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Abstract. In the auroral lower-E and upper-D region of the
ionosphere, plasma clouds, such as sporadic-E layers and
meteor plasma trails, occur daily. Large-scale electric fields,
created by the magnetospheric dynamo, will polarize these
highly conducting clouds, redistributing the electrostatic po-
tential and generating anisotropic currents both within and
around the cloud. Using a simplified model of the cloud
and the background ionosphere, we develop the first self-
consistent three-dimensional analytical theory of these phe-
nomena. For dense clouds, this theory predicts highly ampli-
fied electric fields around the cloud, along with strong cur-
rents collected from the ionosphere and circulated through
the cloud. This has implications for the generation of plasma
instabilities, electron heating, and global MHD modeling
of magnetosphere-ionosphere coupling via modifications of
conductances induced by sporadic-E clouds.

Keywords. Electromagnetics (Plasmas) – Ionosphere (Elec-
tric fields and currents) – Space plasma physics (Electrostatic
structures)

1 Introduction

At lower-E/upper-D ionospheric altitudes, roughly between
80 and 120 km, high density meteor plasma trails and
sporadic-E layers develop within a lower density background
plasma. While the former are persistent, highly elongated,
and relatively short-lived structures, the latter, much rarer
events, are pancake-like clouds that span tens to hundreds of
kilometers in horizontal direction and live for several hours
or longer. For a review of sporadic-E layer observations and
theory, seeWhitehead(1970, 1989); Mathews(1998); Kirk-
wood and Nilsson(2000). These enhanced density regions
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coexist with a macroscopic electric field sustained by exter-
nal dynamos (Kelley, 1989). In addition, neutral winds with
a component perpendicular to the magnetic field produce an
effective external electric field in the neutral frame of ref-
erence. Such external fields polarize the highly conducting
cloud, redistribute the electrostatic potential within it and
in the background ionosphere, and form a large-scale cur-
rent system. This can be important for generation of plasma
instabilities, electron heating, electrodynamic coupling be-
tween the ionospheric E and F regions, and, through mod-
ified ionospheric conductance, even for global ionosphere-
magnetosphere coupling.

Bristow and Watkins(1994) performed global 3-D simula-
tions of sporadic-E formation and dynamics, but their coarse
mesh did not allow 3-D electrodynamics.Haldoupis et al.
(1996) suggested a mechanism of a sporadic-E cloud polar-
ization by an external electric field in order to explain type
1 radar echoes from the midlatitude E-region ionosphere. In
their semi-quantitative analysis, they used a slab model of
the sporadic-E cloud, infinite in the north-south direction.
Tsunoda(1998) andMaruyama et al.(2000) applied a similar
approach to explain the generation of quasi-periodic echoes
(Yamamoto et al., 1991; Ogawa et al., 1995; Pan and Tsun-
oda, 1998).

Shalimov et al.(1998) andShalimov and Haldoupis(2005)
applied ideas similar to those from the seminal papers by
Farley(1959, 1960) by including ionospheric current closure
and using a more realistic 3-D slab model. However, their
theory relied on approximate scaling arguments rather than
on a rigorous solution of the underlying differential equa-
tions. That is why their model describes no spatial distribu-
tions of fields and currents. Furthermore,Shalimov et al.
(1998) and Shalimov and Haldoupis(2005) used artificial
equation splitting which is invalid and they ignored vertical
slab polarization, as we discuss in Sect.4.

Hysell and Burcham(2000); Hysell et al. (2002);
Yokoyama et al.(2003); Cosgrove and Tsunoda(2003) and
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Yokoyama et al.(2004) performed 2-D and 3-D numerical
simulations of cloud polarization, current closure, and E-F
region coupling, including the recently predicted sporadic-
E instability (Cosgrove and Tsunoda, 2002b, 2004; Tsunoda
et al., 2004; Tsunoda, 2006). These simulations give spa-
tial distributions of the electric field but, being performed for
particular cases only, provide no parameter dependencies as
we will provide.

In this paper, we study the basic process of the cloud po-
larization and current closure through the ionosphere, based
on a rigorous, albeit simplified, analytic theory. Our objec-
tive is to improve the previous theories by developing a self-
consistent analytical approach with reasonable simplifying
assumptions. This yields is a reliable parameter dependence
of the major characteristics of the process and identifies the
most important physical factors. In this paper, we focus on
the electrodynamic aspect of cloud polarization, neglecting
the feedback of the currents and fields onto the cloud struc-
ture and evolution (Rozhansky and Tsendin, 2001; Dimant
and Oppenheim, 2006a,b). For simplicity, we assume in-
finite and homogeneous background ionosphere and exter-
nal field. In this case, the ionospheric current closure does
not include the interaction of the given plasma cloud with
other clouds and the F-region ionosphere (Shalimov and Hal-
doupis, 2005). Also, we do not include wind shears and
gravity, that cause large-scale instabilities (Tsunoda and Cos-
grove, 2001; Ogawa et al., 2002; Cosgrove and Tsunoda,
2001, 2002a, 2003). As in the majority of other theories,
we use a “water-bag” model of the cloud, which implies a
uniformly distributed plasma density within a given bound-
ary surface. Instead of a slab model, however, we use a
3-D ellipsoidal ionosphere-cloud interface, which allows a
rigorous analytic solution for the electrostatic potential and
currents in the entire space. The analytic solution becomes
possible via use of renormalized variables and a series of co-
ordinate transformation that reduce the entire plasma prob-
lem to a classical solution for an ideally-conducting ellipsoid
embedded in vacuum with a given external field. Recently,
we have developed such an approach for elongated meteor
plasma trails (Dimant et al., 2009). In this paper, we gener-
alize this approach and extend it to pancake-like sporadic-E
layers.

The analytic theory of this paper represents a step toward
a quantitative understanding of the sporadic-E–ionosphere
electrodynamic interaction. The key parameter dependencies
identified here can serve for prediction of possible regimes of
field and current formation within and around sporadic-E lay-
ers. The quantitative estimates of fields obtained in this pa-
per can be used for simple estimates of threshold conditions
of instabilities at various spatial scales. This is an impor-
tant step in understanding coherent radar signals observed at
mid- and high latitudes, including midlatitude quasi-periodic
echoes. The strong currents predicted to flow through the
plasma cloud and the ambient ionosphere can modify the
ionospheric conductance at high latitudes, with possible im-

plications for global modeling of magnetosphere-ionosphere
coupling. The simple analytic theory can serve as a guidance
for more accurate and comprehensive studies.

The paper is organized as follows. Section2 describes
our physical model and introduces transformed coordinates
for use in the remainder of the paper. Presuming a uniform
electric field within the cloud, we give in Sect.3 a general
solution for the electrostatic potential outside it. In Sect.4,
we prove the above presumption, calculate the internal field,
and close the entire solution for the general case of oblate
ellipsoidal clouds. In Sect.5, we discuss in detail an im-
portant particular case of a round plasma cloud, which can
be considered as a reasonable model of a typical sporadic-E
layer. Readers interested in a simplified system may skip di-
rectly there. Section6 summarizes our model assumptions
and the major results. Appendix A presents the mathemati-
cal details of coordinate transformations, while Appendix B
discusses an extended (rod-like) cloud, such as, e.g., a me-
teor plasma trail and finds the plasma density restriction for
the elongated-structure solution as presented inDimant et al.
(2009).

2 Description of general model

We employ a simplified model of the plasma cloud, approxi-
mating it with a uniformly dense pancake-like structure with
a sharp boundary. This cloud is embedded in a tenuous ho-
mogeneous ionosphere with a uniform DC electric field sus-
tained by an external dynamo. We apply a Cartesian coordi-
nate system with the axesx1 andx2 in the horizontal plane,
while x3 is directed along vertical, see Fig.1. Below, we
align the coordinate axesxi with the major axes of the cloud,
so that we do not requirex1 to be directed along the mag-
netic meridian or some other Earth-related horizontal direc-
tion. The geomagnetic field,B, is directed at an angleθ to
the horizontal surface (the inclination, or dip, angle), while
its horizontal projection has an angleϕ to thex1-axis. While
θ can be arbitrary (without loss of generality, 0◦≤ θ ≤ 90◦),
we focus on middle and high latitudes, so thatθ is not close
to zero. As a result, the external electric field,Eext

⊥B, has
a significant horizontal component, which plays the major
role in the effect under study.

For the interface between the two different plasmas, the
dense plasma of the cloud and the tenuous ionospheric
plasma, we choose a 3-D ellipsoid with the principal axes
aligned with the coordinate axes,

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

=1. (1)

For sporadic-E layers, we assume that the vertical thickness
of the ellipsoid is much less than the two horizontal semi-
axes,

a3� a2≤ a1. (2)
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Fig. 1. Schematic geometry of the cloud and successive coordinate transformations xi →Xk (described in

detail in Appendix A). The original cloud is shaded blue. Axes x1,2,3 are aligned with the principal semi-axes

of ellipsoid; axis X ′
3 is along B, X ′

2 (not shown) is perpendicular to x3 and X ′
3, and axis X ′

1 is perpendicular

to X ′
2 and X ′

3. Further, θ is the angle between x1 and B, while ϕ is the angle between the x3X
′
3-plane. The

cloud rescaled by ε, Eq. (7), is shaded yellow; χ is the angle between X ′
3 and X3; the final axes Xk are aligned

with the principal axes of the rescaled ellipsoid.
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Fig. 1. Schematic geometry of the cloud and successive coordinate
transformationsxi→Xk (described in detail in Appendix A). The
original cloud is shaded blue. Axesx1,2,3 are aligned with the prin-
cipal semi-axes of ellipsoid; axisX′3 is alongB, X′2 (not shown)
is perpendicular tox3 andX′3, and axisX′1 is perpendicular toX′2
andX′3. Further,θ is the angle betweenx1 andB, while ϕ is the
angle between thex3X

′
3-plane. The cloud rescaled byε, Eq. (7), is

shaded yellow;χ is the angle betweenX′3 andX3; the final axesXk
are aligned with the principal axes of the rescaled ellipsoid.

