinger equation is solved numerically [95] or approximately using approximation
schemes [19, 23, 88–90, 96–99]. Some authors used the approximation scheme proposed by
Greene and Aldrich [19] to study analytically the l /= 0 bound states or scattering states of the
Schrödinger or even relativistic wave equations for MR potential [15, 31, 32]. We calculate
and find its l /= 0 bound state energy spectrum and normalized wave functions [46–52]. The
potential (1.1)may be further put in the following simple form:

V (r) = −Ce
−r/b +De−2r/b(
1 − e−r/b)2 , C = A, D = −A − α(α − 1). (1.2)

It is also used in several branches of physics for their bound states and scattering properties.
Its spectra have already been calculated via Schrö dinger formulation [47, 48]. In our analysis,
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Figure 1: Variation of MR potential as function of separation distance r taking various values for the
screening parameter b when (a) α = 0.75 and (b) α = 1.50.

we find that the potential (1.1) remains invariant by mapping α → 1 − α. Further, it has a
relative minimum value V (r0) = −(A2/4κb2α(α − 1)) at r0 = b ln[1 + (2α(α − 1)/A)] forA/2 +
α(α − 1) > 0 which provides 2α > 1 +

√
1 − 2A as a result of the first derivative dV/dr|r=r0 = 0.

For the case α = 0.75, we have the criteria imposed on the value of A: A > α/2 = 3/8. For
example, in � = μ = 1, the minimum of the potential is V (r0) = −α/16b2(α − 1). The second
derivative which determines the force constants at r = r0 is given by

d2V

dr2

∣∣∣∣∣
r=r0

=
A2[A + 2α(α − 1)]2

8b4α3(α − 1)3
. (1.3)

The purpose of this paper is to investigate the l-state solution of the Schrödinger-MR problem
within the Nikiforov-Uvarov method to generate accurate energy spectrum. The solution is
mainly depending on replacing the orbital centrifugal term of singularity ∼ 1/r2 [27] with
Greene-Aldrich approximation scheme, consisting of the exponential form [25, 26]. Figure 2
shows the behaviour of the singular term r−2 and various approximation schemes recently
used in [17–19, 23, 96–98].

sThe paper is organized as follows: in Section 2 we present the shortcuts of the
NU method. In Section 3, we derive l /= 0 bound state eigensolutions (energy spectrum and
wave functions) of the MR potential by means of the NU method. In Section 4, we give
numerical calculations for various diatomic molecules. Section 5 is devoted for discussions.
The concluding remarks are given in Section 6.
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Figure 2: A plot of the variation of the singular orbital term 1/r2 (dotted-solid line) with the approxima-
tions of (a) [17, 18] (dash line), the conventional Greene-Aldrich of [19] (dash-dot line), and improved
[23, 96–98] (solid line) replacing the term 1/r2 with respect to r, where δ = 0.1 fm−1, and (b) the improved
approximation [96–98]with various shifting constants.

2. Method

The Nikiforov-Uvarov (NU)method is based on solving the hypergeometric type second or-
der differential equation [91]. Employing an appropriate coordinate transformation z = z(r),
we may rewrite the Schrödinger equation in the following form:

ψ ′′
n(z) +

τ̃(z)
σ(z)

ψ ′
n(z) +

σ̃(z)
σ2(z)

ψn(z) = 0, (2.1)

where σ(z) and σ̃(z) are the polynomials with at most of second-degree, and τ̃(s) is a first-
degree polynomial. Further, using ψn(z) = φn(z)yn(z), (2.1) reduces into an equation of the
following hypergeometric type:

σ(z)y′′
n(z) + τ(z)y

′
n(z) + λyn(z) = 0, (2.2)

where τ(z) = τ̃(z) + 2π(z) (its derivative must be negative), and λ is a constant given in the
form

λ = λn = −nτ ′(z) − n(n − 1)
2

σ ′′(z), n = 0, 1, 2, . . . . (2.3)
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It is worthwhile to note that λ or λn is obtained from a particular solution of the form y(z) =
yn(z) which is a polynomial of degree n. Further, yn(z) is the hypergeometric-type function
whose polynomial solutions are given by Rodrigues relation:

yn(z) =
Bn
ρ(z)

dn

dzn
[
σn(z)ρ(z)

]
, (2.4)

where Bn is the normalization constant, and the weight function ρ(z) must satisfy the
condition [91]

w′(z) −
(
τ(z)
σ(z)

