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ABSTRACT:

With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space.
Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent
spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they
happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time.
Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially
very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field
stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the
field represents the Earth’s movement at the sensor position as continuous. This simplifies analysis across many sensors significantly.
In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache
Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of
the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement
values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their
extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

1. INTRODUCTION

Major earthquakes have significant impact on human life and
built infrastructure. In recent years several devastating earth-
quakes took place with significant damage such as the earthquake
and tsunami in Japan (2011) and the earthquakes in Nepal (2015),
Italy (2016), and New Zealand (2011 and 2016). Earthquakes are
created through the constant movement of the Earth’s tectonic
plates and the resulting friction that is created. Early earthquake
detection and wide-spread early warning systems are essential to
shut down infrastructure such as gas, chemical or nuclear power
plants and transportation, and save human life. Earthquakes can
be detected by two characteristic waves, the P-wave and the S-
wave (Bullen and Bolt, 1985). The P wave travels much faster
than the S wave, and therefore provides a longer time window for
early warning. The S-wave indicates the start of the significant
movements of the earthquake itself.

Today, most physical sensor systems to detect and measure earth-
quakes are run by government agencies. Measurement stations
with expensive and accurate equipment are deployed and the data
is analyzed by seismology scientists; this data is often not avail-
able to the general public in its raw form. However, in recent
years several approaches have been explored to use alternative,
inexpensive technology such as commercial-off-the-shelf GPS
sensors to detect movement along earthquake faults (Grapenthin
et al., n.d., Grapenthin et al., 2014, Wright et al., 2012, Clay-
ton et al., 2015, Hudnut et al., 2002). These GPS based sensor
networks measure displacement, and send real-time data mea-
surement streams. Other efforts include using smartphone vi-
bration sensors for earthquake detection (Panizzi, 2016, Kong et
al., 2015). We can reasonably expect that in the future, an in-
creasing number of up to potentially thousands of sensors will be
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deployed in earthquake-prone regions, from smartphones to inex-
pensive GPS stations, which continuously measure and report the
Earth’s movement in real-time. Such sensor networks will pro-
duce high throughput data streams of thousands of updates/sec
that need to be analyzed in real-time.

While an earthquake is a continuous movement of the Earth in
space and over time, measurement station provide only discrete
samples of this movement. Each sensor only observes the event
at a specific, local position, and all observations need to be in-
tegrated over space and time to assess the scope and magnitude
of an earthquake. This synthesis across potentially thousands of
streams should be done in near-real-time (i.e. ca. 1-2 second de-
lay). Programming this task is no small feat using conventional
technology, such as databases or programming languages with
standard libraries.

In previous work, we proposed the Field Stream Data Model
(Liang et al., 2016), which builds the foundation for modeling
and querying spatio-temporal continuous phenomena in DSE. A
temporal field represents a high-level abstraction of the tempo-
ral continuity of a phenomenon and hides the sampling charac-
teristics of a sensor. The user accesses a temporal field as if
temporally continuous. Any request to the temporal field (pro-
gramming abstraction) for a value at any particular time point
of the field’s temporal domain is computed in real-time and re-
turns either a measured or an estimated value for that time instant.
Generic (non spatial) DSE, which have been introduced about a
decade ago, facilitate the high throughput query processing for
very large numbers of real-time data streams. For instance, com-
pared to Database Management System (DBMS) technology with
a throughput of 500 updates/s(Stonebraker et al., 2005), DSE
scale up to 1.5 Mio update/s per CPU core(Carbone et al., 2015).
DSE simplify the programming of analysis tasks over streams by
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providing a query language, which consists of a library of cus-
tomizable functions such as filter(), map(), reduce() and others.