In Dimant et al.(2009) we assumed that for meteor plasma
trails a3∼ a2� a1. As shown in Sect.B, the more general
results obtained in this paper cover that case as well. Un-
like meteor trails which are symmetric with respect to the
magnetic field in the trail cross-section (Dimant and Oppen-
heim, 2006a), the alignment of the sporadic-E layer ellip-
soid with respect toB is arbitrary (without loss of generality,
0≤ϕ≤90◦).

In this paper, we calculate the distributions of the elec-
trostatic fields,E=−∇8, and current densities,j =←→σ E,
within and around a given plasma cloud, rather than the feed-
back of the developed fields to the cloud structure and evo-
lution (Rozhansky and Tsendin, 2001; Dimant and Oppen-
heim, 2006a,b). Here,8 is the electrostatic potential and
←→σ is the conductivity tensor proportional to the plasma
density. The spatial scales of these distributions are usu-
ally many orders of magnitude larger that the typical Debye
lengths, so that our electrostatic problem reduces to solving
the quasineutrality equation,

∇ ·j ≡−∇ ·(←→σ ∇8)=0, (3)

in a conducting medium with an imposed external electric
field, Eext, sustained by an external dynamo.

In the upper D/lower E region ionosphere between 80 and
115 km of an altitude, electrons are strongly magnetized,
νe��e, while ions are unmagnetized,νi��i . Here,νe,i
are the mean rates of electron-neutral and ion-neutral colli-
sions, and�e,i = eB/me,i are the electron and single-charge
ion gyrofrequencies, wheree is the elementary charge,me,i

are the electron and average ion masses,mi ' 30 amu, and,
for this study, we useνe ' 10νi . Under these conditions, the
electron response to the electric field is sharply anisotropic
with respect to the direction of the magnetic field. In a
plasma with a given densityn≡ ne ≈ ni , the total current
densities are given by

j‖= σ‖E‖, (4a)

j⊥= σPE⊥+σHE⊥× b̂, (4b)

whereE‖ =−∇‖8, E⊥ =−∇⊥8, andb̂ is the unit vector
alongB. In the fluid approximation, the total parallel, Ped-
ersen, and Hall conductivities at the altitudes of interest are
given by

σ‖≈
ne2

meνe
=

ne

B20
√
ψ
, (5a)

σP≈
ne2

miνi
+
ne2νe

me�2
e

=
(1+ψ)20ne

B
√
ψ

, (5b)

σH≈
ne

B
, (5c)

where (e.g.,Dimant and Oppenheim, 2006a)

ψ =
νeνi

�e�i
, 20=

(
meνe

miνi

)1/2

'1.35×10−2. (6)

To solve Eq. (3), we will perform a series of coordinate trans-
formations similar to those made byDimant et al.(2009).
These transformations consist of several sequential steps de-
scribed in detail in Appendix A. First, we rotate the coor-
dinate system in order to align one of the new coordinate
axes with the magnetic field. Second, we rescale the corre-
sponding coordinate to make the total parallel and Pedersen
conductivities into Eq. (3) equal. This results in an effective
rescaling and rotation of the ellipsoidal cloud, so that the el-
lipsoid equation loses its simple canonical form. To restore
it, we make a final coordinate rotation, which aligns the coor-
dinate axes with the principal axes of the rescaled ellipsoid.
To the first-order accuracy with respect to small parameters

ε≡

(
σP

σ‖

)1/2

≈20(1+ψ)
1/2
�1 (7)

and a3/a1,2, see Eq. (2), the entire coordinate trans-
formations from xi to the final coordinatesXk, Xk =∑3
i=1(∂Xk/∂xi)xi , and back,xi =

∑3
k=1(∂xi/∂Xk)Xk, are

given in matrix form by

[
∂Xk

∂xi

]
≡

 ∂X1/∂x1 ∂X1/∂x2 ∂X1/∂x3
∂X2/∂x1 ∂X2/∂x2 ∂X2/∂x3
∂X3/∂x1 ∂X3/∂x2 ∂X3/∂x3

 (8)

≈

sinηsinϕ+cosηsinθ cosϕ cosηsinϕsinθ−sinηcosϕ −cosηcosθ
sinηsinθ cosϕ−cosηsinϕ cosηcosϕ+sinηsinθ sinϕ −sinηcosθ

0 0 ε/sinθ
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and[
∂xi

∂Xk

]
≡

 ∂x1/∂X1 ∂x1/∂X2 ∂x1/∂X3
∂x2/∂X1 ∂x2/∂X2 ∂x2/∂X3
∂x3/∂X1 ∂x3/∂X2 ∂x3/∂X3

 (9)

≈



cosηcosϕ+sinηsinθ sinϕ

sinθ

sinηcosϕ−cosηsinθ sinϕ

sinθ

cosθ cosϕ

ε

cosηsinϕ−sinηsinθ cosϕ

sinθ

sinηsinϕ+cosηsinθ cosϕ

sinθ

cosθ sinϕ

ε

0 0
sinθ

ε


.

Here the angleη, in the range of 0≤ η≤ 180◦, is uniquely
determined by

tan2η=
2tanη

1− tan2η
≈

2
(
1−a2

2/a
2
1

)
sinθ tanϕ

sin2θ− tan2ϕ−a2
2

(
1−sin2θ tan2ϕ

)
/a2

1

.

(10)

The Jacobians of these transformations are given by

det

[
∂Xk

∂xi

]
=

(
det

[
∂xi

∂Xk

])−1

= ε, (11)

so that the renormalized plasma density in the transformed
coordinates,N , is related to the original plasma den-
sity, n, as N = n/ε. The current density transforms
according to JXk = det[∂xi/∂Xk] ×

∑3
i=1(∂Xk/∂xi)Ji =

(1/ε)
∑3
i=1(∂Xk/∂xi)Ji , while the electric field transforms

according toEXk =
∑3
i=1(∂xi/∂Xk)Ei , whereEXk andJXk

are theXk-components of the electric field and current den-
sity, respectively, andEi andJi are the corresponding com-
ponents in real coordinates,xi . We note thatE⊥ =∇⊥8
responds only to the coordinate rotations and remain unaf-
fected by the coordinate rescaling alongB. In particular,
the total magnitude of the external electric field,E(0)

⊥B,
remains invariant with respect to the entire coordinate trans-
formation fromxi to Xk, |E(0)

| = |E
(0)
X |. At the same time,

E‖=−∇‖8 increases in the newXk-coordinates by a large
factor ofε−1.

In theXk-coordinates, the cloud boundary remains an el-
lipsoid with the rescaled semi-axes,

X2
1

A2
1

+
X2

2

A2
2

+
X2

3

A2
3

=1 (12)

where

A1≈
sinθ

cosϕcosη

[
(1+sinθ tanϕ tanη)2

a2
1

+
(tanϕ−sinθ tanη)2

a2
2

]−1/2

,(13a)

A2≈
sinθ

cosϕcosη

[
(tanη−sinθ tanϕ)2

a2
1

+
(sinθ+tanϕ tanη)2

a2
2

]−1/2

,(13b)

A3≈
εa3

sinθ
. (13c)

The restrictions of Eqs. (2) and (7) make the rescaled ellip-
soid even more flattened than it was in the original coordi-
nates,

A3 ≪A2 .A1. (14)

One can check that Eqs. (10) and (13) simplify drastically in
certain limiting cases. Forθ ≈ 90◦, we haveη≈ ϕ, A1≈ a1,
andA2≈ a2. For a disk-like ellipsoid,a1= a2 (or for an arbi-
trary ellipsoid, butϕ= 0), we haveη= 0,A1≈ a1sinθ , and
A2≈ a2. In the opposite limit of an extended cloud,a1� a2,

we obtain tanη≈ tanϕ/sinθ , A1≈ a1
(
1−cos2θ cos2ϕ

)1/2
,

andA2≈ a2
(
1−cos2θ cos2ϕ

)−1/2
sinθ .

In the new coordinates, the renormalized current density,
JX, is described in Appendix A by Eqs. (A11) to (A13), so
that Eq. (3) becomes in renormalized form

∇X ·JX =0, (15)

where ∇X is the nabla operator inXi , and reduces to
Laplace’s equation for the potential,

∇
2
X8=0. (16)

In Sect.3, we solve Eq. (16) outside the dense plasma cloud,
i.e., in the background ionosphere.

Far from the cloud, the electrostatic electric field,E =

−∇8, approaches asymptotically the external field,Eext.
Within the cloud, we initially presume a uniform electric
field,Eint, so that on the ellipsoidal interface which separates
the dense cloud from the tenuous ionosphere8 approaches
a linearly dependent potential. The spaces inside and out-
side the cloud are related through conservation of currents
that are collected from the ionosphere into one semi-cloud,
flow through the cloud, and release back to the ionosphere
from the other semi-cloud, see Fig.2. In Sect.4, we calcu-
late the fields and currents within the cloud and show that our
presumption of the uniform electric field (and, hence, of the
uniform current density) within the cloud is consistent with
the ellipsoidal interface and the homogeneous plasma den-
sity. This allows us to calculate the internal electric field and
thus close the entire solution.

3 External fields and currents

In this section, we solve Eq. (16) outside the ellipsoid, as-
suming a given potential8=8int

≡−Eint
·X on the cloud-

ionosphere interface and the asymptotic boundary condition,
8→−Eext

·X far from the interface. Similarly toDimant
et al.(2009), we extrapolate the internal linear potential to the
entire space and introduce18≡8−8int. On the ellipsoidal
interface,18= 0, while far from the cloud18 asymptot-
ically approaches(Eint

−Eext) ·X. This reduces the origi-
nal problem of finding the potential in a highly anisotropic,
weakly conducting plasmas to a classic problem of finding
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the potential around an infinitely conducting ellipsoid em-
bedded in vacuum with a given uniform external field (e.g.,
Landau and Lifshitz, 1960). Dimant et al.(2009) describes
this approach in detail, so here we only present the crucial
steps and give the results.