)
w(z) = 0, w(z) = σ(z)ρ(z). (2.5)

In order to determine the weight function given in (2.5), we must obtain the following
polynomial:

π(z) =
σ ′(z) − τ̃(z)

2
±
√(

σ ′(z) − τ̃(z)
2

)2

− σ̃(z) + kσ(z). (2.6)

In principle, the expression under the square root sign in (2.6) can be arranged as the square
of a polynomial. This is possible only if its discriminant is zero. In this case, an equation for
k is obtained. After solving this equation, the obtained values of k are included in the NU
method and here there is a relationship between λ and k by k = λ −π ′(z). After this point, an
appropriate φn(z) can be calculated as the solution of the differential equation:

φ′(z) −
(
π(z)
σ(z)

)
φ(z) = 0. (2.7)

3. Bound-State Solutions for Arbitrary l-States

To study any quantum physical system characterized by the empirical potential given in (1.1),
we solve the original SE which is given in the well-known textbooks [1, 2]

(
p2

2m
+ V (r)

)
ψ
(
r, θ, φ

)
= Eψ

(
r, θ, φ

)
, (3.1)

where the potential V (r) is taken as the MR form in (1.1). Using the separation method with
the wavefunction ψ(r, θ, φ) = r−1R(r)Ylm(θ, φ), we obtain the following radial Schrödinger
equation:

d2Rnl(r)
dr2

+

{
2μEnl

�2
− 1
b2

[
α(α − 1)e−2r/b(
1 − e−r/b)2 − Ae−r/b

1 − e−r/b
]
− l(l + 1)

r2

}
Rnl(r) = 0. (3.2)
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Since the Schrödinger equation with MR effective potential

Ueff(x) =
l(l + 1)
x2

+

[
α(α − 1)e−2x

(1 − e−x)2
− Ae−x

1 − e−x
]
, x =

r

b
, (3.3)

has no analytical solution for l /= 0 states, an approximation to the centrifugal term has to
be made. The good approximation for the too singular kinetic energy term l(l + 1)r−2 in the
centrifugal barrier is taken as [19, 51, 52]

1
r2

≈ 1
b2

e−r/b(
1 − e−r/b)2 , (3.4)

in a short potential range. To solve it by the present method, we need to recast (3.2)with (3.4)
into the form of (2.1) bymaking change of the variables r → z through the mapping function
r = f(z) and energy transformation:

z = e−r/b, ε =

√
−2μb

2Enl

�2
, Enl < 0, (3.5)

to obtain the following hypergeometric equation:

d2R(z)
dz2

+
(1 − z)
z(1 − z)

dR(z)
dz

+
1

[z(1 − z)]2
{
−ε2 +

[
A + 2ε2 − l(l + 1)

]
z −
[
A + ε2 + α(α − 1)

]
z2
}
R(z) = 0.

(3.6)

It is noted that the bound state (real) solutions of the last equation demand that

z =

⎧⎨
⎩
0, when r −→ ∞,

1, when r −→ 0,
(3.7)

and thus provide the finite radial wave functions Rnl(z) → 0. To apply the hypergeometric
method (NU), it is necessary to compare (3.6) with (2.1). Subsequently, the following value
for the parameters in (2.1) is obtained:

τ̃(z) = 1 − z, σ(z) = z − z2, σ̃(z) = −
[
A + ε2 + α(α − 1)

]
z2 +

[
A + 2ε2 − l(l + 1)

]
z − ε2.
(3.8)

If one inserts these values of parameters into (2.6), with σ ′(z) = 1 − 2z, the following linear
function is achieved

π(z) = −z
2
± 1
2

√
a1z2 + a2z + a3, (3.9)
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where a1 = 1 + 4[A + ε2 + α(α − 1) − k], a2 = 4{k − [A + 2ε2 − l(l + 1)]}, and a3 = 4ε2.
According to this method, the expression in the square root has to be set equal to zero, that
is, Δ = a1z2 + a2z + a3 = 0. Thus the constant k can be determined as

k = A − l(l + 1) ± aε, a =
√
(1 − 2α)2 + 4l(l + 1). (3.10)

In view of that, we can find four possible functions for π(z) as

π(z) = −z
2
±

⎧⎪⎨
⎪⎩
ε −
(
ε − a

2

)
z, for k = A − l(l + 1) + aε,

ε −
(
ε +

a

2

)
z, for k = A − l(l + 1) − aε.