In this paper, we pursue two objectives: first, we study the fea-
sibility of our previously proposed field model abstractions by
applying them to a real world problem, that is real-time earth-
quake event detection with sensor data streams. Secondly, we
explore the implications of a practical implementation integrat-
ing the field data types into a commercial or open source DSE.
For this study, we chose the open source system DSE Apache
Spark (Apache Spark, 2017). In detail, we modeled the prob-
lem of earthquake detection as a problem of processing contin-
uous fields. Our input data are 250 real-time sensor streams of
the Southern California Integrated GPS Network (SCIGN); here,
each a sensor generates 1 update/s. An earthquake can be seen
as a spatio-temporal event that can be extract from an underly-
ing spatio-temporal field. The underlying field is the continu-
ous movement of the tectonic plates, which is measured by the
network of GPS stations. The movement captured by a single
sensor is represented as a temporal field over this sensor. The
temporal fields of all sensors of the SCIGN are seen as a spatio-
temporal field since spatially neighboring sensor stations measure
different, but related aspects of the same earthquake. Thus, an
earthquake can be captured by first analyzing the temporal fields
over sensors. Once analysis of the temporal fields indicates above
threshold movement values, the temporal fields are spatially cor-
related, and the start, end and spatial scope of an earthquake event
can be deduced. We implemented this approach within Apache
Spark as continuously executed Apache jobs and the results are
visualized in real-time.

The remainder of this article is organized as follows: in Section 2,
we discuss the background of this work, including earthquake de-
tection in Southern California and the concept of abstracting sen-
sor data streams as temporal fields. In Section 3, we state our ob-
jectives for this work. Section 4 and 5 describe our approach, that
is the mapping of streams to field Resilient Distributed Datasets
(RDDs) and the implementation of real-time earthquake detect-
ing using Spark queries. Section 6 discusses our lessons learned
and our conclusions follow in Section 7.

2. BACKGROUND

2.1 Monitoring Earthquakes in Southern California

Earthquakes take place due to the movement of tectonic plates,
and the tension between them, while moving in different direc-
tions. The type of movement depends on the geographic location
of a tectonic plate and its connecting plates. In this paper, we
are interested in the San Andreas Fault in Southern California.
The San Andreas Fault is a fracture line between the Pacific Plate
that moves in the North direction and the North American plate,
which moves South, and both plates sitting slightly on top of each
other. Friction between both plates builds up tension over time,
which releases via an earthquake. The movement is relatively
slow, and it can take decades for significant tension to build up.
Thus, displacement along the known smaller and larger fault lines
is of most interest.

The SCIGN (Hudnut et al., 2002) consists of roughly 250 Global
Positioning System (GPS) stations, distributed throughout South-
ern California with an emphasis on the greater Los Angeles
metropolitan region. The major objective of the SCIGN network

is to provide regional coverage for estimating earthquake poten-
tial throughout Southern California, and to learn more about the
mechanical properties of earthquake faults.

The GPS sensors are deployed in proximity to small and large
faults. Each station produces an update at a rate of once per
second including the latest measured position of the GPS, the
delta of displacement from the previous measured location in
(x, y, z), and error data, all available in GeoJSON format (Geo-
JSON, 2017). An example update message from a sensor is pro-
vided in Listing 1. The ’shaking’ of an earthquake delivers dis-
placement values (deltas) of increasing and then decreasing value
over time periods. Likely, they are observable in spatially nearby
stations also.

SCIGN TrimbleJSON Station Locations
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Figure 1. Locations of SCIGN sensor sites in the TrimbleJSON
feed

2.2 Real-time Sensor Data Stream Processing

With up to 250 stations, and likely more stations in the future,
the data processing of all streams in real-time becomes a pro-
gramming challenge. Over the last decade, DSE have become
commercially available; the Apache Foundation offers an open
source DSE, Apache Spark (Apache Spark, 2017). DSEs are sim-
ilar to DBMSs in that they offer a data model and query language,
which make it significantly easier for users to program applica-
tions that require real-time processing of data streams. A user de-
fines the stream schema and can program SQL-like queries over
the streams to perform basic and complex aggregation and anal-
ysis tasks. Stream queries are expressed in terms of temporal
windows over streams. For instance, a query will collect the data
of the last minute, perform the query and produce a result. The
query is automatically re-evaluated over the next window of ar-
riving data from the stream (i.e. continuous query) (Chen et al.,
2000). DSEs provide high throughput query processing for data
streams by buffering and processing streams in main memory.
Stream queries are implemented as scalable, one-pass (Muthukr-
ishnan, 2005) stream operators; they can be parallelized automat-
ically (Galić, 2016). Today, open source and commercial DSEs
such as Apache Spark(Apache Spark, 2017) achieve query per-
formance over streams with a throughput of >1 Million updates/s
per CPU core(Carbone et al., 2015).