The solution for18=0 is given by a linear superposition
of partial potentials,

18=

3∑
i=1

18(i), (17)

where each partial potential is a solution of Laplace’s equa-
tion with the boundary conditions corresponding to one com-
ponent of(Eint

Xi
−E

(0)
Xi
) far from the cloud. Hence,18(i)→

(Eint
Xi
−E

(0)
Xi
)Xi as |Xi | →∞, and18(i) = 0 on the ellip-

soid surface defined by Eq. (12). Following the procedure
outlined inLandau and Lifshitz(1960); Dimant et al.(2009),
Laplace’s equation for18(i) is solved in terms of ellipsoidal
coordinates defined as the three independent real roots of the
cubic equation

X2
1

A2
1+u

+
X2

2

A2
2+u

+
X2

3

A2
3+u

=1. (18)

The largest (and the only positive) root,u= ξ , becomes zero
on the boundary surface described by Eq. (12) and tends to
infinity as |Xi |→∞. The exact solution for a partial poten-
tial is given by

18(i)=
(Eint

Xi
−E

(0)
Xi
)XiA

3
i

23i

∫ ξ

0

dξ(
A2
i +ξ

)
Rξ
, (19)

where

Rξ =
[(
ξ+A2

1

)(
ξ+A2

2

)(
ξ+A2

3

)]1/2
, (20a)

3i =
A3
i

2

∫
∞

0

dξ(
A2
i +ξ

)
Rξ
. (20b)

The integrals in Eqs. (19) and (20b) can be expressed in terms
of canonical elliptic integrals, as described in Appendix B of
Dimant et al.(2009).

Before going any further, we note that results of our spe-
cific model should obey one important general relation. At
distances from the cloud much larger than the cloud size,
the electrostatic potential of the totally neutral, but polarized,
cloud should have asymptotically a dipole character. In the
renormalized coordinatesX, the entire structure of fields and
currents is determined by the solution of Laplace’s Eq. (16).
Then in terms of the dipole moment,D, induced in the cloud
by the external electric field,E(0)

X , the total asymptotic po-
tential is be given by

8(X)≈−E
(0)
X ·X+

D ·X

X3
. (21)

It is important that this is a universal expression, in which
the specific geometry and internal structure of the distant
cloud are hidden withinD. As one might expect, our spe-
cific solution for the waterbag ellipsoidal cloud also re-
duces to Eq. (21). Indeed, in the far zone defined byX ≡
(
∑3
i=1X

2
i )

1/2
�A1≥A2,3, we haveR ≈ ξ3/2 andξ ≈X2,

so that Eq. (19) can be written asymptotically as

18(i)≈
(
Eint
Xi
−E

(0)
Xi

)(
1−

A3
i

33iX3

)
Xi . (22)

Following Landau and Lifshitz(1960), we introduce the in-
dividual components ofD as

Di ≡

(
E
(0)
Xi
−Eint

Xi

)
A3
i

33i
=

(
E
(0)
Xi
−Eint

Xi

)
V

4πni
, (23)

whereV = 4πA1A2A3/3 is the ellipsoid volume (in theX-
coordinates) andni are standard depolarization coefficients
closely related to our coefficients3i . Then the total elec-

trostatic potential,8≡
∑3
i=1

(
−Eint

Xi
Xi+18

(i)
)
, satisfies

Eq. (21).
In addition to the continuity of the potential through the

ionosphere-cloud interface, the plasma cloud interacts with
the ambient ionosphere through the inflowing and outflow-
ing currents. Given the electric field, the current density
is determined by Eqs. (A11) and (A12) in Appendix A.
The components of the total field areEint

Xj
+1EXj , where

1EXj =−∂18/∂Xj is the induced electric field. Note that
our definition of the “induced” field differs from the defi-
nition of the “polarization” field byShalimov et al.(1998),
which in our notation would beEXj −E

(0)
Xj

. The predom-

inantly Hall response to the internal fieldEint
Xj

on the cloud
boundary is unimportant for the total current balance because
the corresponding currents on the opposite symmetric sides
of the ellipsoid cancel each other (these currents may slightly
distort the cloud shape and affect cloud’s overall drift, but
these effects are beyond the scope of the present paper). The
induced electric field1EXj on the ionosphere side of the
ellipsoidal interface plays the crucial role in the ionosphere-
cloud current transfer. Since there18= 0 this field is nor-
mal to the interface. The unit vector normal to the ellipsoidal
interface equalsXj/(A2

j

√
P), where

P ≡

3∑
i=1

X2
i

A4
i

≈
X2

3

A4
3

. (24)

On the interface we have

1EXj =
Xj

A2
j

√
P

3∑
i=1

1E(i),
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where1E(i) are the partial components of the induced-field
amplitude,

1E(i)=−
2
√
P

∂18(i)

∂ξ

∣∣∣∣∣
ξ=0

=−
(Eint

Xi
−E

(0)
Xi
)XiAi

3iA1A2A3
√
P

≈−
(Eint

Xi
−E

(0)
Xi
)XiAiA3

3iA1A2X3
. (25)

The approximate equality in the right-hand side (RHS) of
Eq. (24) is valid on most of the ellipsoidal surface, excluding
a narrow vicinity of the largest central cross-sectionX2

1/A
2
1+

X2
2/A

2
2 = 0 whereX3/A3 . A3/A1,2 ≪ 1. On most of

the surface we have1EX1,2 ≈ X1,2A
2
31EX3/(X3A

2
1,2)�

1EX3 ≈
∑3
i=11E

(i), so that the total induced electric field
there is directed practically parallel toX3 with the magnitude
given by

|1EXi
| ≈ 1EX3

≈ −
A3

X3

[
(Eint

X1
−E

(0)
X1
)X1

31A2
+
(Eint

X2
−E

(0)
X2
)X2

32A1

]
.(26)

In Eq. (26) we neglected a contribution to the induced field
that comes from a relatively small field component(Eint

X3
−

E
(0)
X3
). On the ionosphere-cloud interface corresponding to

X3=X3B(X1,2)≡A3

(
1−

X2
1

A2
1

−
X2

2

A2
2

)1/2

, (27)

the normal component of the ionospheric current density,
J ext
n |X3B , continues through the interface. On most of the sur-

face, this component is directed mainly alongX3 and is de-
termined by theX3-component of the field. Equations (A11)
and (A12) from Appendix A giveJ ext

X3
=Kext1EX3, so that

J ext
n |X3B ≈A3K

ext


(
E
(0)
X1
−Eint

X1

)
X1

31A2X3B
+

(
E
(0)
X2
−Eint

X2

)
X2

32A1X3B

,
(28)

where, in accord with Eq. (A6a),

Kext
=

(
1+ψ

ψ

)1/2
en0

B
(29)

(recall thatn0 is the ionospheric density measured in the orig-
inal coordinate system,xi). In the next section, we relate the
external ionospheric currents to the internal currents on the
cloud side of the ionosphere-cloud interface.

4 Internal fields and currents; closure of entire solution

In the previous analysis, we presumed a uniform electric field
and current density inside the ellipsoidal plasma cloud. As-

X3

Jext

Jint

Fig. 2. Cartoon of ionospheric current closure through an oblate cloud (shaded yellow). The vertical solid lines

(Jext) depict the ionospheric (external) current flow, while the horizontal dashed lines (J int) depict the internal

current flow through the cloud. Under the assumed conditions, the current flow has an up-down symmetry with

respect to the central horizontal plane, X3 = 0. The current flow is antisymmetric with respect to the central

cross-section of the cloud by the vertical plane normal to the internal current flow (shaded green).

4 Internal fields and currents; closure of entire solution

In the previous analysis, we presumed a uniform electric field and current density inside the el-

lipsoidal plasma cloud. Assuming also a mirror symmetry of the current flow with respect to the

central plane X3 = 0, we see that the internal currents within the highly conducting pancake-like

cloud should flow only horizontally, J int
X3

= 0, as illustrated in Fig. 2. On the boundary surface, the

normal component of the internal current, J int
n |X3B

, equals the corresponding component of the ex-

ternal current, Jext
n |X3B

≈ Jext
X3
|X3B

. Unlike the external currents that flow mainly along X3, the

normal component of the internal current is relatively small on most of the boundary surface where

X3B/A3�A3/A1,2,

J int
n |X3B

= n̂ ·J int|X3B
≈ A2

3

X3B

(
X1J

int
X1

A2
1

+
X2J

int
X2

A2
2

)
, (30)

11

Fig. 2. Cartoon of ionospheric current closure through an oblate
cloud (shaded yellow). The vertical solid lines (Jext) depict the
ionospheric (external) current flow, while the horizontal dashed
lines (J int) depict the internal current flow through the cloud. Under
the assumed conditions, the current flow has an up-down symmetry
with respect to the central horizontal plane,X3= 0. The current
flow is antisymmetric with respect to the central cross-section of
the cloud by the vertical plane normal to the internal current flow
(shaded green).

suming also a mirror symmetry of the current flow with re-
spect to the central planeX3=0, we see that the internal cur-
rents within the highly conducting pancake-like cloud should
flow only horizontally,J int

X3
= 0, as illustrated in Fig.2. On

the boundary surface, the normal component of the inter-
nal current,J int

n |X3B , equals the corresponding component of
the external current,J ext

n |X3B ≈ J
ext
X3
|X3B . Unlike the external

currents that flow mainly alongX3, the normal component of
the internal current is relatively small on most of the bound-
ary surface whereX3B/A3�A3/A1,2,

J int
n |X3B = n̂ ·J

int
|X3B ≈

A2
3

X3B

(
X1J

int
X1

A2
1

+
X2J

int
X2

A2
2

)
, (30)

whereX3B(X1,2) is defined by Eq. (27). The internal current
componentsJ int

X1,2
, in terms of the internal electric field, are

given by Eqs. (A11) and (A12) with

K =K int
≡

(
1+ψ

ψ

)1/2
enint

B
(31)

wherenint
� n0 is the uniform cloud plasma density. Setting

J int
X3
=0, we obtain

Eint
X3
=−p

(
Eint
X1

sinη−Eint
X2

cosη
)
, (32)

wherep is defined by Eq. (A13) with q defined by Eq. (A6b).
Note thatShalimov et al.(1998) andShalimov and Haldoupis
(2005) disregarded the corresponding vertical component of
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the polarization electric field inside the layer (it would beEpz
in their notations), implying no slab polarization in the verti-
cal direction. However, in the general case ofθ 6= 90◦ (i.e.,
p 6=0), neglecting this component will lead to substantial er-
rors. The resultant currents from Eq. (32) become

J int
X1
=

KextA2
1

(
α1E

int
X1
+γ1E

int
X2

)
31A2A3

, (33a)