(3.11)

We must select

k = A − l(l + 1) − aε, π(z) = −z
2
+ ε −

(
ε +

a

2

)
z, (3.12)

in order to obtain the polynomial τ(z) = τ̃(z) + 2π(z) having negative derivative as

τ(z) = 1 + 2ε − (2 + 2ε + a)z, τ ′(z) = −(2 + 2ε + a). (3.13)

We can also write the values of λ = k+π ′(z) and λn = −nτ ′(z)−(n(n−1)/2)σ ′′(z), n = 0, 1, 2, . . .
as

λ = A − l(l + 1) − (1 + a)
[
1
2
+ ε
]
,

λn = n(1 + n + a + 2ε), n = 0, 1, 2, . . . ,

(3.14)

respectively. Letting λ = λn and solving the resulting equation for ε lead to the energy equa-
tion

ε =
(n + 1)2 + l(l + 1) + (2n + 1)Λ −A

2(n + 1 + Λ)
, Λ =

−1 + a
2

, (3.15)

from which we obtain the discrete energy spectrum formula:

Enl = − �
2

2μb2

[
(n + 1)2 + l(l + 1) + (2n + 1)Λ −A

2(n + 1 + Λ)

]2
, 0 ≤ n, l <∞, (3.16)

where n denotes the radial quantum number. It is found thatΛ remains invariant bymapping
α → 1 − α, so do the bound state energies Enl. An important quantity of interest for the MR
potential is the critical coupling constant Ac, which is that value of A for which the binding
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energy of the level in question becomes zero. Furthermore, from (3.16), we have (in atomic
units � = μ = Z = e = 1),

Ac = (n + 1 + Λ)2 −Λ(Λ + 1) + l(l + 1). (3.17)

Next, we turn to the radial wave function calculations. We use σ(z) and π(z) in (3.8)
and (3.12) to obtain

φ(z) = zε(1 − z)Λ+1, (3.18)

and weight function

ρ(z) = z2ε(1 − z)2Λ+1, (3.19)

ynl(z) = Cnz
−2ε(1 − z)−(2Λ+1) d

n

dzn

[
zn+2ε(1 − z)n+2Λ+1

]
. (3.20)

The functions ynl(z), up to a numerical factor, are in the form of Jacobi polynomials, that is,
ynl(z) 	 P

(2ε,2Λ+1)
n (1 − 2z), and physically hold in the interval (0 ≤ r < ∞ → 0 ≤ z ≤ 1) [100].

Therefore, the radial part of the wave functions can be found by substituting (3.18) and (3.20)
into Rnl(z) = φ(z)ynl(z) as

Rnl(z) =Nnlz
ε(1 − z)1+ΛP (2ε,2Λ+1)

n (1 − 2z), (3.21)

where ε andΛ are given in (3.5) and (3.10) andNnl is a normalization constant. This equation
satisfies the requirements; Rnl(z) = 0 as z = 0 (r → ∞) and Rnl(z) = 0 as z = 1 (r = 0).
Therefore, the wave functions, Rnl(z), in (3.21) are valid physically in the closed interval
z ∈ [0, 1] or r ∈ (0,∞). Further, the wave functions satisfy the normalization condition:

∫∞

0
|Rnl(r)|2dr = 1 = b

∫1

0
z−1|Rnl(z)|2dz, (3.22)

whereNnl can be determined via

1 = bN2
nl

∫1

0
z2ε−1(1 − z)2Λ+2

[
P
(2ε,2Λ+1)
n (1 − 2z)

]2
dz. (3.23)

The Jacobi polynomials, P (ρ,ν)
n (ξ), can be explicitly written in two different ways [101, 102]:

P
(ρ,ν)
n (ξ) = 2−n

n∑
p=0

(−1)n−p
(
n + ρ

p

)(
n + ν

n − p

)
(1 − ξ)n−p(1 + ξ)p,

P
(ρ,ν)
n (ξ) =

Γ
(
n + ρ + 1

)
n!Γ
(
n + ρ + ν + 1

) n∑
r=0

(
n

r

)
Γ
(
n + ρ + ν + r + 1

)
Γ
(
r + ρ + 1

) (
ξ − 1
2

)r
,

(3.24)
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where ( nr ) = n!/r!(n − r)! = Γ(n + 1)/Γ(r + 1)Γ(n − r + 1). After using (3.24), we obtain the
explicit expressions for P (2ε,2Λ+1)

n (1 − 2z):

P
(2ε,2Λ+1)
n (1 − 2z) = (−1)nΓ(n + 2ε + 1)Γ(n + 2Λ + 2)

×
n∑
p=0

(−1)p
p!
(
n − p)!Γ(p + 2Λ + 2

)
Γ
(
n + 2ε − p + 1

)zn−p(1 − z)p,

P
(2ε,2Λ+1)
n (1 − 2z) =

Γ(n + 2ε + 1)
Γ(n + 2ε + 2Λ + 2)

n∑
r=0

(−1)rΓ(n + 2ε + 2Λ + r + 2)
r!(n − r)!Γ(2ε + r + 1)

zr.