2.3 Temporal Fields as Stream Data Types

In geographic information science, the term field (more precisely
geo field) is widely used to describe entities in physical space
that are continuous (Couclelis, 1992, Kemp, 1996). A field can
be continuous in space, in time or in space and time (Liang et
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al., 2016). For instance, a field implies a continuous quality of
an observed phenomenon in the real-world, such as temperature,
that is present at every point in time and space within a defined
region on Earth. Similarly, an earthquake can be considered a
spatio-temporal event that is extracted from a continuous spatio-
temporal field. Here, the underlying spatio-temporal field can be
the change in position of each spatial (point) location on Earth
between two time instances ti and tj . To compare movements
for multiple time instants, t0, t1, . . . , tn, rather than calculating
the difference between the position at ti with that at ti−1, using
a static reference position and calculating the difference between
the reference position and the position at ti simplifies the analy-
sis.

Today, scientists mainly deal with spatial fields; many differ-
ent computer representations are common (raster, TINs, isolines,
etc). While implementations of these computer representations
enable specialized analytical operations in geographic informa-
tion systems, the diversity and lack of coherence of representation
hinders convenient integration and cross-cutting analyses (Kemp,
1996). This problem is exacerbated if the continuity over time
is also considered such as with the need to integrate sensor data
streams (Liang et al., 2016).

In (Liang et al., 2016), we introduced fields as Abstract Data
Types (ADTs) for stream data models. The core idea is that sen-
sor data streams are abstracted as temporal fields, spatial fields
or spatio-temporal fields, depending on the application needs.
Fields are approximated based on observations, so-called sam-
pled fields, and a field ADT implementation consists of the obser-
vations and an approximation function that uses the observations
to estimate all the values at points at which the field was not di-
rectly sampled. Thus, the field ADT ‘behaves’ as if the temporal
field is continuous, and automatically approximates the continu-
ity of the values over time based on the observations. For more
details and the formal definitions of fields, please see (Liang et
al., 2016).

3. OBJECTIVES

In this paper, our objective is to assess the feasibility of Field
ADTs as well as DSEs for a real-world problems, in this case real-
time earthquake monitoring. We identified publicly available live
data streams, and selected the SCIGN network. The streams are
accessible via sockets in near-real-time. SCIGN delivers ‘raw’
GPS values that we cast to temporal fields. The temporal fields
we aggregated over time and space to detect events. Addition-
ally, we used a United States Geological Survey (USGS) feed
reporting officially reported earthquake events, with the purpose
of comparing our detected events with the USGS events.

3.1 Data sources

3.1.1 SCIGN The Southern California Integrated GPS Net-
work (SCIGN) consists of roughly 250 GPS stations located in
Southern California (Hudnut et al., 2002). Each station produces
an update at a rate of once per second including a time stamp, the
latest spatial position, delta to a reference position, and error data
in GeoJSON format. Additionally, a topic (a kind of composite
type), in the format
[ProcessingEngine].[Region].[SiteCode].[SolutionType],
is included in the GeoJSON document that identifies the lineage
of the data. A real-time client is available through SCIGN
to connect to a live GeoJSON stream for topics (customized

subsets) that meet the wildcard query topic. At the time of
this article, only the TrimbleJSON processing engine feed
included computed deltas in the delta feature. The 32 sites in
the TrimbleJSON feed are depicted in Figure 1 and an example
message from SCIGN is shown in Listing 1.