J int
X2
=

KextA2
2

(
α2E

int
X2
−γ2E

int
X1

)
32A1A3

, (33b)

where we used, according to Eqs. (29) and (31),K int/Kext
=

nint/n0 and introduced

α1=
31A2A3

(
1+p2sin2η

)
nint

A2
1n0

, (34a)

α2=
32A1A3

(
1+p2cos2η

)
nint

A2
2n0

, (34b)

γ1=
31A2A3

(
qcosχ−p2sinηcosη

)
nint

A2
1n0

, (35a)

γ2=
32A1A3

(
qcosχ+p2sinηcosη

)
nint

A2
2n0

. (35b)

Hereq andp are defined by Eqs. (A6b) and (A13). As a
result, we obtain from Eqs. (30) and (33)

J int
n |X3B≈A3K

ext


(
α1E

int
X1
+γ1E

int
X2

)
X1

31A2X3B
+

(
α2E

int
X2
−γ2E

int
X1

)
X2

32A1X3B

.
(36)

Now, we equateJ int
n |X3B to J ext

n |X3B from Eq. (28). The
RHSs of Eqs. (28) and (36) have similar structures of their
coordinate-dependent terms proportional toX1,2/X3B . This
ensures that the uniform internal field is really the proper
solution for a uniformly dense ellipsoidal cloud. The spa-
tial dependence of the terms allows one to properly split the
equationJ int

n |X3B = J
ext
n |X3B and calculate separate internal

field components.
Note that Eq. (3) ofShalimov et al.(1998) is split into their

Eqs. (4) and (5) without justification and we argue that this
may lead to highly inaccurate estimate for the fields. Their
splitting is based on the idea that two independent currents
flow in the east-west and north-south directions due to the po-
tential differences caused by charge accumulation at opposite
boundaries of the assumed slab layer. This argument never
works, regardless of the specific cloud geometry. The reason
is that the current system outside the cloud satisfies∇ ·J =0
which reduces to a single second-order differential equation
for the electrostatic potential, like Eq. (16). If one considers
a uniform ionosphere at distances much larger than the max-
imum cloud size then the corresponding asymptotic solution

is always expressed in terms of the induced dipole moment
of the cloud,D, as described by Eq. (21). GivenD, the to-
tal electric field is determined by the well-known expression
EX ≈E

(0)
X +[3X(D ·X)−X2D]/X5, so that the far-zone

ionospheric current system is fully described by Eq. (A11).
Expressed in terms ofD, the dipolar current flow system is
insensitive to the details of the geometry and internal struc-
ture of the distant cloud. These assumptions also apply to
the slab geometry considered byShalimov et al.(1998). The
general asymptotic solution results in a structure of currents
that can never be split into two independent systems, like
the zonal and meridional current flows. The currents in the
asymptotic remote regions represent only a part of the entire
ionospheric current-closure system, but there is no reason to
expect a fundamentally different behavior in the near-cloud
zone. Moreover, our exact solution for the ellipsoidal cloud
in terms of the coordinateξ given by Eq. (19) clearly shows
that there are not two independent current systems.

We will now proceed with calculating the fields. Equating
in the RHSs of Eqs. (28) and (36) the corresponding coef-
ficients in front ofX1,2/X3B , we obtain a set of two linear
equations,

(1+α1)E
int
X1
+γ1E

int
X2
≈E

(0)
X1
, (37a)

−γ2E
int
X1
+(1+α2)E

int
X2
≈E

(0)
X2
, (37b)

with the solution given by

Eint
X1
≈
(1+α2)E

(0)
X1
−γ1E

(0)
X2

(1+α1)(1+α2)+γ1γ2
, (38a)

Eint
X2
≈
(1+α1)E

(0)
X2
+γ2E

(0)
X1

(1+α1)(1+α2)+γ1γ2
. (38b)

For small αi and γi , the internal electric field,Eint
X , ap-

proaches the external field,E(0)
X . In the general case, the

direction of the internal field,Eint
X , is rotated with respect to

that of the external field,E(0)
X , through an angleφE deter-

mined by

|tanφE | ≈
γ2

(
E
(0)
X1

)2
+(α1−α2)E

(0)
X1
E
(0)
X2
+γ1

(
E
(0)
X2

)2

(1+α2)
(
E
(0)
X1

)2
+(γ2−γ1)E

(0)
X1
E
(0)
X2
+(1+α1)

(
E
(0)
X2

)2
.

(39)

The sign ofφE is determined by the direction ofB. In the
Northern Hemisphere, where the magnetic field is directed
downward, the internal field is rotated with respect to the
external field anti-clockwise when looking from above.

Combining Eqs. (38) and Eq. (32) gives the previously
unknown components of the internal electric field and thus
closes the solution for the potential and currents in the entire
space. Using

Eint
X1
−E

(0)
X1
≈−µ131A2, (40a)

Eint
X2
−E

(0)
X2
≈−µ232A1, (40b)

www.ann-geophys.net/28/719/2010/ Ann. Geophys., 28, 719–736, 2010



726 Y. S. Dimant and M. M. Oppenheim: Plasma cloud in ionosphere: effect of external field

where we introduced

µ1≡
[α1(1+α2)+γ1γ2]E(0)X1

+γ1E
(0)
X2

31A2[(1+α1)(1+α2)+γ1γ2]
, (41a)

µ2≡
[α2(1+α1)+γ1γ2]E(0)X2

−γ2E
(0)
X1

32A1[(1+α1)(1+α2)+γ1γ2]
, (41b)

we obtain the major partial potentials,18(i), i = 1,2,
Eq. (19),

18(1)≈−
µ1X1A2A

3
1

2

∫ ξ

0

dξ

(A2
1+ξ)Rξ

, (42a)

18(2)≈−
µ2X2A1A

3
2

2

∫ ξ

0

dξ

(A2
2+ξ)Rξ

, (42b)

Recall that hereξ(X1,2,3) is the only positive root of cubic
Eq. (18) andRξ is defined by Eq. (20a). The total electro-
static potential outside the cloud is given by

8≈−

3∑
i=1

Eint
Xi
Xi+18

(1)
+18(2), (43)

where the internal-field componentsEint
Xi

are given by
Eqs. (38) and (32).

Using Eq. (26), we obtain the major component of the in-
duced electric field on the ionosphere side of the interface,

1EX3|X3B ≈
(µ1X1+µ2X2)A3

X3B
, (44)

so that Eq. (28) gives the common value of the current den-
sity normal to the interface,

Jn|X3B ≡ J
ext
n |X3B =K

ext1EX3|X3B = J
int
n |X3B . (45)

Similarly to Eq. (30), Eqs. (38) to (45) are valid where

X3B/A3=
(
1−X2

1A
2
1−X

2
2A

2
2

)1/2
�A3/A1,2. This covers

the entire interface, except a narrow belt-like edge around
the central planeX3=0. Outside, the current density normal
to the interface is mainly due to the parallel flow of electrons
along B. These electrons are collected into a semi-cloud,
drift there, and return back to the ionosphere from the other
semi-cloud, as shown in Fig.2. The boundary plane between
the two semi-clouds is determined byJn|X3B =0, or

X2

X1
=−

µ1

µ2
. (46)

The internal current reaches its maximum value,I int
max, at

this boundary. The current density within the cloud,J int
X ,

is uniform, so that the total internal current through a given
cross-section isJ int

X ·S, where theS is the vector whose ab-
solute value equals the cross-section area and where direc-
tion lies perpendicular to the cross-section plane. According
Eqs. (33) and (41), we have

J int
X1
=
Kextµ1A

2
1

A3
, J int

X2
=
Kextµ2A

2
2

A3
(47)

(and J int
X3
= 0, see above). The section along the plane

described by Eq. (46) through the ellipsoid described by
Eq. (12) is given by

S=

SX1

SX2

SX3

= πA1A2A3(
µ2

2A
2
2+µ

2
1A

2
1

)1/2 ×
µ1
µ2
0

. (48)

As a result, we obtain

I int
max≈πK

extA1A2

(
µ2

1A
2
1+µ

2
2A

2
2

)1/2
. (49)

This current should coincide with the total ionospheric cur-
rent Iext

total which is collected from the ionosphere into one
semi-cloud (separated by Eq.46) and released back from the
other semi-cloud. We verify this in order to check the consis-
tency of our mathematical treatment. According to Eqs. (27)
and (45), the total collected and released current is given by

Iext
total≈2Kext

∫∫
(µ1X1+µ2X2)dX1dX2(
1−X2

1/A
2
1−X

2
2/A

2
2

)1/2 , (50)

where the double integration is carried out over either top or
bottom side of one ellipsoid semi-cloud restricted by Eq. (46)
and the factor 2 allows for the up-down symmetry of cur-
rents with respect to the central ellipsoidal plane, see Fig.2.
Near the central edge of the ellipsoid, the integrand is less
accurate. Fortunately, its relative contribution to the entire
integral is negligible,.A3/A1,2 ≪ 1. Calculating the in-
tegral in Eq. (50) via changing variables fromX1,2 to ρ,φ,
whereX1=A1ρcosφ, X2=A2ρsinφ, with the integration
domains of 0≤ ρ ≤ 1 andφ0= arctan[−A1µ1/(A2µ2)] ≤ φ
≤φ0+π , we can verify that indeedIext

total= I
int
max.

Equations (32), (38), (42–44), with parameters defined by
Eqs. (10), (20), (34), (35), and (41), present the general ana-
lytic solution for the electric potentials (fields), both inside
and outside the oblate ellipsoidal plasma cloud embedded
in a homogeneous ionosphere with an external electric field.
Equations (47) and (49), with Kext defined by Eq. (29), de-
scribe the current density in the cloud and the corresponding
maximum total current. Major features of this solution vary
significantly depending upon the relations between the ellip-
soidal radii,Ai , and the plasma density ratio,nint/n0. The
next section discusses how these features change with vary-
ing nint/n0 in the limiting case of a round (disk-like) plasma
cloud. Appendix B discusses the opposite limit of an ex-
tended (rod-like) cloud.

5 Round cloud (sporadic-E patch)

In this section, we consider a particular but important case of
a round (disk-like) cloud,a≡ a1= a2, embedded in a vertical
magnetic field,θ =90◦. This particular case is representative
for sporadic-E patches at high latitudes.