(3.25)

Inserting (3.25) into (3.23), one obtains

1 = bN2
nl(−1)n

Γ(n + 2Λ + 2)Γ(n + 2ε + 1)2

Γ(n + 2ε + 2Λ + 2)

×
n∑

p,r=0

(−1)p+rΓ(n + 2ε + 2Λ + r + 2)
p!r!
(
n − p)!(n − r)!Γ(p + 2Λ + 2

)
Γ
(
n + 2ε − p + 1

)
Γ(2ε + r + 1)

Inl
(
p, r
)
,

(3.26)

where

Inl
(
p, r
)
=
∫1

0
zn+2ε+r−p−1(1 − z)p+2Λ+2dz. (3.27)

The following integral representation of the hypergeometric function [101, 102]

2F1
(
α0, β0 : γ0; 1

)Γ(α0)Γ(γ0 − α0)
Γ
(
γ0
) =

∫1

0
zα0−1(1 − z)γ0−α0−1(1 − z)−β0dz, γ0 > α0 > 0,

(3.28)

gives

2F1
(
α0, β0 : α0 + 1; 1

)
α0

=
∫1

0
zα0−1(1 − z)−β0dz, (3.29)

where

2F1
(
α0, β0 : γ0; 1

)
=

Γ
(
γ0
)
Γ
(
γ0 − α0 − β0

)
Γ
(
γ0 − α0

)
Γ
(
γ0 − β0

) , γ0 − α0 − β0 > 0, γ0 > β0 > 0. (3.30)

For the present case, with the aid of (3.28), when α0 = n + 2ε + r − p, β0 = −p − 2Λ − 2, and
γ0 = α0 + 1 are substituted into (3.29), we obtain

Inl
(
p, r
)
=

2F1
(
α0, β0 : γ0; 1

)
α0

=
Γ
(
n + 2ε + r − p + 1

)
Γ
(
p + 2Λ + 3

)
(
n + 2ε + r − p)Γ(n + 2ε + r + 2Λ + 3)

. (3.31)
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Finally, we obtain

1 = bN2
nl(−1)n

Γ(n + 2Λ + 2)Γ(n + 2ε + 1)2

Γ(n + 2ε + 2Λ + 2)

×
n∑

p,r=0

(−1)p+rΓ(n + 2ε + r − p + 1
)(
p + 2Λ + 2

)
p!r!
(
n − p)!(n − r)!Γ(n + 2ε − p + 1

)
Γ(2ε + r + 1)(n + 2ε + r + 2Λ + 2)

,

(3.32)

which gives

Nnl =
1√
s(n)

, (3.33)

where

s(n) = b(−1)n Γ(n + 2Λ + 2)Γ(n + 2ε + 1)2

Γ(n + 2ε + 2Λ + 2)

×
n∑

p,r=0

(−1)p+rΓ(n + 2ε + r − p + 1
)(
p + 2Λ + 2

)
p!r!
(
n − p)!(n − r)!Γ(n + 2ε − p + 1

)
Γ(2ε + r + 1)(n + 2ε + r + 2Λ + 2)

.

(3.34)

4. Numerical Results

To show the accuracy of our results, we calculate the energy eigenvalues for various n and
l quantum numbers with two different values of the parameters α. It is shown in Table 1
that the present approximately numerical results are not in a good agreement for the long
potential range (high screening regime). The energy eigenvalues for short potential range
(large values of parameter b) are in agreement with the other authors. The energy spectra for
various diatomic molecules like HCl, CH, LiH, and CO are presented in Tables 2 and 3. These
results are relevant to atomic physics [103–108], molecular physics [109, 110], and chemical
physics [111, 112], and so forth.

5. Discussions

In this work, we have utilized the hypergeometric method and solved the radial SE for the
MR model potential with the angular momentum l /= 0 states. We have derived the binding
energy spectra in (3.16) and their corresponding wave functions in (3.21).