Listing 1. A TrimbleJSON Message from SCIGN
{

"features ":[

{

"geometry ":{

"coordinates ":[

-118.029990515 ,

34.527059607 ,

875.1371

],

"type ":" Point"

},

"type ":" Feature",

"properties ":{

"coordinateType ":" LonLatHeight",

"positionType ":" processed"

}

},

{

"geometry ":{

"coordinates ":[

-2472350.8442 ,

-4643949.8876 ,

3595261.3985

],

"type ":" Point"

},

"type ":" Feature",

"properties ":{

"coordinateType ":"XYZ",

"positionType ":" processed"

}

},

{

"geometry ":{

"coordinates ":[

-0.0991,

-0.253,

0.2058

],

"type ":" Point"

},

"type ":" Feature",

"properties ":{

"coordinateType ":" XYZ",

"positionType ":" delta"

}

},

{

"geometry ":{

"coordinates ":[

0,

0,

0

],

"type ":" Point"

},

"type ":" Feature",

"properties ":{

"coordinateType ":" NEU",

"positionType ":" delta"

}

}

],

"type ":" FeatureCollection",

"properties ":{

"sampleRate ":1,

"ENCovar ": -0.0000678224896546453 ,

"topic ":" TrimbleJSON.pppar.RTX.LRRG",

"station ":" LRRG",

"NError ":0.0195 ,

"time ":1496142586000 ,

"UError ":0.0381 ,

"SNCL ":" LRRG.CI.LY_.10",

"theType ":"RTX",

"quality ":79.6444 ,

"EError ":0.0122

}

}

3.1.2 USGS The USGS provides “real-time” feeds and notifi-
cations for earthquake events(Real-time Feeds and Notifications,
2017). Though the feeds are referred to as “real-time,” there is a
delay between the origin time of the event, when the earthquake
began, and the updated time, when the event is published to the
GeoJSON feed, which is over 20 minutes. The GeoJSON feed
URL supports user provided parameters including filtering events
by spatial location, origin time, and update time. To retrieve new
events detected by the USGS within a bounding box of interest,
a user polls the feed for updates since the time of the last update.
An example event is shown in Listing 2.

Listing 2. A Feature from the USGS Earthquake Feed
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{

"type ":" Feature",

"properties ":{

"mag ":1.62 ,

"place ":"9km NE of Aguanga ,CA",

"time ":1496139061540 ,

"updated ":1496139286469 ,

"tz":-480,

"url":" https :// earthquake.usgs.gov/earthquakes/eventpage/ci37657079",

"detail ":" https :// earthquake.usgs.gov/fdsnws/event /1/ query?eventid=

ci37657079&format=geojson",

"felt":null ,

"cdi":null ,

"mmi":null ,

"alert":null ,

"status ":" automatic",

"tsunami ":0,

"sig":40,

"net":"ci",

"code ":"37657079" ,

"ids":",ci37657079 ,",

"sources ":",ci ,",

"types":",geoserve ,nearby -cities ,origin ,phase -data ,scitech -link ,",

"nst":8,

"dmin ":0.0835 ,

"rms ":0.08 ,

"gap":110,

"magType ":"ml",

"type ":" earthquake",

"title ":"M 1.6 - 9km NE of Aguanga , CA"

},

"geometry ":{

"type ":" Point",

"coordinates ":[

-116.7946667 ,

33.4968333 ,

3.91

]

},

"id":" ci37657079"

}

3.2 System Components and Architecture

Our real-time earthquake detection system is built using using
mostly open source software components that are loosely coupled
in a micro service architecture to enable system scalability.

SCIGN USGS

Kafka

Spark MongoDB

Kafka

Web UI

Node.js

Figure 2. System Components and Data Flow

For the implementation, we chose Apache Spark (Apache Spark,
2017). Spark is used for expressing and processing queries over
streams. Streams can be be generated by data sources or by
queries, i.e. their continuously delivered results over windows.
A stream query is both a stream consumer and a stream producer
(of result tuples). Since the rate of produced and consumed tu-
ples needs to be carefully orchestrated, we use Kafka (Apache
Kafka, 2017) for message passing between stream inputs, pro-
cessing components, and output consumers. Capped collections
in MongoDB are used to cache the SCIGN stream, so that when
delayed USGS events arrive, the USGS event and time series of
nearby SCIGN stations can be combined.

