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ABSTRACT: 

 

The spatial distribution of land cover in the urban area especially 3D objects (buildings and trees) is a fundamental dataset for urban 

planning, ecological research, disaster management, etc. According to recent advances in sensor technologies, several types of remotely 

sensed data are available from the same area. Data fusion has been widely investigated for integrating different source of data in 

classification of urban area. Thermal infrared imagery (TIR) contains information on emitted radiation and has unique radiometric 

properties. However, due to coarse spatial resolution of thermal data, its application has been restricted in urban areas. On the other 

hand, visible image (VIS) has high spatial resolution and information in visible spectrum. Consequently, there is a complementary 

relation between thermal and visible imagery in classification of urban area. This paper evaluates the potential of aerial thermal 

hyperspectral and visible imagery fusion in classification of urban area. In the pre-processing step, thermal imagery is resampled to 

the spatial resolution of visible image. Then feature level fusion is applied to construct hybrid feature space include visible bands, 

thermal hyperspectral bands, spatial and texture features and moreover Principle Component Analysis (PCA) transformation is applied 

to extract PCs. Due to high dimensionality of feature space, dimension reduction method is performed. Finally, Support Vector 

Machines (SVMs) classify the reduced hybrid feature space. The obtained results show using thermal imagery along with visible 

imagery, improved the classification accuracy up to 8% respect to visible image classification. 
 

 

1. INTRODUCTION 

The spatial distribution of land cover in the urban area is a 

fundamental dataset for urban planning, ecological research, 

change detection, disaster management, etc. Over the past 

decades, different types of remotely sensed data widely applied 

for classification of urban areas, such as LiDAR (Chehata et al. 

2009), aerial visible image (Myeong et al., 2001), satellite 

multispectral image (Moran, 2010), hyperspectral imagery 

(Samadzadegan et al. 2012), etc.  

 

High spatial resolution images have been increasingly used for 

urban land use/cover classification, but the high spectral variation 

within the same land cover, the spectral confusion among 

different land covers, proximity of 3D objects and the shadow 

problem often encounter classification performance with some 

challenges (Moran, 2010). Therefore, the classification of urban 

area is ongoing topic in remote sensing community (Wentz et al. 

2014; Weng, 2012). 

 

By recent advances in sensor technologies, different types of 

remotely sensed data are available from the same area.  Due to 

incompetence of just one dataset to model all characteristic of 

urban area and also availability of different source of data, much 

attention has been recently paid to multi-sensor data fusion. 

Multi-sensor data fusion seeks to integrate data from different 

sources to obtain more information than can be derived from a 

single sensor (Kumar et al. 2015). The assessment of the capacity 

of several combination of dataset are investigated in the 

literatures, such as hyperspectral and LiDAR data (Liao et al. 

2015), optical image ad synthetic aperture radar (Zhu et al. 2012),  
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aerial image and LiDAR data (Huang et al. 2011), optical image, 

thermal image and LiDAR (Brook et al. 2012). 

 

Due to high spatial resolution of the aerial imaging sensors, they 

play a very important role in the discrimination of land-cover 

classes in complex urban area. The visible camera observes a 

radiation reflected from Earth's surface over a visible wavelength 

range, whereas the thermal camera observes radiation emitted 

from Earth's surface over IR wavelength range. However, 

thermal imagery has coarse spatial resolution and its application 

has been restricted in urban areas. The brightness values of the 

visible and thermal images correspond to Earth's surface 

reflectance and temperature, respectively (Liao et al. 2014).  

 

Fusion of the aerial visible and thermal images can enhance the 

spatial details of the thermal image and also add the temperature 

information to the visible image. Consequently, fused images of 

a target scene from visible and thermal imaging sensors provide 

additional information and make classification performance 

better than would be possible when the sensors are used 

individually.  

 

Berni et al. generate quantitative remote sensing products for 

vegetation monitoring by means of a helicopter-based UAV 

equipped with inexpensive thermal and narrowband 

multispectral imaging sensors (2009). Moreover, fusion of 

thermal and visible imagery has application in real time people 

and vehicle tracking from unmanned aerial vehicle (Gaszczak et 

al. 2011). Xin et al. propose hierarchical classification framework 

to fuse thermal hyperspectral and visible imagery. Firstly, feature 

extraction is performed and then different classes were identified 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-287-2015

 
287

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208392348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.876663&Name=Anna+Gaszczak


 

successively using appropriate feature combinations. Finally, the 

pixel-based classification map was improved by post-processing 

steps (Lio et al. 2014).  

This paper presents the method to fuse thermal hyperspectral 

imagery and aerial RGB image in feature level fusion for 

classification of urban area. 