Let us study special cases. We have shown that inserting α = 0 in (1.1), the present
solution reduces to the one of the Hulthén potential [25, 26, 28, 29, 99]:

V (H)(r) = −V0
e−δr

1 − e−δr , V0 = Ze2δ, δ = b−1, (5.1)

where Ze2 is the potential strength parameter and δ is the screening parameter and b is the
range of potential. We note also that it is possible to recover the Yukawa potential by letting
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Table 1: Energies (in atomic units) of different n and l states and for α = 0.75 and α = 1.5, A = 2b.

α = 0.75 α = 1.5
States 1/b Present QD [51, 52] LS [95] Present QD [51, 52] LS [95]

2p

0.025 −0.1205793 −0.1205793 −0.1205271 −0.0900228 −0.0900229 −0.0899708
0.050 −0.1084228 −0.1084228 −0.1082151 −0.0802472 −0.0802472 −0.0800400
0.075 −0.0969120 −0.0969120 −0.0964469 −0.0710332 −0.0710332 −0.0705701
0.100 −0.0860740 −0.0577157

3p

0.025 −0.0459296 −0.0459297 −0.0458779 −0.0369650 −0.0369651 −0.0369134
0.050 −0.0352672 −0.0352672 −0.0350633 −0.0274719 −0.0274719 −0.0272696
0.075 −0.0260109 −0.0260110 −0.0255654 −0.0193850 −0.0193850 −0.0189474
0.100 −0.0181609 −0.0127043

3d
0.025 −0.0449299 −0.0449299 −0.0447743 −0.0396344 −0.0396345 −0.0394789
0.050 −0.0343082 −0.0343082 −0.0336930 −0.0300629 −0.0300629 −0.0294496
0.075 −0.0251168 −0.0251168 −0.0237621 −0.0218120 −0.0218121 −0.0204663

4p
0.025 −0.0208608 −0.0208608 −0.0208097 −0.0172249 −0.0172249 −0.0171740
0.050 −0.0119291 −0.0119292 −0.0117365 −0.0091019 −0.0091019 −0.0089134
0.075 −0.0054773 −0.0054773 −0.0050945 −0.0035478 −0.0035478 −0.0031884

4d
0.025 −0.0204555 −0.0204555 −0.0203017 −0.0183649 −0.0183649 −0.0182115
0.050 −0.0115741 −0.0115742 −0.0109904 −0.0100947 −0.0100947 −0.0095167
0.075 −0.0052047 −0.0052047 −0.0040331 −0.0042808 −0.0042808 −0.0031399

4f
0.025 −0.0202886 −0.0202887 −0.0199797 −0.0189222 −0.0189223 −0.0186137
0.050 −0.0114283 −0.0114284 −0.0102393 −0.0105852 −0.0105852 −0.0094015
0.075 −0.0050935 −0.0050935 −0.0026443 −0.0046527 −0.0046527 −0.0022307

5p 0.025 −0.0098576 −0.0098576 −0.0098079 −0.0081308 −0.0081308 −0.0080816
5d 0.025 −0.0096637 −0.0096637 −0.0095141 −0.0086902 −0.0086902 −0.0085415
5f 0.025 −0.0095837 −0.0095837 −0.0092825 −0.0089622 −0.0089622 −0.0086619
5g 0.025 −0.0095398 −0.0095398 −0.0090330 −0.0091210 −0.0091210 −0.0086150
6p 0.025 −0.0044051 −0.0044051 −0.0043583 −0.0035334 −0.0035334 −0.0034876
6d 0.025 −0.0043061 −0.0043061 −0.0041650 −0.0038209 −0.0038209 −0.0036813
6f 0.025 −0.0042652 −0.0042652 −0.0039803 −0.0039606 −0.0039606 −0.0036774
6g 0.025 −0.0042428 −0.0042428 −0.0037611 −0.0040422 −0.0040422 −0.0035623

b → ∞ and V0 = Ze2/b. If the potential is used for atoms, the Z is identified with the atomic
number. This can be achieved by setting Λ = l, hence, the energy for l /= 0 states

Enl = −

[
A − (n + l + 1)2

]2
�
2

8μb2(n + l + 1)2
, 0 ≤ n, l <∞, (5.2)

and for s-wave (l = 0) states

En = −

[
A − (n + 1)2

]2
�
2

8μb2(n + 1)2
, 0 ≤ n <∞. (5.3)
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Table 2: Energy spectrum of HCl and CH (in eV) for different states where �c = 1973.29 eV Å, μHCl =
0.9801045 amu, μCH = 0.929931 amu, and A = 2b.