For this case, one could develop a simpler mathemati-
cal treatment from scratch, but in order to avoid repetition,
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we will use the general expressions obtained in the previ-
ous sections. For the vertical magnetic field, the renormal-
ized coordinates in the horizontal plane,X1,2 = x1,2, and
X3= εx3. In this case,EX1,2=E1,2, whileEX3=E3/ε. Be-
cause a round pancake embedded in the vertical magnetic
field has a rotational symmetry, we can align thex1-axis
along the external electric field, so thatE(0)1 =E

(0), where

E(0) is the external-field magnitude, andE(0)2,3=0. Addition-
ally, we have for the parameters listed in previous sections,
χ,p,η=0,A1=A2= a, A3= εa3,31=32≈π/4,

α1=α2≡α≈
πεa3n

int

4an0
, (51a)

γ1= γ2= qα≈
πa3n

int

4an0

(
ψ

1+ψ

)1/2

, (51b)

where q = σH/σP=
√
ψ/[(1+ψ)20] � 1, as defined in

Eq. (A6b).
First, we discuss the electric field solution outside the

cloud. Unlike the general ellipsoidal cloud, the disk-like in-
terface allows us to expressξ and18 as simple functions
of Xi . In this case, cubic Eq. (18) reduces to a quadratic
equation with the only appropriate root given by

ξ=
R2
−A2
+

√(
R2−A2

)2
+4
[(
R2−a2

)
A2

3+X
2
3

(
a2−A2

3

)]
2

,

(52)

whereR2
=
∑3
k=1X

2
k = x

2
1+ x

2
2+ ε

2x2
3, A2

= a2
+ ε2a2

3 ≈

a2. Not too close to the boundary surface,ξ� ε2a2
3, we can

also neglectA2
3 in the expression forRξ , Eq. (20a), so that

the total potential outside the cloud, Eq. (43), becomes

8 ≈ −

2∑
i=1

Eint
i xi+

2
∑2
i=1(E

int
xi
−E

(0)
xi )xi

π

×

( √
ξ/a

1+ξ/a2
+arctan

√
ξ

a

)
, (53)

whereEint
Xi
≈ E

(0)
Xi
− πµia/4 and we imply the principal

value of arctan. Here Eq. (41) reduces to

µ1≈
4α
(
1+α+q2α

)
E(0)

πa
[
(1+α)2+q2α2

] , (54a)

µ2≈−
4αqE(0)

πa
[
(1+α)2+q2α2

] . (54b)

Recall that the ratio ofµ1 andµ2 determines the bound-
ary between the inflowing and outflowing currents, as
shown in Eq. (46). This approximate potential given by
Eq. (53) satisfies the exact boundary conditions:8|ξ→∞→

−
∑2
i=1E

(0)
i xi and 8|ξ=0 = −

∑2
i=1E

int
i xi , so that one

can disregard the small-ξ restriction,ξ � ε2a2
3, and apply

Eq. (53) to all locations outside the cloud.
Next, we discuss the uniform fields and currents within the

cloud. According to Eq. (38), we haveEint
3 =0, while

Eint
1 ≈

(1+α)E(0)

(1+α)2+q2α2
, (55a)

Eint
2 ≈

qαE(0)

(1+α)2+q2α2
. (55b)

From Eq. (55), the magnitude of the internal electric field,
Eint
≡ [(Eint

1 )
2
+(Eint

2 )
2
]
1/2, equals

Eint
≈

E(0)[
(1+α)2+q2α2

]1/2 . (56)

This expression shows that the total internal electric field
within the round cloud is always less than the external elec-
tric field. This distinguishes the disk-like cloud from the ex-
tended cloud discussed in Appendix B. The angle between
Eint andE(0), Eq. (39), is determined by

|tanφE | ≈
qα

1+α
. (57)

Further, according to Eqs. (47), the internal current density
in the original coordinates,x1,2, is given byJ int

3 =0 and

J int
1 =

Kextµ1a
2

a3
, J int

2 =
Kextµ2a

2

a3
, (58)

whereKext is defined by Eq. (29). The maximum total cur-
rent,I int

max, across the vertical cross-section that separates the
inflowing ionosphere currents from the outflowing ones, as
depicted in Fig.2, is given by Eq. (49) where(
µ2

1A
2
1+µ

2
2A

2
2

)1/2
≈

4α(1+q2)1/2Eint

π
[
(1+α)2+q2α2

]1/2 , (59)

and we can further approximate the large factor in the nu-
merator of Eq. (59), (1+ q2)1/2 ≈ q + (2q)−1, by merely
q. Expressing alsoα in the numerator of Eq. (59) through
Eq. (51a) with nint/n0=K

int/Kext, we obtain

I int
max≈

πεaa3qK
intE(0)[

(1+α)2+q2α2
]1/2 . (60a)

Using Eq. (A6) for n= nint, we can expressI int
max in terms of

the Hall conductivity within the cloud,σ int
H ≈ en

int/B, as

I int
max≈

πaa3σ
int
H E(0)[

(1+α)2+q2α2
]1/2 . (60b)

We will use either Eq. (60a) or (60b) for qualitative interpre-
tation in each of the two limiting cases discussed below.
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Fig. 3. Spatial distribution of ∆E3|x3 ∝ Jn|x3B (vertical axis). The thick line shows the divider between the

inflowing and outflowing ionospheric currents in the X1X2-plane, Eq. (46).

Introducing dimensionless polar coordinates ρ and φx via x1 = ρacosφx, x2 = ρasinφx, we ob-

tain from Eq. (44) the parallel electric field on the ionosphere side of the ellipsoid boundary,

∆E3|x3B
≈ 4εqαρE(0)cos(φx +φJ)

π
[
(1+α)2 +q2α2

]1/2

(1−ρ2)1/2
, (61)

where ρ2 =(x2
1 +x2

2)/a
2 and

tanφJ =
q

1+α(1+q2)
. (62)

Figure 3 shows an example of the spatial distribution of ∆E3|x3 over a cloud. The densities of the

ionospheric currents that flow through the ionosphere-cloud interface, Jn|x3B
, are proportional to

∆E3|x3 , and have the same spatial distribution. The parallel electric field goes to zero at the dividing

plane defined by Eq. (46) and formally grows to infinity when approaching the cloud edge ρ= 1.210

This is, however, valid only for (1−ρ2)1/2� εa3/a. In the narrow belt-like area around x3 = 0
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Fig. 3. Spatial distribution of1E3|x3 ∝ Jn|x3B (vertical axis). The
thick line shows the divider between the inflowing and outflowing
ionospheric currents in theX1X2-plane, Eq. (46).

Introducing dimensionless polar coordinatesρ andφx via
x1= ρacosφx , x2= ρasinφx , we obtain from Eq. (44) the
parallel electric field on the ionosphere side of the ellipsoid
boundary,

1E3|x3B ≈
4εqαρE(0)cos(φx+φJ )

π
[
(1+α)2+q2α2

]1/2(
1−ρ2

)1/2 , (61)

whereρ2
= (x2

1+x
2
2)/a

2 and

tanφJ =
q

1+α
(
1+q2

) . (62)

Figure 3 shows an example of the spatial distribution of
1E3|x3 over a cloud. The densities of the ionospheric
currents that flow through the ionosphere-cloud interface,
Jn|x3B , are proportional to1E3|x3, and have the same spa-
tial distribution. The parallel electric field goes to zero at
the dividing plane defined by Eq. (46) and formally grows
to infinity when approaching the cloud edgeρ = 1. This is,
however, valid only for(1−ρ2)1/2� εa3/a. In the narrow
belt-like area aroundx3= 0 where this restriction is lifted,
the field actually saturates at a large but finite value corre-
sponding to a very small factor in the denominator of the
RHS of Eq. (61), namely,(1−ρ2)1/2∼ εa3/a.

Now we discuss the dependence of the fields and currents
on the plasma density ration0/n

int. This dependence shows
up via the parameterα in Eq. (51a). Since the latter is es-
sentially a ratio of two small parameters,εa3/a andn0/n

int,
it spans a broad range from small to large values. Before
going any further, we note the following. Because at the alti-
tudes of interest the parameterq2 is large, then for both large
and small values ofα, one can approximate expressions like

(1+α)2+q2α2 by just 1+q2α2. This or similar approxima-
tions can be employed in simple estimates as valid interpola-
tions for all values ofα, so that in all the above relations that
involve such expressions depend largely on the value of the
productqα, rather than onq andα separately.

We discuss now two opposite limits of small and largeqα.
For a low-density cloud where

qα=
πa3n

int

4an0

(
ψ

1+ψ

)1/2

�1, (63)

we have, using Eq. (60b),

φE ≈
qα

π
×180◦�90◦, Eint

≈E(0),

I int
max≈πaa3σ

int
H E(0), (64)

1E3|x3B ≈
4εqαρE(0)cos(φx+φJ )

π (1+α)
(
1−ρ2

)1/2 . (65)

In this limit, the induced field is relatively small, while the
external field mostly penetrates into the cloud. As a re-
sult, the maximum current through the cloud in Eq. (64)
depends largely on this field and the cloud plasma density,
nint
≈Bσ int

H /e, while it is virtually independent of the iono-
sphere density,n0. The maximum current through the cloud
in this case is mostly the Hall current density caused by the
external field,σ int

H E(0), multiplied by the maximum horizon-
tal cross-section of the cloud,πaa3.

This limit of smallqα has a simple physical meaning. Al-
though the cloud density is much larger that that of the am-
bient ionosphere, the latter still has enough charge carriers to
close the current driven within the cloud by the nearly unal-
tered external electric field. Charge polarization at the sharp
cloud edges, as well as small charge separation in the am-
bient ionosphere, create additional polarization fields which
are small compared to the external field, but sufficient to sus-
tain the required ionospheric current closure. This explana-
tion suggests that the regime when the external field mostly
penetrates into the cloud should take place for rather gener-
ally shaped clouds with the non-homogeneously distributed
plasma density. In such cases, the internal current is simply
determined by the cloud conductivity, while the configura-
tion of the closing ionospheric currents requires a solution of
Eq. (3) for the specific cloud geometry and plasma density
distribution.