 

2. PROPOSED METHOD 

This paper evaluate the capacity of aerial thermal hyperspectral 

and visible imagery fusion in classification of urban area. The 

proposed pipeline of multi-sensor data classification procedure 

composed of four steps: data registration, feature extraction, 

dimension reduction and classification.  

 

2.1 Data Registration 

The visible data were gereferenced and registered to the thermal 

data but they have different resolution. Thermal imagery was up-

sampled to visible image by bicubic interpolation. 

 

2.2 Feature Extraction 

Feature extraction is the second step where spectral and spatial 

features are extracted from visible and thermal images to explain 

more about the scene. In this research, the following features 

were extracted:  

 

 PCA: spatial analysis of thermal hyperspectral imagery is 

carried out on first two PCs. 

 

 Gray-Level Co-occurrence Matrices (GLCM): 8 features 

are extracted includes: mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment and 

correlation.  Table 1 presents the formula of the GLCM 

descriptors. 

 

Table 1. GLCM descriptors formula 

𝜇𝑥 = ∑ ∑ 𝑃(𝑖, 𝑗) × 𝑖𝐺
𝑖=1

𝐺
𝑖=1 ,  

 𝜇𝑦 = ∑ ∑ 𝑃(𝑖, 𝑗) × 𝑗𝐺
𝑖=1

𝐺
𝑖=1  

 

𝜎𝑖
2 = ∑ ∑ 𝑃(𝑖, 𝑗) × (𝑖 − 𝜇𝑖)

2

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

𝜎𝑗
2 = ∑ ∑ 𝑃(𝑖, 𝑗) × (𝑗 − 𝜇𝑗)

2
𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ 𝑃(𝑖, 𝑗) × (𝑖 − 𝑗)2

𝐺

𝑗=1

𝐺

𝑖=1

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃(𝑖, 𝑗) × log (𝑃(𝑖, 𝑗))

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ 𝑃(𝑖, 𝑗)|𝑖 − 𝑗|

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑ ∑{𝑃(𝑖, 𝑗)}2

𝐺−1

𝑖=0

𝐺−1

𝑖=0

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

= − ∑ ∑
{𝑖, 𝑗} × 𝑃(𝑖, 𝑗) − {𝜇𝑥 × 𝜇𝑦}

𝜎𝑥 × 𝜎𝑦

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

where G is the number of grey level and  the matrix element 

𝑃(𝑖, 𝑗) is the relative frequency with which two pixels occur 

within a given neighbourhood, one with intensity i and the 

other with intensity j (Haralick et al. 1973). 

All the GLCM features were extracted from each band of the 

visible image and 2 PCs of thermal hyperspectral imagery.  

 

 Morphological Profile (MP): according to high-resolution 

of visible image, MPs are computed using the mean visible 

image bands to extract spatial features. MP is computed by 

applying opening and closing morphological operator with 

different structure element size. It is widely agreed that 

spatial features can significantly improve the classification 

accuracy due to the consideration of spatial correlation 

between neighbouring pixels (Benediktsson et al. 2003).  

 

 Structural Feature Set (SFS): this spatial feature is used to 

extract the statistical features of the direction-lines 

histogram. Direction lines can be defined as a series of a 

predetermined number of equally spaced lines through the 

central pixel. Six statistical features are considered, consist 

of length, width, pixel shape index (PSI), ω-mean, ratio, 

standard deviation (Table 2). 

 

Table 2. SFS features formula 

𝐿𝑒𝑛𝑔𝑡ℎ = max {𝑑𝑖(𝑐)} 𝑊𝑖𝑑𝑡ℎ = min {𝑑𝑖(𝑐)} 

𝑃𝑆𝐼 =  ∑ 𝑑𝑖(𝑐)
𝐷

𝑖=1
𝐷⁄  𝜔 − 𝑚𝑒𝑎𝑛 = ∑

𝑎(𝑘𝑖 − 1)

𝑠𝑡𝑖

𝐷

𝑖=1

𝑑𝑖 𝐷⁄  

𝑅𝑎𝑡𝑖𝑜 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑔 
∑ 𝑠𝑜𝑟𝑡𝑚𝑖𝑛

𝑗
(𝐻(𝑐))𝑛

𝑗=1

∑ 𝑠𝑜𝑟𝑡𝑚𝑎𝑥
𝑗

(𝐻(𝑐))𝑛
𝑗=1

 𝑆𝐷 =  
1

𝐷 − 1
√∑(𝑑𝑖(𝑐) − 𝑃𝑆𝐼)2

𝐷

𝑖=1

 

 

where 𝑑𝑖 is length of directional line, c denotes central pixel, 

H(c) is directional line histogram of central pixel 𝐻(𝑐) =
{𝑑1(𝑐), … , 𝑑𝐷(𝑐)}, a is constant value, 𝑘𝑖 is length of ith 

direction line, 𝑠𝑡𝑖 is standard deviation of spectral value in the 

ith direction line and 𝑠𝑜𝑟𝑡𝑚𝑖𝑛
𝑖  and 𝑠𝑜𝑟𝑡𝑚𝑎𝑥

𝑖  are ith minimum 

and maximum of all direction-line respectively (Huang et al. 