States 1/ba HCl/α = 0, 1 α = 0.75 α = 1.5 CH/α = 0, 1 α = 0.75 α = 1.5

2p

0.025 −4.81152646 −5.14278553 −3.83953094 −5.07112758 −5.42025940 −4.04668901
0.050 −4.31837832 −4.62430290 −3.42259525 −4.55137212 −4.87380256 −3.60725796
0.075 −3.85188684 −4.13335980 −3.02961216 −4.05971155 −4.35637111 −3.19307186
0.100 −3.41205201 −3.66996049 −2.46161213 −3.59614587 −3.86796955 −2.59442595

3p

0.025 −1.86633700 −1.95892730 −1.57658128 −1.96703335 −2.06461927 −1.66164415
0.050 −1.42316902 −1.50416901 −1.17169439 −1.49995469 −1.58532495 −1.23491200
0.075 −1.03998066 −1.10938179 −0.82678285 −1.09609178 −1.16923738 −0.87139110
0.100 −0.71676763 −0.77457419 −0.54184665 −0.75544012 −0.81636557 −0.57108145

3d

0.025 −1.86633700 −1.91628944 −1.69043293 −1.96703335 −2.01968093 −1.78163855
0.050 −1.42316902 −1.46326703 −1.28220223 −1.49995469 −1.54221615 −1.35138217
0.075 −1.03998066 −1.07124785 −0.93029598 −1.09609178 −1.12904596 −0.98048917
0.100 −0.71676763 −0.74022762 −0.63472271 −0.75544012 −0.78016587 −0.66896854

4p
0.025 −0.85301300 −0.88972668 −0.73465318 −0.89903647 −0.93773100 −0.77429066
0.050 −0.47981981 −0.50878387 −0.38820195 −0.50570801 −0.53623480 −0.40914700
0.075 −0.21325325 −0.23361041 −0.15131598 −0.22475912 −0.24621462 −0.15948008

4d
0.025 −0.85301300 −0.87244037 −0.78327492 −0.89903647 −0.91951202 −0.82553574
0.050 −0.47981981 −0.49364289 −0.43054552 −0.50570801 −0.52027690 −0.45377517
0.075 −0.21325325 −0.22198384 −0.18257890 −0.22475912 −0.23396076 −0.19242977

4f
0.025 −0.85301300 −0.86532198 −0.80704413 −0.89903647 −0.91200956 −0.85058739
0.050 −0.47981981 −0.48742442 −0.45146566 −0.50570801 −0.51372292 −0.47582404
0.075 −0.21325325 −0.21724109 −0.19844068 −0.22475912 −0.22896211 −0.20914735

5p 0.025 −0.40318193 −0.42043305 −0.34678391 −0.42493521 −0.44311709 −0.36549429
5d 0.025 −0.40318193 −0.41216309 −0.37064268 −0.42493521 −0.43440094 −0.39064034
5f 0.025 −0.40318193 −0.40875104 −0.38224366 −0.42493521 −0.43080479 −0.40286723
5g 0.025 −0.40318193 −0.40687867 −0.38901658 −0.42493521 −0.42883140 −0.41000558
6p 0.025 −0.17919244 −0.18788038 −0.15070181 −0.18886059 −0.19801728 −0.15883277
6d 0.025 −0.17919244 −0.18365796 −0.16296387 −0.18886059 −0.19356705 −0.17175642
6f 0.025 −0.17919244 −0.18191355 −0.16892216 −0.18886059 −0.19172852 −0.17803620
6g 0.025 −0.17919244 −0.18095818 −0.17240246 −0.18886059 −0.19072160 −0.18170426
ab is in pm.

Essentially, these results coincide with those obtained by the Feynman integral method
[23, 49] and the standard way [50–52], respectively. Furthermore, if taking b = 1/δ and
identifying A�

2/2μb2 as Ze2δ, we are able to obtain

Enl = −μ
(
Ze2
)2

2�2

[
1

n + l + 1
− �

2δ

2Ze2μ
(n + l + 1)

]2
, (5.4)

which coincides with those of [25, 26, 28, 29]. Further, we have (in atomic units � = μ = Z =
e = 1)

Enl = −1
2

[
1

n + l + 1
− (n + l + 1)

2
δ

]2
, (5.5)

which coincides with [25, 26, 51, 52].
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Table 3: Energy spectrum of LiH and CO (in eV) for different states where �c = 1973.29 eV Å, μLiH =
0.8801221 amu, μCO = 6.8606719 amu, and A = 2b.