3.2.1 Apache Spark: Stream Processor Apache
Spark (Apache Spark, 2017) is an open source cluster computing
platform supporting in-memory processing of stored and stream-
ing data in the form of batch and streaming jobs, respectively.
For stream processing, Spark partitions a stream into windows,
called a discretized stream or DStream, and processes the data in
Spark using a program written in Scala, Java, or Python.

3.2.2 Apache Kafka: Message Broker Apache
Kafka (Apache Kafka, 2017) is a distributed, massively
scalable message broker designed for real-time streaming appli-
cations. Kafka acts as a centralized message broker, passing
data between input data streams and and stream processing
queries, between stream processing queries, and between stream
processing queries and other consumers. Kafka utilizes topics
that producers publish to and consumers subscribe to.

3.2.3 MongoDB: Data Storage MongoDB(MongoDB,
2017) is a open source document-oriented database program
and classified as a NoSQL database system. MongoDB uses
JSON-like documents with schemas. MongoDB supports Ad-
Hoc queries, indexing and real-time aggregation; this provides
powerful tools to access and analyze data with high throughput.
MongoDB supports capped collections, which are fixed-size
collections that support high throughput operations. These
collections work in a way similar to circular buffers. In general,
MongoDB collections can be used as a persistent storage for
historical data analysis.

How the data streams are consumed, analyzed, and fed to a live
dashboard is discussed further in the following sections.

4. MAPPING GPS STREAMS TO TEMPORAL FIELDS

In Section 1, we described the data format of SCIGN updates
as they arrive. The stream tuples are formatted in GeoJSON by
SCIGN and Spark is able to parse and process JSON formats di-
rectly, i.e. operators are available to extract the schema and the
tuples. In Spark, the basic data structure to store and process data
is an RDD. An RDD is a immutable, read-only, logical data col-
lection that can contain any type of Python, Java, or Scala objects,
including user-defined classes. Transparently to users, Spark di-
vides a RDD into logical partitions, which may be processed on
different nodes of a cluster in parallel.

The implementation of a Temporal Field type consists of two
components: the observation data and an interpolation function
(or a set of different interpolation functions for flexibility). To
provide values at time instants of the temporal field at which the
field has not be sampled directly the field implementation approx-
imates the requested value based on both components. Thus, any
programming tasks using Field types can abstract from the notion
of observations, and work based on the assumption of continuity.

To implement a Temporal Field type in Spark, we programmed
an operator that extracts relevant data from the incoming SCIGN
observation feed and creates a Field RDD. The Field RDD is
a generic, flexible schema for spatio-temporal data streams that
supports both sensor observations and spatio-temporal events. It
has a fixed schema for observations, which is defined as

< id >< location >< time >< value >

• The < id > is an identifier to describe the other at-
tributes, for example a sensor location code (e.g., TrimbleJ-
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SON.pppar.RTX.7ODM) or event id. An id can be a string,
number, or null.

• The < location > is the location that the value corresponds
to. A location can be point, line sting, polygon, or null. A
point consists of a (latitude, longitude) pair.

• The < time > is the time the value was collected/sampled.
A time can be an instant or interval; currently, only instants
are considered.

• The < value > is either null or a valid JSON string. This
string can include nested structures or be flattened depend-
ing on the limitations of the implementation environment.

Any Sparkqueries are expressed using operators such as filter,
map, and reduce, which are provided by Spark. Once the data
stream is transformed into a field RDD, field operators to analyze
the streams can be written. The Spark query results are stored
as an RDD again. The details of the field analysis operators are
detailed in the following section.