2007). 

 

 Local statistics: four statistic features include mean, 

variance, skewness and kurtosis are extracted from each 

visible image band. 

 

 Vegetation index: Due to the biophysical characteristics of 

green plants, the normalized ratio between the mean thermal 

hyperspectral bands and the red band of visible image is used 

as vegetation index (Lio et al. 2014).  

 

By merging all extracted features along with original images, the 

hybrid feature space is generated. 

 

2.3 Dimension Reduction 

High dimensionality of the hybrid feature space pose 

classification process some challenges, such as correlation 

between some features, time consuming and complexity of 

computation. Therefore, dimension reduction is applied to reduce 

the dimension of hybrid feature space, yet it preserve the main 

information. PCA is well-known dimension reduction method 

that is applied in this paper to reduce the dimension of hybrid 

feature space. The intrinsic dimension of hybrid feature space is 

determined based Eigen value and then corresponding PCs are 

chosen for classification. 

 

2.4 Classification 

Support Vector Machines (SVMs) are powerful and accurate 

classifiers, commonly used in remote sensing community. 

According to the stability of SVM, it is selected as classifier.  

 

SVM is a learning technique derived from statistical learning 

theory. It is calculating an optimally separating hyperplane that 

maximizes the margin between two classes. If samples are not 

separable in the original space, kernel functions are used to map 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-287-2015

 
288



 

data into a higher dimensional space with a linear decision 

function (Abe et al. 2010).  

Given a dataset with n samples },...,1|),{( niyx ii  where 

k
ix   is a feature vector with k components and }1,1{iy  

denotes the label of ix . The SVM looks for a hyperplane 

0)(.  bxw  in a high dimensional space, able to separate the 

data from classes 1 and -1 with a maximum margin. w is a weight 

vector, orthogonal to the hyperplane, b is an offset term and   is 

a mapping function which maps data into a high dimensional 

space to separate data linearity with a low training error.  

Maximizing the margin is equivalent to minimizing the norm of 

w. thus by solving the following minimization problem, SVM 

will be trained: 

Minimize: 
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1
 

Subject to: 𝑦𝑖(𝑤. 𝜙(𝑥) + 𝑏) ≥ 1 − 𝜉𝑖  and 𝜉𝑖

≥ 0, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

(1) 

 

where C is a regularization parameter that imposes a trade-off 

between the number of misclassification in the training data and 

the maximization of the margin and 
i  are slack variables. The 

decision function obtained through the solution of the 

minimization problem in Equation (1) is given by: 
 

𝑓(𝑥) = ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥𝑖). 𝜙(𝑥) + 𝑏
𝑥𝑖∈𝑆𝑉

 (2) 
 

where the constants αi are called Lagrange multipliers 

determined in the minimization process. SV corresponds to the 

set of support vectors, training samples for which the associated 

Lagrange multipliers are larger than zero. The kernel functions 

compute dot products between any pair of samples in the feature 

space. Gaussian Radial Basic Function (RBF) is a common 

kernel which is used in this paper and it is defined by (3). 
 

𝐾𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥𝑖 , 𝑥𝑗) = 𝑒
−|𝑥𝑖−𝑥𝑗|

2𝜎2  (3) 
 

In the proposed method, the classification module plays an 

important role in evaluation of the fitness function where SVM 

is trained by training data and trained SVM is evaluated by 

testing (unseen) data. 

 

It is notable that SVM parameters have strong effect on its 

performance. SVMs parameters are: (i) Regularization parameter 

(C) that determines the trade-off between minimizing the training 

error and minimizing the complexity of the model; (ii) Kernel 

parameters: bandwidth for Gaussian kernel functions (σ). In 

order to improve the classification performance, grid search is 

applied before classification process to determine the best value 

for these parameters.   