States 1/ba LiH/α = 0, 1 α = 0.75 α = 1.5 CO/α = 0, 1 α = 0.75 α = 1.5

2p

0.025 −5.35811876 −5.72700906 −4.27570397 −1.374733789 −0.734690030 −0.548509185
0.050 −4.80894870 −5.14962650 −3.81140413 −1.233833096 −0.660620439 −0.488946426
0.075 −4.28946350 −4.60291196 −3.37377792 −1.100548657 −0.590485101 −0.432805497
0.100 −3.79966317 −4.08687021 −2.74125274 −0.974880471 −0.524284624 −0.351661930

3p

0.025 −2.07835401 −2.18146262 −1.75568186 −0.533243776 −0.279849188 −0.225227854
0.050 −1.58484188 −1.67504351 −1.30479958 −0.406623254 −0.214883153 −0.167386368
0.075 −1.15812308 −1.23540823 −0.92070588 −0.297139912 −0.158484490 −0.118112862
0.100 −0.79819287 −0.86256629 −0.60340076 −0.204792531 −0.110654417 −0.077407337

3d

0.025 −2.07835401 −2.13398108 −1.88246712 −0.533243776 −0.273758013 −0.241492516
0.050 −1.58484188 −1.62949505 −1.42786117 −0.406623254 −0.209039964 −0.183173338
0.075 −1.15812308 −1.19294225 −1.03597816 −0.299139912 −0.153036736 −0.132900580
0.100 −0.79819287 −0.82431793 −0.70682759 −0.204792531 −0.105747722 −0.090675460

4p
0.025 −0.94991579 −0.99080017 −0.81811023 −0.243720118 −0.127104916 −0.104951366
0.050 −0.53432763 −0.56658202 −0.43230193 −0.137092566 −0.072684041 −0.055457903
0.075 −0.23747895 −0.26014869 −0.16850556 −0.060930029 −0.033373205 −0.021616756

4d
0.025 −0.94991579 −0.97155012 −0.87225543 −0.243720118 −0.124635422 −0.111897390
0.050 −0.53432763 −0.54972102 −0.47945575 −0.137092566 −0.070521025 −0.061507037
0.075 −0.23747895 −0.24720134 −0.20331998 −0.060930029 −0.031712252 −0.026082927

4f
0.025 −0.94991579 −0.96362308 −0.89872483 −0.243720118 −0.123618500 −0.115293020
0.050 −0.53432763 −0.54279613 −0.50275243 −0.137092566 −0.069632666 −0.064495655
0.075 −0.23747895 −0.24191980 −0.22098366 −0.060930029 −0.031034710 −0.028348915

5p 0.025 −0.44898364 −0.46819450 −0.38617877 −0.115195837 −0.060062386 −0.049540988
5d 0.025 −0.44898364 −0.45898506 −0.41274791 −0.115195837 −0.058880953 −0.052949414
5f 0.025 −0.44898364 −0.45518540 −0.42566677 −0.115195837 −0.058393512 −0.054606711
5g 0.025 −0.44898364 −0.45310033 −0.43320910 −0.115195837 −0.058126029 −0.055574280
6p 0.025 −0.19954881 −0.20922370 −0.16782162 −0.051198285 −0.026840287 −0.021529017
6d 0.025 −0.19954881 −0.20452162 −0.18147666 −0.051198285 −0.026237080 −0.023280755
6f 0.025 −0.19954881 −0.20257904 −0.18811182 −0.051198285 −0.025987876 −0.024131947
6g 0.025 −0.19954881 −0.20151514 −0.19198748 −0.051198285 −0.025851393 −0.024629136
ab is in pm.

The corresponding radial wave functions are expressed as

Rnl(r) =Nnle
−δεr
(
1 − e−δr

)l+1
P
(2ε,2l+1)
n

(
1 − 2e−δr

)
, (5.6)

where

ε =
μZe2

�2δ

[
1

n + l + 1
− �

2δ

2Ze2μ
(n + l + 1)

]
, 0 ≤ n, l <∞, (5.7)
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which coincides for the ground state with that given in (2.3) by Greene and Aldrich [19].
In addition, for δr � 1 (i.e., r/b � 1), the Hulthén potential turns to become a Coulomb
potential: V (r) = −Ze2/r with energy levels and wave functions:

Enl = − ε0

(n + l + 1)2
, n = 0, 1, 2, . . .