For higher density ratio,n0/n
int, corresponding toqα∼1,

we have general Eqs. (56) to (62), where we must retain
q2α2

∼ 1 but, due toq2
� 1, can neglectα which in this

case is small in comparison with unity. Figure4 illustrates
this intermediate case. It shows the spatial distribution of the
electrostatic potential in the near-cloud region. The electric
fields are perpendicular to the equipotential contours shown
by solid curves. Qualitatively, such distribution is typical
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Hereα= 0.1, q = 20 (corresponding toψ ' 8.6×10−2), so thatqα= 2. Further,a= 1 and the external electric field is directed alongX1:
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2= 1 corresponds to the position of the disk-like cloud atX3= 0. The boundary

between cross-sections intersecting the cloud and those that lie outside it corresponds toX3= εa3, whereεa3= 0.01 is the cloud radius in
a vertical direction. Only in(a) the cross-section intersects the cloud; in all three other cases, the cross-sections lie fully outside the cloud.
Notice, however, a close similarity between the potentials in(a) and(b).

for any clouds, although the characteristic scales may dif-
fer significantly. Panel (a) shows the horizontal distribution
of the potential in the central plane that intersects the cloud.
Within the cloud area, one can clearly see the internal elec-
tric field rotated with respect to the external field. Outside
the cloud near its boundary, one can see a sharp transition
to a potential which approaches the linearly dependent po-
tential corresponding to the external electric field at a rather
short horizontal distance from the cloud. It is interesting
that essentially the same potential distribution, but without a
smoothen transition, takes place even well beyond the cloud
(see panel (b) corresponding toX3 = 0.03> εα3 = 0.01).
At a larger vertical distance from the cloud,X3= 0.1 (c),
the internal field still clearly differs from the external field,
both in the magnitude and direction. However, asX3 in-
creases further,X3= 0.3 (d), the effect of the cloud gradu-

ally disappears. The spatial distribution of the potential is
virtually insensitive to the smallest (vertical) cloud size; for
any oblate clouds,A3� a, the corresponding figures look
essentially indistinguishable from Fig.4. This is, however,
only true if we are not interested in the near-cloud verti-
cal electric field,1EX3, and currents; the two may depend
strongly upon the vertical cloud size. The vertical distances
over which the cloud effects disappear are comparable to the
horizontal cloud size,a = 1 (but less than 1). These dis-
tances characterize the effective size of the near-cloud region
where spatial uniformity of the background ionosphere den-
sity and external electric field, which are not included in this
model, can affect the entire electrodynamic structure. Be-
yond this region, all inhomogeneities, including other clouds,
F region, etc., should not exert a significant influence on the
near-cloud fields and currents. Note that the configurations
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of the internal field and current in the intermediate case of
qα∼ 1 are more sensitive to the specific choice of the cloud
geometry than in the case ofqα�1.

As the density ration0/n
int grows further, we pass to the

opposite limit of

qα=
πa3n

int

4an0

(
ψ

1+ψ

)1/2

�1, (66)

where, according to Eqs. (60a) and (A6a),

φE ≈90◦, Eint
≈E(0)/(qα)�E(0),

I int
max≈4a2σ ext

‖
εE(0)≈

4a2enextE(0)

B

(
1+ψ

ψ

)1/2

. (67)

1E3|x3B ≈
4ερE(0)cos(φx+φJ )

π
(
1−ρ2

)1/2 . (68)

In this limit, the internal field becomes much less in mag-
nitude than the external field and lies practically orthogo-
nal to the latter. Because the cloud is nearly equipotential,
the induced field outside it reaches its maximum possible
value. We see that atφx '−φJ and, especially, on approach-
ing the cloud edge on the margin of Eq. (61) applicability,
(1−ρ2)1/2∼ εa3/a, the induced electric field parallel toB
can reach large values1E3|x3B ∼ aE

(0)/a3�E(0). Even a
moderate external field ofE(0) ∼ 1 mV/m anda/a3∼ 100,
will generate near the cloud edges parallel electric fields of
1E3|x3B ∼100 mV/m, which can raise the electron tempera-
ture significantly (Dimant et al., 2009). At midlatitudes, the
electric field component perpendicular toB should also in-
crease. However, this does not necessarily mean a propor-
tional improvement in the conditions required for generation
of E-region instabilities because the elevated electron tem-
perature raises the instability threshold. A more accurate
quantitative prediction requires a self-consistent inclusion of
strong local electron heating into the model, which is beyond
the framework of this paper. Note also that the estimated field
of around 100 mV/m should be a rare event because for large
clouds it is not so easy to reach the limit required by Eq. (66),
as we discuss below. One might expect that near-cloud fields
will typically reach a few tens of mV/m.

In the limiting case of Eq. (66), the total current in the
cloud,I int

max, is determined almost entirely by the charge col-
lection from the ionosphere and is virtually independent of
the cloud plasma density. The total collection current from
the ionosphere,Iext

total= I
int
max, is proportional to the iono-

spheric density and is mainly caused by electrons drifting
alongB. On most of the cloud interface, this electron drift is
a response to the induced electric field1E3∼E

(0), which is
nearly parallel toB. The maximum cloud current determined
by Eq. (67) is a saturation current reached when the external
field is completely expelled from the cloud. The saturated

current,I cloud
sat = I

int
max(qα� 1), can be written in practical

units as

I cloud
sat ≈12.8kA

(
1+ψ

ψ

)1/2( a

100km

)2
(

E(0)

1mV/m

)(
5×104nT

B

)
.

(69)

For typical sporadic-E layers,a& 100 km, and moderate val-
ues of the external field,E(0) & 1 mV/m, the saturated cur-
rent through the cloud can reach tens of kiloamperes, com-
parable to the electrojet currents. However, the larger the
cloud horizontal radiusa (compared to its vertical thick-
ness,a3), the more difficult it is to reach the dense-cloud
limit of qα� 1. Indeed, according to Eq. (51b), if we have
a3' 1 km, a' 100 km,ψ ' 0.1 then, in order to reach this
limit, we need a density ratio ofnint/n0� 4× 102. For
lower-density sporadic-E layers,nint

∼ 1011−12m−3, under
nighttime ionosphere conditions,n0 . 1010m−3, this limit is
barely reachable. Nevertheless, even in a more realistic case
of qα∼ 1, the total current through one or more clouds can
be quite significant and affect the entire ionospheric conduc-
tance, as we discuss at the end of this section.

For non-zeroθ and a non-round cloud, analytic expres-
sions are more complicated but, for comparablea1 anda2,
the major results are qualitatively the same. An important
result is that there should be no amplification of the elec-
tric field inside the cloud, mainly its rotation and reduc-
tion. However, the field can increase significantly outside
the cloud. This has an important implication for excitation of
Farley-Buneman and other E-region instabilities at midlati-
tudes (Haldoupis et al., 1996).

The strongest induced electric field outside the cloud is
near the cloud interface, where it is perpendicular to it. Only
the field component perpendicular toB can drive instabili-
ties, while the parallel component can only heat electrons. At
first glance, this mechanism of instability generation seems
to be more relevant for midlatitudes where the magnetic field
is far from vertical. However, at the high-latitude electrojet,
especially during strong magnetospheric perturbations, small
(90◦−θ) can be compensated by much higher external elec-
tric fields.

To conclude this section, we now calculate effective
ionosphere conductances associated with currents that flow
through a sporadic-E cloud. These conductances can be
added to the conventional conductance models used for
magnetosphere-ionosphere coupling in global MHD simula-
tions of the magnetosphere (e.g.,Fedder et al., 1995; Raeder
et al., 2001; Ridley et al., 2004). Some modifications of the
conventional conductances have been invoked, e.g., to rec-
oncile disagreements of model results with observations of
cross-cap potentials (Merkin et al., 2005). The inclusion
of sporadic-E layer conductances are of special importance
for nighttime side of the high-latitude ionosphere where,
in existing models, only conductance modifications associ-
ated with particle precipitation have been taken into account.
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The conventional global ionospheric conductance tensor has
a simple structure with only two independent parameters,
namely, the Pedersen and Hall conductances,6P,H. As this
paper demonstrates, sporadic-E clouds can easily be polar-
ized, and the corresponding effective conductance tensors in
the general case have a more complicated structure which
depends on the cloud orientation. However, for the rotation-
ally symmetric clouds in a nearly vertical magnetic field, the
effective conductance tensor reduces to also just two inde-
pendent conductances,6eff

P,H similar to6P,H.
In global MHD simulations, the entire ionosphere repre-

sents a thin boundary layer with given conductances. This
implies that the electric field inside it is uniform, mapped
from the magnetosphere. Such an approach disregards lo-
cal electric-field inhomogeneities caused by polarization of
sporadic-E clouds. To calculate the effective Pedersen and
Hall conductances,6eff

P,H, to be included into global MHD
codes, we need to integrate the corresponding components
of the current density over the vertical thickness of the cloud
and divide them by the external electric field magnitude,
6eff

P =
∫
J int

1 dx3/E
(0) and6eff

H =
∫
J int

2 dx3/E
(0). Here the

external electric fieldE(0) approximates the global magneto-
spheric field. Because the current densities given by Eq. (58)
are uniform, the integration over altitudes within the cloud,
at a given horizontal location determined by the coordinates
x1,2, reduces to a simple multiplication by the correspond-

ing cloud thickness, 2x3B(x1,2)= 2a3
[
1−

(
x2

1+x
2
2

)
/a2

]1/2
.

Using Eqs. (58) with µ1,2 defined by Eq. (54), whereα in the
numerators is expressed by Eq. (51a) andKext expressed as
(n0/n

int)σ int
P /ε, we obtain

6eff
P =

2
(
1+α+q2α

)
a3σ

int
P

(1+α)2+q2α2

(
1−

x2
1+x

2
2

a2

)1/2

, (70a)

6eff
H =

2a3σ
int
H

(1+α)2+q2α2

(
1−

x2
1+x

2
2

a2

)1/2

. (70b)

Here, for magnetized electrons and unmagnetized ions,
σ int

P ≈ (1+ψ)20n
inte/(B

√
ψ) andσ int

H ≈ n
inte/B, as given

by Eq. (5). Note that the multipliers 2a3σ
int
P,H[1− (x

2
1 +

x2
2)/a

2
]
1/2 in Eq. (70) describe conductances associated with

the increased number of charged carriers within the cloud,
while the additional factors describe the effects of cloud po-
larization. For any values ofα, in accord with simple in-
terpolation estimates discussed above, we can approximate
1+α+q2α by 1+q2α, so that the ratio of the two effective
conductances becomes

6eff
P

6eff
H

'
1

q
+qα=

6P

6H
+qα. (71)

This ratio remains the same as for the regular ionosphere
conductances,6eff

P /6
eff
H ' 6P/6H � 1 only in the limit

of very small qα, when q2α� 1. In this case,6eff
H ≈

6eff
Hmax

[
1−

(
x2

1+x
2
2

)
/a2

]1/2
, where

6eff
Hmax
≡2a3σ

int
H ≈6.4

(
nint

1012m−3

)(
5×104nT

B

)( a3

1 km

)
mho,

(72)

because in this limit the external field mostly penetrates into
the cloud, as described by Eq. (64).