5. REAL-TIME EARTHQUAKE EVENT DETECTION

We approach detecting earthquake events in two steps: a real-
time event detection step using live GPS streams and a response
time of a few seconds, and a post-mortem event detection step
using USGS earthquake event notifications and comparing such
an event to our detected event(s) and the raw sensor data streams
that we cached for this purpose. All tasks are automated, and run
continuously. Results are visualized in real-time in web applica-
tion, which can be found at (Real-time Earthquake Monitoring
Visualization for SCIGN Stations, University of Maine, 2017).

5.1 Real-time Event Detection using GPS Streams

5.1.1 SCIGN Stream Processing Pipeline The GPS streams
from SCIGN are analyzed and visualized to extract earthquake
events. At a high level, the data flow follows the system architec-
ture presented in Figure 2.

In detail, the data flow begins with a Node.js client, provided by
SCIGN, to consume the live stream of data hosted by SCIGN.
The client uses Socket.IO (Socket.IO, 2017) to pass the de-
sired SCIGN topics back to the data source to customize the
data that should appear in the stream. To get all data from
the TrimbleJSON processing engine, the topic is specified as
TrimbleJSON.*.*.*. Socket.IO is then used to stream all tuples
with the TrimbleJSON processing engine to the client. The out-
put from the SCIGN client is piped to a Kafka console producer,
which loads the messages in the SCIGN stream into a scign-flat-
trimble Kafka topic. Note, that the stream is called a series of
messages, and each update is a message.

Once a message is loaded into Kafka, it is available to be pro-
cessed by Spark. The Spark stream processing jobs subscribe
to and read from an input topic, perform some data transforma-
tion, and then publish the results back to Kafka as a new stream
to a different topic. This new stream can be consumed by an-
other Spark job or the Node.js server for the visualization. We
use MongoDB for data storage, with some jobs (queries) writing
to or reading from MongoDB. During processing, the stream is
grouped by the attribute sensor identifier. For each sensor, a win-
dow is defined, and the observations within the window are ag-
gregated. An overview of the Spark streaming job can be found
below.

The SCIGN Trimble Consumer Spark job feeds raw SCIGN
data to the web visualization by listening to the scign-flat-trimble
Kafka topic, partitioning the stream into time-based windows,
transforming the output to the desired format and publishing the
transformed messages to the scign-raw-output Kafka topic. It
also performs aggregation to calculate the range of the x, y, z
deltas and a combined 3D delta for each sensor (SCIGN topic)
per window. The deltas (for x, y, and z) from each observation
are aggregated individually using Equation 1 to calculate their
range and together using Equation 2 to calculate a combined 3D
range.

As described further in Section 5.1.3, the Node.js server sub-
scribes to this topic for visualizing the data.

range(∆x) = max(∆x) −min(∆x) (1)

range∆ 3D =√
(range(∆x))2 + (range(∆y))2 + (range(∆z))2

(2)

Following, the aggregated stream is published to the scign-agg-
output topic.

5.1.2 Filtering Events from Aggregated SCIGN Data A
simple specification of an earthquake event is defined as an oc-
currence of

range∆ 3D > T (3)

where T is a threshold value. In order to extract events, a filter
job has been implemented that filters the output of the scign-agg-
output Kafka topic to select all aggregated tuples whose 3D delta
exceeds the threshold value. The choice of the threshold value is
discussed in Section6. The threshold is supplied as an argument
when the Spark job is submitted; the job is described in detail
below.

1. SCIGN Event Filter Spark job listens to the scign-agg-
output Kafka topic, which applies a filter to find the ag-
gregated SCIGN events above the provided delta thresh-
old. The filtered aggregated SCIGN events are published
to scign-filter Kafka topic to be consumed by another
Spark job, which stores the detected events in the scign-
event-archive collection.

2. SCIGN Event Extractor Spark job that processes detected
events retrieves the raw SCIGN data from the Mon-
goDB capped collection scign-raw, for the sensor that de-
tected the event and its k−1 nearest neighbor sensors within
r, and within a specified time window around the event. The
data about the event, and the raw data from the k sensors are
combined and stored in the scign-event-archive collection
and output to the in-scign-model-event Kafka topic.