 

3. EXPERIMENTAL RESULTS 

3.1 Dataset 

The potential of the proposed method, implemented on two 

airborne datasets acquired at different spectral ranges and spatial 

resolutions: 1) a coarser-resolution LWIR hyperspectral image 

and 2) fine-resolution visible imagery. The data were acquired 

and were provided for the 2014 IEEE Contest by Telops Inc., 

Québec, Canada. They cover an urban area, including buildings, 

roads and tree (Liao et al. 2014). The spectral variability of 

objects in the same class, spectral similarity of some different 

classes and proximity of 3D objects in urban area, make it 

complex scene for classification and appropriate for assessment 

of the proposed method.    

 

The LWIR data were acquired using the Telops Hyper-Cam, an 

airborne long-wave infrared hyperspectral imager. It consists of 

84 spectral bands in the 7.8−11.5 µm wavelength region with 

approximately 1m resolution. The VIS data consists of 

uncalibrated data with 0.2m spatial resolution. 

 

  
 

Figure 1. Dataset (a) VIS (b) TIR (second band) 

 

3.2 Feature Space Generation 

Generation of feature space is performed by processing both 

thermal hyperspectral imagery and visible image.  

Visible feature space consists of original RGB bands (3 features), 

SFS features on each band of VIS (18 feature), MP on mean 

visible bands (12 feature), GLCM descriptors on each visible 

band (24 features), HSV transformation (3 features) and local 

statistics on each band of visible image (12). Therefore the visible 

feature space with 72 spectral and spatial features is generated. 

Thermal hyperspectral image has 84 bands. PCA transformation 

is applied on thermal hyperspectral imagery and 2 first PCs are 

selected to use for texture analysis. GLCM descriptors apply on 

both PCs and 16 features are generated. Consequently, the 

thermal feature space compose of 102 descriptors. 

Finally, feature stacking is performed to form feature space. 

Visible and thermal feature space in addition to vegetation index 

are merged to construct the hybrid feature space consists of 175 

features. 

3.3 Dimension Reduction 

According to high dimensionality of the hybrid feature space 

with 175 features, dimension reduction is required to decrease the 

computational time and complexity. The intrinsic dimension of 

hybrid feature space is 9 based on the Eigen value. Therefore 

PCA transformation is applied on the feature space and 

corresponding PCs are chosen for the classification.  

 

3.4 SVM Classifier Results 

To evaluate the classification performance, several accuracy 

criteria are computed. Kappa coefficient and Overall Accuracy 

(OA) are common criterion in classification accuracy 

measurement which is applied in this paper to compare the 

classification accuracy of thermal image, visible image and fused 

image. Moreover Khat is used to compare each class accuracy. 

 

SVM classifier is applied to classify visible, thermal and hybrid 

images.   Referring to effect of SVM parameters on classification 

performance, grid search is used to estimate the SVM parameters. 

The effect of regularization and kernel parameters is shown in 

Figure 2. 
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Figure 2. Effect of (a) Gamma, C =8 (b) C, Gamma =1 on 

classification accuracy 
 

 

Figure 2 shows that SVM performance is strongly affected by the 

kernel parameter and less so by the regularization parameter. 

Table 3 presents the obtained results of grid search for visible 

image, thermal image and the proposed hybrid image. 
 

 

Table 3. Results of grid search 
 

Dataset C Gamma Kappa OA 

VIS 512 16 0.8867 90.02% 

TIR 32 2 0.8388 89.12% 

Proposed 8 1 0.9618 97.96% 

 

The obtained results clearly showed the superiority of the 

proposed algorithm in that the classification accuracy was 

reached. As Table 3 shows, the classification accuracy of the 

proposed method improve classification accuracy of visible and 

thermal imagery, 8% and 9% respectively. More detail about the 

each class accuracy is shown in Figure 3. 

 

 
Figure 3. Khat measurement for each class 

 

Per class analysis depicts the superior performance of the 

proposed method in almost all classes, and for red roof and tree, 

there is not meaningful difference with visible and thermal 

image, respectively. The classification map based on proposed 

method is illustrated in Figure 4. 

 

 

 
 

Figure 4. Classification map 

 

 

4. CONCLUSION 

The obtained results show that simultaneously using thermal and 

visible images base on feature level fusion, improves 

classification performance in complex urban area approximately 

8% and 9% respect to visible and thermal image, respectively. 

Also the analysis of per class accuracy is performed for more 

details by Khat measurement. It proves thermal image has high 

potential to classify tree in urban area. Also in discrimination of 

road and building with same spectral reflectance, thermal 

imagery improves classification performance. Further 

investigations ought to be carried out for wrapper feature 

selection instead of applying PCA for dimension reduction. 

Moreover, object based analysis may be performed to improve 

the result of proposed pixel-based approach result.  
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