In the opposite limit of largeqα, Eq. (66), the cloud po-
larization plays a crucial role. In this case, the effective
Pedersen conductance can exceed significantly the effective
Hall conductance,6eff

P /6
eff
H ' qα�1. This is of paramount

importance for global magnetospheric modeling, because
makes the ionospheric current closure more efficient. We
should bear in mind, however, that in this case the largest
conductance,6eff

P , can differ noticeably from that calculated
without the effect of cloud polarization,

6eff
P '

2a3σ
int
P

α

(
1−

x2
1+x

2
2

a2

)1/2

=
2a3σ

int
H

qα

(
1−

x2
1+x

2
2

a2

)1/2

�2a3σ
int
H . (73)

In the intermediate case ofqα∼ 1, we approximate Eq. (70)
by

6eff
P '

2qαa3σ
int
H

1+q2α2

(
1−

x2
1+x

2
2

a2

)1/2

, (74a)

6eff
H '

2a3σ
int
H

1+q2α2

(
1−

x2
1+x

2
2

a2

)1/2

, (74b)

so that the Pedersen conductance proves to be comparable to
the Hall one,6eff

P ' qα6
eff
H , reaching at most about a half of

the maximum Hall conductance given by Eq. (72). For typi-
cal sporadic-E clouds witha3∼ 1 km andnint

∼ 1012 m−3,
6eff

P can reach a few mho, which is comparable to typi-
cal daytime ionosphere conductances,6P,H . 20 mho (Moen
and Brekke, 1993). This means that the effect of sporadic-E
clouds may play an important role in providing conductance
in the nighttime high-latitude ionosphere and should be taken
into account in global magnetosphere-ionosphere coupling
models.

6 Summary and conclusions

In this paper, we have studied the 3-D electrodynamic in-
teraction of an external electric field with a dense plasma
cloud embedded in the lower-E/upper-D ionosphere. To
make an analytic solution possible, we have employed a sim-
plified physical model with the following major assumptions:
(1) uniformly dense plasma cloud bounded from the back-
ground ionosphere by an oblate 3-D ellipsoid; (2) homoge-
neous and unbounded tenuous ionosphere; (3) uniform exter-
nal electric field perpendicular to the magnetic fieldB. Using
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this model, we have obtained the general analytic solution
for the electric potential and currents in the entire space and
have discussed limiting cases. While the actual situation is
more complicated, our analytic solution gives an understand-
ing of various regimes depending on crucial parameters and
for quantitative estimates of the expected physical effects.

The major quantitative results of our analytic model can
be summarized as follows. The 3-D electric field and current
depend upon the relations between the ellipsoid semi-axes
and the ratio of the plasma densities within the cloud and
surrounding ionosphere. Outside the cloud, the electric field
on the ionospheric side of the interface are described in the
general case by Eqs. (42–44). This field lies perpendicular
to the interface and can have a significant component paral-
lel to B. Within the ellipsoidal cloud, the uniform electric
field and current density are described by Eqs. (32), (38),
and (47). The internal electric field is rotated with respect
to the external field, while its amplitude can be both larger
or smaller that that of the external field. The maximum total
current collected from the ionosphere in one semi-cloud and
released from the other semi-cloud is given by Eq. (49). It
can be quite significant, especially in the important particu-
lar case of a disk-like cloud, Sect.5.

The latter model can serve as a reasonable approximation
to actual sporadic-E layers. In this case, the internal elec-
tric field never exceeds the external field, while on the iono-
spheric side it can be larger. For low-density clouds, the ex-
ternal field penetrates into the cloud, so that the internal cloud
current there is determined by the cloud conductivity. The in-
duced electric field and collected ionospheric currents in this
case are relatively small. For denser clouds, the internal elec-
tric field cannot easily penetrate, leaving an almost equipo-
tential cloud. In this case, the total current through the cloud
nearly reaches its saturation value determined by the iono-
spheric conductivity, Eqs. (67) and (69). The induced elec-
tric field on the ionospheric side of the ellipsoidal interface
also reaches its maximum values, Eq. (68). All these effects
are fundamentally three-dimensional. Estimates show that
sporadic-E clouds can make noticeable local contributions to
ionospheric conductances at nighttime side. This is of im-
portance for modeling magnetosphere-ionosphere coupling
in global MHD simulations used for Space Weather predic-
tions.

This analytical model can be employed for simple esti-
mates of near-cloud fields and currents for specific cloud
sizes and average plasma parameters. More realistic studies
will require including ionospheric and cloud-plasma inho-
mogeneities, as well as global layers of distinct ionospheric
conductivities, temporal variability of fields and plasmas and
simultaneous presence of several separate plasma patches.
All these important factors seriously hinder analytical stud-
ies, but they could be included in future powerful computer
simulations.

Appendix A

Coordinate transformations

In this Appendix, we make coordinate transformations that
allow us to reduce Eq. (3) to Laplace’s Eq. (16), while keep-
ing the simple canonical form for the ellipsoidal plasma
cloud. We express these linear transformations in matrix
form, so that sequential coordinate transformations are de-
scribed by multiplication of the corresponding matrices.

In order to efficiently apply Eq. (4), we need a coordinate
system aligned with the magnetic field. To reach this, we
rotate our original coordinates in such a way that the new
axis x′3 becomes directed alongB, x′2 becomes perpendic-
ular to axesx3 andx′3, while the remaining axisx′1 keeps
its required perpendicularity to the new axesx′2 andx′3, see

Fig.1. This coordinate rotation,x′i =
∑3
k=1

(
∂x′i/∂xk

)
xk, can

be described by the transformation matrix

[
∂x′i

∂xk

]
=

 ∂x′1/∂x1 ∂x′1/∂x2 ∂x′1/∂x3
∂x′2/∂x1 ∂x′2/∂x2 ∂x′2/∂x3
∂x′3/∂x1 ∂x′3/∂x2 ∂x′3/∂x3


=

 sinθ cosϕ sinθ sinϕ −cosθ
−sinϕ cosϕ 0

cosθ cosϕ cosθ sinϕ sinθ

, (A1)

acting on the three-component vector[xk] = [x1,x2,x3]. The
inverse coordinate transformation,xk =

∑3
i=1

(
∂xk/∂x

′

i

)
x′i ,

is described by the transposed matrix. Rotation is a uni-
tary coordinate transformation,∂xk/∂x′i = ∂x

′

i/∂xk with
det[∂x′i/∂xk] = 1, so that the components of any covariant
and contravariant vectors transform with the same matrix,
Ax′i
=
∑3
k=1(∂x

′

i/∂xk)Axk .
Equations (4) and (5) involve parallel and Pedersen con-

ductivities with strongly different contributions to Eq. (3).
To simplify this equation by making the contributions alike,
we make our second coordinate transformation via rescaling
the coordinate alongB,

x′3→X′3≡ εx
′

3, (A2)

while keeping invariant the two other coordinates,X′1,2≡

x′1,2. Hereε ≈20(1+ψ)1/2, Eq. (7), is a small parameter

because both20, Eq. (6), and20ψ
1/2
= νen/�e are small.

This linear transformation,X′i =
∑3
k=1

(
∂X′i/∂x

′

k

)
x′k, is de-

scribed by a simple diagonal matrix

[
∂X′i

∂x′k

]
=

1 0 0
0 1 0
0 0 ε

. (A3)

The inverse transformation is described by the inverse
matrix [∂X′i/∂x

′

k]
−1
=
[
∂x′k/∂X

′

i

]
, which coincides with

[∂X′i/∂x
′

k], except for the last diagonal component,
∂x′3/∂X

′

3 = 1/ε. Rescaling is not a unitary operation,
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so that covariant and contravariant vectors transform dif-
ferently. Additionally, the plasma density changes: the
plasma “density” in theX′k-coordinates,N , is related to
the original plasma density,n, asN/n= det

[
∂x′k/∂X

′

i

]
=

1/ε. The covariant electric field transforms according
to EX′i

=
∑3
k=1(∂x

′

k/∂X
′

i)Ex′k
, while the current density

transforms according toJX′i = (N/n)
∑3
k=1(∂X

′

i/∂x
′

k)jx′k
=

(1/ε)
∑3
i=1(∂X

′

k/∂x
′

i)j
′

x′k
, whereEX′i , Ex′kand JX′i , jx′k are

the components of the electric field and current density in
theX′k- andx′k-coordinates, respectively. From these trans-
formation rules, we obtainJX′1,2= j

′

x′1,2
/ε, JX′3= j

′

x′3
,Ex′1,2=

EX′1,2
, Ex′3= εEX′3, so that Eqs. (4) and (5) yield

JX′i
=

3∑
k=1

σ
X′i
X′k
EX′K

. (A4)

with the new conductivity tensor given by

[
σ
X′i
X′k

]
=


σ
X′1
X′1

σ
X′1
X′2

σ
X′1
X′3

σ
X′2
X′1

σ
X′2
X′2

σ
X′2
X′3

σ
X′3
X′1

σ
X′3
X′2

σ
X′3
X′3

=K×
 1 q 0
−q 1 0
0 0 1

, (A5)

where

K ≡
σP

ε
= εσ‖=

(
1+ψ

ψ

)1/2
en

B
, (A6a)

q ≡
σH

σP
=

√
ψ

(1+ψ)20
. (A6b)

Within the allowed range ofψ determined byνi/�i =
ψ1/2/20� 1 and νe/�e = ψ1/220� 1, i.e., for 22

0�

ψ �2−2
0 , the parameterq is large, but not too large,q ≤

(220)
−1
'35.