3. The in-scign-model-event Kafka topic is then consumed by
the SCIGN Model Transformer Spark job to transform the
messages to the desired format for the visualization and it
published the data to the scign-event-output Kafka topic.

5.1.3 Web Visualization Several Spark job query results are
published in real-time to a web-based visualization client. Behind
the web visualization are two servers. Static content is served us-
ing the open source NGINX web server and dynamic data from
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Figure 3. Real-time raw delta x, y, z and aggregated ranges for a SCIGN sensor site

the Spark system is served using Node.js, an open source, server-
side JavaScript runtime environment. Node.js subscribes to sev-
eral Kafka topics (scign-raw-output, scign-agg-output, scign-
event-output and usgs-event-output) in order to push the real-time
data and events to the web-based visualization client. Data is
streamed from Node.js to the web-based visualization client us-
ing the Socket.IO (Socket.IO, 2017) JavaScript library. The web-
based visualization client then loads the real-time data into time
series graphs generated using the Highcharts JavaScript library
(Highcharts, 2017).

In Figure 4 the raw and aggregated streams are visualized on the
right of the dashboard, while the left side shows the map of sen-
sor site and their aggregated 3D deltas. The web-based map is
built using the Leaflet (Agafonkin, 2017) JavaScript library that
visualizes the aggregated 3D delta range and events. A circle is
used to visualize the aggregated 3D delta range for each sensor
site, where the relative diameter of the circle is proportional to the
aggregated 3D delta value. The color of the circle is red when the
aggregated 3D delta value at a site exceeds a threshold, otherwise
it is black.

5.2 Correlating GPS Streams with USGS Events

The second, alternative approach for earthquake analysis uses a
feed publishing earthquake events occurring in California, pro-
vided by USGS. Each event in this feed is extracted and we vi-
sualize the time series data from the k nearest SCIGN sensors
around the reported earthquake and within a time window around
the occurrence of the USGS reported event. This approach for
processing the USGS events extends the SCIGN processing ap-
proach mentioned in subsection 5.1.

5.2.1 USGS Stream Processing Pipeline A stand-alone
Python program consumes the parameterized USGS earthquake
event within a bounding box surrounding California. In order to
only fetch the latest event(s), the feed is polled periodically for
event updates and compares the last updated time-stamp with
the most recent event update that we have processed. The last
updated time-stamp is fetched from the usgs-raw-archive Mon-
goDB collection which is used to store USGS events locally.
The consumed stream from USGS is then published into the in-
usgs-raw Kafka topic and serves as input to the Spark processing
pipeline.

1. The USGS Event Transformer Spark job consumes from the

in-usgs-raw Kafka topic and publishes the events it receives
to the output topics out-usgs-event and out-usgs-raw.

2. The USGS Consumer Spark job listens to the USGS earth-
quake events in the out-usgs-raw topic and stores the events
in the MongoDB collection usgs-raw-archive to make them
available for further analysis.

This processing pipeline prepares the USGS events to be com-
bined with the raw SCIGN data.

5.2.2 Combining USGS Events and SCIGN Observations

1. The USGS Event Extractor Spark job processes the USGS
earthquake events in the out-usgs-event topic and selects the
set of k nearest stations within a radius of r miles around
the reported earthquake location contained in a USGS event.
For this set of stations, the raw data within a predefined
time window, relative to the time (origin time) of the USGS
earthquake event, are fetched from the MongoDB capped
collection scign-raw. The data about the USGS event, and
the raw data from the k sensors are combined and stored in
the usgs-event-archive collection and output to the in-usgs-
model-event Kafka topic.

2. The in-usgs-model-event Kafka topic is then consumed by
the USGS Model Transformer Spark job to transform the
messages to the desired format for the visualization and pub-
lished to the usgs-event-output Kafka topic.