ε0 =
Z2

�
2

2μa20
, a0 =

�
2

μe2
,

(5.8)

where ε0 = 13.6 eV and a0 is Bohr radius for the Hydrogen atom. The wave functions are

Rnl =Nnl exp

[
−μZe

2

�2

r

(n + l + 1)

]
rl+1P

(2μZe2/�
2δ(n+l+1),2l+1)

n (1 + 2δr) (5.9)

which coincide with [3, 25, 26, 33].

6. Concluding Remarks

In this work, approximate analytical bound states for the l-wave Schrödinger equation
with the MR potential have been presented by making a proper approximation to the too
singular orbital centrifugal term ∼r−2. The normalized radial wave functions of l-wave bound
states associated with the MR potential are obtained. The approach enables one to find
the l-dependent solutions and the corresponding energy eigenvalues for different screening
parameters of the MR potential.

We have shown that for α = 0, 1, the present solution reduces to the one of the Hulthén
potential. We note that it is possible to recover the Yukawa potential by letting b → ∞ and
V0 = Ze2/b. The Hulthén potential behaves like the Coulomb potential near the origin (i.e.,
r → 0) VC(r) = −Ze2/r but decreases exponentially in the asymptotic region when r � 0,
so its capacity for bound states is smaller than the Coulomb potential [25, 26]. Obviously,
the results are in good agreement with those obtained by other methods for short potential
range, low values of α, and l. We have also studied two special cases for l = 0, l /= 0 and
Hulthén potential. The results we have ended up show that the NU method constitutes a
reliable alternative way in solving the exponential potentials. We have also found that the
criteria for the choice of parameter A require that A satisfies the inequality

√
1 − 2A < 2α − 1.

This means that for real bound state solutions A should be chosen properly in our numerical
calculations.

A slight difference in the approximations of the numerical energy spectrum of
Schrödinger-MR problem is found in [23, 96–98] and present work since the approximation
schemes are different by a small shift δ2/12. In Figure 2, we plot the variation of the singular
orbital term 1/r2 (dotted-solid line) with the approximations of (a) [17, 18] (dash line),
the conventional Greene-Aldrich of [19] (dash-dot line) and improved [23, 96–98] (solid
line) replacing the term 1/r2 with respect to r, where δ = 0.1 fm−1, and (b) the improved
approximation [96–98] with various shifting constants. Figure 2 demonstrates the slight
difference between various approximation schemes and the centrifugal term r−2. Further,
Figure 3 plots the variations of the effective MR potential as function of separation distance
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Figure 3: Variations of the effective MR potential as function of separation distance x taking various values
for the screening parameter b when (a) α = 0.75, l = 1; (b) α = 1.50, l = 1; (c) α = 0.75, l = 2; and (d)
α = 1.50, l = 2.

x taking various values for the screening parameter b when (a) α = 0.75, l = 1; (b)
α = 1.50, l = 1; (c) α = 0.75, l = 2; and (d) α = 1.50, l = 2.

In our recent work [27], we have found that the physical quantities like the energy
spectrum are critically dependent on the behavior of the system near the singularity (r = 0).
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That is why, for example, the energy spectrum depends strongly on the angular momentum
l, which results from the r−2 singularity of the orbital term, even for high excited states. It
is found that the r−2 orbital term has strong singularity near r = 0, then the validity of all
such approximations is limited only to very few of the lowest energy states. In this case, to
extend accuracy to higher energy states one may attempt to utilize the full advantage of the
unique features of Schrödinger equation. Therefore, it is more fruitful to perform the analytic
approximation of the less singularity r−1 rather than the too singular term r−2 which makes it
possible to extend the validity of the results to higher excitation levels giving better analytic
approximation for a wider energy spectrum [113].

In the meantime after submitting the present work, a recent paper has been published
[114] discussing the status of art and the quality of our approximation scheme which has
been proposed in [99] and applied recently to MR potential in [115] to calculate the energy
spectrum. Stanek [114] used a new improved approximation scheme of the centrifugal term
l(l+1)r−2 which was proposed by Badawi et al. [116]. This based on the use of the centrifugal
term in the form formally homogenous to the original potential to keep the factorizability of
the corresponding Schrödinger equation.
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