Anisotropic rescalingx′i→X′i leads to further effective
flattening of the already oblate ellipsoid. In addition to that,
the central ellipsoidal plane effectively rotates to become
nearly perpendicular toB. We complete the chain of co-
ordinate transformations by a two-step 3-D rotation of the
coordinate axesX′k to final axesXk, which are aligned with
the principal axes of the anisotropically rescaled ellipsoid.
The standard way do this is via matrix diagonalization (e.g.,
Riley et al., 1998). To avoid complicated equations associ-
ated with the standard technique, we use a simpler approxi-
mate approach. First, we rotate the coordinate system around
theX′2 through a small angleχ towards the originalx3-axis
in such a way that the central ellipsoid plane becomes per-
pendicular to the rotatedX′3-axis. The coordinate transfor-
mation fromX′n to the new intermediate coordinatesX′′m,
X′′m =

∑3
n=1(∂X

′′
m/∂X

′
n)X
′
n is described by the unitary ma-

trix[
∂X′′m

∂X′n

]
=

 cosχ 0 sinχ
0 1 0

−sinχ 0 cosχ

 (A7)

The entire transformation from the original coordinatesxi to
X′′m is described by the matrix[∂X′′m/∂xi], which is deter-
mined by multiplication (from left to right) of the three ma-
trices given by Eqs. (A7), (A3), and (A1), respectively. Re-
quiring the original ellipsoid central plane,x3= 0, to remain
the ellipsoid central plane in the new coordinates,X′′3 = 0,
we obtain

tanχ = εcotθ, (A8)

so that, to the first-order accuracy with respectε, we have

[
∂X′′m

∂xi

]
≈

sinθ cosϕ sinθ sinϕ 0
−sinϕ cosϕ 0

0 0 ε/sinθ

 (A9)

and[
∂xi

∂X′′m

]
≈

cosϕ/sinθ −sinϕ 0
sinϕ/sinθ cosϕ 0

0 0 sinθ/ε

 (A10)

Second, we rotate around the newX3-axis through an angle
η to the final coordinates,Xk,[
∂Xk

∂X′′m

]
=

cosη −sinη 0
sinη cosη 0

0 0 1

,
so that the entire transformation fromxi toXk and back are
determined by final Eqs. (8) and (9). Substitutingxi in terms
ofXk into Eq. (1) and equating the factor in front ofX1X2 to
zero, to the first-order accuracy with respect to small param-
etersε anda3/a1,2, we obtain forη Eq. (10), which in turn
results in Eqs. (12) and (13).

Now we transform Eqs. (A4) and (A5) to the final co-
ordinates,Xk. Expressing the current density according
to JXk =

∑3
i=1(∂Xk/∂X

′

i)JX′i
and transforming the electric

field in Eq. (A4) according toE′Xk =
∑3
i=1(∂X

′

k/∂Xi)EXi ,
we obtain

JXi =

3∑
k=1

σ
Xi
Xk
EXk , (A11)

with the final conductivity tensor

[
σ
Xi
Xk

]
≈K×

 1 qcosχ −psinη
−qcosχ 1 pcosη
psinη −pcosη 1

. (A12)

whereK andq are defined by Eq. (A6), while

p= qsinχ ≈

(
ψ

1+ψ

)1/2

cotθ. (A13)

When compared to Eq. (A5), Eq. (A12) contains additional
off-diagonal Hall terms proportional top, which originate
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from the final coordinate rotation. Besides, while the fac-
tors cosχ in the large terms∝ qcosχ are actually close to
unity, we retain them anyway in order to ensure the invari-

ance of det
[
σ
Xi
Xk

]
= det

[
σ
X′i
X′k

]
=K3(1+q2). The antisym-

metric off-diagonal terms in the RHS of Eq. (A12) do not
contribute to the divergence of the current density, so that in
theXi-coordinates Eq. (3) becomes Eq. (15) and reduces to
Laplace’s Eq. (16).

Appendix B

Extended cloud (meteor plasma trail)

In this appendix, we briefly discuss the limit of an extended
(rod-like) cloud, such as meteor plasma trails (Dimant and
Oppenheim, 2006a). We studied the effect of an external
field on the meteor trail in our previous paper (Dimant et al.,
2009). In that paper, however, we employed a slightly dif-
ferent approach by assuming that along with the absence
of internal currents in theX3-direction there is also no sig-
nificant internal current in theX2-direction. In this paper,
we have avoided such restriction. Using the general solu-
tion described above, we consider the extended-cloud limit
of a2,3� a1 and compare the results with those ofDimant
et al.(2009). This will allow us to obtain a limitation on the
previously found solution. Being interested only in this is-
sue, we restrict our discussion to the parameter dependence
of the internal electric field.

In meteor trails, we have comparable sizesa2 anda3, a3∼

a2� a1. This provides automaticallyA3�A2�A1, which
fits our key restriction of Eq. (14). For the sake of simplicity,
we consider here a meteor plasma trail directed strictly per-
pendicular to the magnetic field,θ = 90◦ with ϕ= 0, so that
χ,p,η= 0, A1=A2= a, A3= εa3, E(0)X1,2

=E
(0)
1,2, and, ac-

cording to Eq. (32) fromDimant et al.(2009), we also have

31≈ ln
4A1

A2
−1& 1, 32≈

A2

A1
=
a2

a1
�1. (B1)

As a result, we obtain from Eqs. (34) and (35) γ1,2= qα1,2
and

α1≈
31A2A3n

int

A2
1n0

=
ε31a2a3n

int

a2
1n0

,

α2≈
A3n

int

A2n0
=
εa3n

int

a2n0
.

For the internal electric field, we obtain from Eq. (38)

Eint
X1
≈

(1+α2)E
(0)
X1
−qα1E

(0)
X2

(1+α1)(1+α2)+q2α1α2
, (B2a)

Eint
X2
≈

(1+α1)E
(0)
X2
+qα2E

(0)
X1

(1+α1)(1+α2)+q2α1α2
. (B2b)

In meteor trails, the parametersα1 andα2 usually differ by
many orders of magnitude,

α2

α1
≈

a2
1

31a
2
2

� q2
�1, (B3)

so that Eq. (B2) further simplifies in two overlapping do-
mains: (1)α2�1, or

1�
a2

εa3
�
nint

n0
, (B4)

and (2)α1� q
2α1�1, or

nint

n0
�

a2
1

εq231a2a3
�

a2
1

ε31a2a3
. (B5)

In the domain (1), we obtain

Eint
X1
≈
E
(0)
X1
−(qα1/α2)E

(0)
X2

1+(q2+1)α1
≈

E
(0)
X1

1+q2α1
,

Eint
X2
≈
[(1+α1)/α2]E

(0)
X2
+qE

(0)
X1

1+(q2+1)α1
≈

qE
(0)
X1

1+q2α1
, (B6)

while in the domain (2) we obtain

Eint
X1
≈E

(0)
X1
−
qα1E

(0)
X2

1+α2
≈E

(0)
X1
,

Eint
X2
≈
E
(0)
X2
+qα2E

(0)
X1

1+α2
, (B7)

where we assumed comparableE(0)X1,2
and took into account

that, according to Eq. (B3), qα1/α2� q
−1
�1.

In domain (1), the field component along the major trail
axis,E(0)X1

, is the only important external field component,

while E(0)X2
is inconsequential. Equation (B6) agrees with

the results ofDimant et al.(2009), where the termq2α1 in
the denominators of Eq. (B6) corresponds (forθ = 90◦) to
the parameterk in Dimant et al.(2009). In this domain,
we haveEint

X2
≈ qEint

X1
�Eint

X1
. The large internal field com-

ponent perpendicular toE(0)
X1

is due to trail polarization by
the Hall current in the direction perpendicular to the exter-
nal field (this effect is fully analogous to that in the elec-
trojet formation). If the trail is sufficiently dense,k= q2α1
� 1, i.e., ifnint/n0� a2

1/(εq
231a2a3), then the major field

E
(0)
X1

penetrates into the trail only weakly,Eint
X1
�E

(0)
X1

. If,

at the same time, 1/q� qα1< 1, i.e., ifa2
1/(εq

231a2a3)�

nint/n0<a
2
1/(εq31a2a3) then the total internal electric field

magnitude,|Eint
X | ≈ E

int
X2

, remains larger than the external

field magnitude. For a much denser trail,qα1� 1, nint/n0
� a2

1/(εq31a2a3), the total internal field is much less than
the external field.

Ann. Geophys., 28, 719–736, 2010 www.ann-geophys.net/28/719/2010/



Y. S. Dimant and M. M. Oppenheim: Plasma cloud in ionosphere: effect of external field 735

Within domain (1), as the rationint/n0 decreases,Eint
X2

reaches its maximum value,qE(0)X1
, at the lowest-density mar-

gin, which lies within a domain where domains (1) and (2)
overlap,q2α1� 1 andα2� 1, i.e., wherea2/εa3� nint/n0
� a2

1/(εq
231a2a3), and both Eqs. (B6) and (B7) are valid,

Eint
X1
≈E

(0)
X1

andEint
X2
≈ qE

(0)
X1

. As the density rationint/n0
decreases further we reach the point whereα2 becomes
. 1 (nint/n0 . a2/εa3), so that we leave the overlap do-
main but remain within domain (2). Here, the expression
Eint
X1
≈E

(0)
X1

remains valid, whileEint
X2

starts deviating from

qE
(0)
X1

until it approachesE(0)X2
in the limit of α2� 1, i.e.,

nint/n0� a2/(qεa3). This deviation from the results ofDi-
mant et al.(2009) shows that their field of applicability is re-
stricted by domain (1). In diffusing meteor trails, we usually
havea2/a3' [ψ/(1+ψ)]1/2 . 1 (Dimant and Oppenheim,
2006a, Appendix B). According to Eqs. (7), the condition of
Eq. (B4) can be rewritten as

nint

n0
�

ψ1/2

(1+ψ)20
'

70ψ1/2

1+ψ
. (B8)

This is the sought-for limitation of the results obtained previ-
ously for meteor trails (Dimant et al., 2009). For actual me-
teor trails in the night-time ionosphere, it becomes essential
during the later stage of the trail diffusion when the effects
of external electric field become much less important.
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