6. DISCUSSION

Earthquake detection: We developed a framework for real-time
earthquake detection, which is still under development. We sim-
plified our approach of querying the SCIGN data, and we do not
claim that this approach is as advanced as that of a seismology
domain expert. This leads to a second question: is a threshold on
the range of deltas from the SCIGN network sufficient to detect
earthquake events and at what magnitude sensitivity? We exper-
imented with the SCIGN data over the last 3 months, and during
this time period no significant earthquakes occurred, which lim-
ited our experience with reference data. In order to classify deltas
in 5.1.1 and correlate them to earthquake events with different
magnitude, we selected a GPS threshold that was reported in the
literature in (Grapenthin et al., 2014), an operational system us-
ing GPS data for earthquake detection. However, this threshold
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Figure 4. Web Visualization Client Dashboard with Spatial Visualization and Live Streams.

relates to earthquakes of magnitude 7.0. It is currently unclear
how accurately smaller earthquakes can be detected using the cur-
rently deployed GPS devices. However, we believe that question
is likely to be resolved by future technology development.

Experimenting with parameters: The system was designed to be
able to test the impact of different parameters. The radius, r, and
number of neighboring sensors, k, around an event are two pa-
rameters for combining events detected from the SCIGN stream
and in the USGS feed with data streamed by SCIGN. It is impor-
tant to note that although both approaches return k sensors within
r around an event, the locations of an event in the SCIGN Event
Filter are the locations of SCIGN sensors where as in the USGS
feed the location is where the earthquake originated. This means
that if the SCIGN Event Filter and the USGS both detect the same
event, the location of the detected event will be different and thus
the k nearest sensors to each event location are not necessarily the
same. An additional consideration is whether the choice of r and
k depend on the magnitude of the earthquake event and whether
these parameters should be fixed or adaptive.

Additional parameters relate to bounds of time-based query win-
dows used for aggregation and visualization. Currently, for ag-
gregating the SCIGN stream, a tumbling window of 5 s is used,
meaning that data will be partitioned into non-overlapping 5 s
windows. In Spark overlapping sliding windows are also sup-
ported, which could be configured to both increase the time inter-
val and shorten the time between result updates of a query. For
combing events, from the SCIGN stream and the USGS feed, the
interval of the SCIGN streams to be extracted needs to be speci-
fied. This interval should be large enough to capture the behavior
of the sensors during an event.

Scalability: By using a system architecture with loosely coupled
components, individual components of the architecture can be
scaled out to meet processing and storage requirements. Addi-
tionally, the system was designed so that it can be deployed us-
ing a microservice architecture, where each component could be
elastically scaled or new code could be deployed to a component
while the entire system continued to operate. For example, in
Spark where most of the data processing is done, each Spark job

can be managed independently as the Spark jobs are integrated
using Kafka as a message broker.

Field Library: First, we explored the design to implement a sen-
sor stream as a temporal field within an open source DSE. Here,
the main lesson learnt is that support for a field ‘type’ is less likely
to be a data type implementation. Instead we envision that spatio-
temporal field support is implemented as a field RDD type and
library of field functions that interface with Spark functions and
alleviated coding needs for programmers.

7. CONCLUSION

In this paper, we presented a feasibility study of using the field
stream data model (Liang et al., 2016) and an open source DSE,
Apache Spark (Apache Spark, 2017), for real-time earthquake
event detecting using the GPS streams of SCIGN. We presented
two approaches to earthquake detection; in the first approach, we
processed the sensor data streams using window stream queries,
and found the maximum displacement in each window. These
values were filtered against a threshold value, and events were
identified. We stored raw data temporarily in MongoDB to
support the second approach, in which we pulled the latest
earthquake notifications from USGS, and correlated the reported
events with our detected events and the raw data. All queries an-
alyze the latest data updates continuously and events are reported
within 1-2 seconds after the first indication. Real-time data visu-
alization is available at (Real-time Earthquake Monitoring Visu-
alization for SCIGN Stations, University of Maine, 2017).
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