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Abstract. In this work, cluster and principal component
analysis are used to divide Spain in a limited number of cli-
matically homogeneous zones, based on seasonal rainfall for
32 Spanish localities for the period 1912–2000. Using the
hierarchical technique of clustering Ward’s method, three
clusters have been obtained in winter and spring, and four
clusters have been obtained in summer and autumn. Results
are similar to those obtained by applying principal compo-
nent analysis. Centroid series of each cluster and principal
component series of each EOF have been compared to ana-
lyze the temporal patterns. The comparison of both methods
indicates that cluster analysis is suitable to establish spatio-
temporal patterns of seasonal rainfall distribution in Spain.

Key words. Meteorology and atmospheric dynamics (cli-
matology; precipitation; general or miscellaneous)

1 Introduction

The spatial grouping of observation sites is a common prac-
tice in climatology. In general, such grouping provides a
convenient way to summarize climatic data in a concise man-
ner (DeGaetano, 2001). Cluster analysis (CA) is one of the
most useful tasks in the data mining process for discovering
groups and identifying interesting patterns in the underlying
data (Halkidi et al., 2001). It has come to be recognized as
an effective statistical tool to deal with tasks for grouping
stations into climatologically homogeneous regions (DeGae-
tano and Shulman, 1990; Ahmed, 1997; DeGaetano, 2001),
or for grouping time periods into clusters that reflect the oc-
currence of weather events or patterns (Ramos, 2001). The
purpose of CA is to place objects into groups suggested by
the data, not defined previously, so that objects in a given
cluster tend to be similar to each other in some sense, and
objects in different clusters tend to be dissimilar.

Correspondence to:F. S. Rodrigo
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The initial raw data consists of a pxn matrixX, that can
be thought of n points in a p-dimensional space. The term
“variable” is used for denoting the column vectors, and the
term “observation” is used for denoting the row vectors. The
most basic stage before applying a clustering algorithm is
to establish a numerical similarity or dissimilarity measure-
ment to characterize the relationships among the data. Eu-
clidean distance is the most commonly used measure, al-
though many other distance measurements exist (Gong and
Richman, 1995).

Consider a pxn matrixX in a p-dimensional space. The
Euclidean distance between the variables Xi and Xj is given
by

dij = [(Xi − Xj )
T (Xi − Xj )]

1/2, (1)

assuming that the p observations are independent. The range
of Euclidean distance is from 0 (identical vectors or vari-
ables) to+∞ (vectors without relationship). The squared
Euclidean distance is often used with similar results.

There are two main types of cluster techniques: divisive
and hierarchical (Kaufman and Rousseuw, 1990). The ob-
jective of the divisive technique is to separate a set of objects
into consistent groups. Each object is placed in one and only
one cluster. The preliminary assignation of the objects to
one cluster could be done using a random partition and then
the objects are transferred from one cluster to another un-
til reaching the position in which the similarity is greatest.
In the hierarchical technique, the objects are progressively
aggregated until they are joined into a single cluster. Each
object begins in a cluster itself. Then the closet clusters are
merged to form a new cluster that replaces the two old clus-
ters. Merging of the two closest clusters is repeated until only
one cluster is left.

Most commonly implemented CA procedures are hierar-
chical (Wilks, 1995). The purpose is to form each possible
number of groups n, n-1, . . . , 1, in a manner to minimize the
loss of information. The first step is to combine two clusters
P and Q, whose fusion yields the least increase in the sum
of squares within clusters distance from each individual to
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Fig. 1. Map of the study area (station code in Table 1).

the centroid of its present cluster n, resulting in n-1 groups.
The next step is to examine the n-1 group to determine if a
third member should be linked with the first pair or another
pairing made, in order to secure the optimum value of the
objective function for n-2 groups. This process continues
until all stations are clustered in one group and all the cli-
matic differences are concealed (Ahmed, 1997). There are
different hierarchical methods, according to the aggregation
criteria. In this work, the method used is Ward’s method of
clustering.

Most of the multivariate methods use the hypothesis of
normality for the original data. However, clustering algo-
rithms generally do not restrict the input database to particu-
lar statistical distributions, because CA is more an objective
method to quantify the characteristics of a set of observa-
tions than a inference statistical tool. Therefore, the require-
ments of normality and homoscedasticity, important in other
multivariate techniques, are not necessarily applied in CA
(Mart́ınez Arias, 1999). Rainfall series in the Iberian Penin-
sula are best modelled by skewed distribution functions, as
the gamma distribution function (Lana and Burgueño, 2000).
In consequence, CA is especially interesting in studying rain-
fall series and its spatio-temporal variability in Spain.

In this paper, a hierarchical technique of clustering
(Ward’s method) is used to divide the Iberian Peninsula
area in a limited number of climatically homogeneous zones
based on the meteorological variable of seasonal rainfall for
32 Spanish localities. The main objective is to compare the
results with those of the principal component analysis (PCA),

possibly the most widely used multivariate statistical tech-
nique in the atmospheric sciences.

2 Data

The database used in this study comprises seasonal total
amounts of precipitation for 32 Spanish localities, covering
the Iberian Peninsular area (Fig. 1), except Portugal. They
were selected from a set supplied by the Spanish Meteoro-
logical Institute (INM), having met quality criteria (Almarza
et al., 1996). Most of the stations have not changed their po-
sition, but the meta data relative to methods and instruments
is known for only a few. Esteban-Parra et al. (1998) anal-
ysed the homogeneity of these series by applying absolute
and relative homogeneity tests (Thom and Barlett tests), and
they concluded that these series are high quality and they do
not possess inhomogeneity problems. Table 1 summarises
the geographical data of the meteorological stations (altitude
above sea level, latitude and longitude). In this study we se-
lected the common period of timeseries (1912–2000) for all
meteorological stations, to obtain a regionalization of sea-
sonal rainfall distribution patterns in the Iberian Peninsula.

Variables are usually standardized before applying CA, to
eliminate possible scale effects. For each station, total sea-
sonal rainfall was standardized using 1961–1990 as a refer-
ence period, as

zi =
xi − xi

σi

, (2)
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where xi is the seasonal rainfall in the season i,xi and
σi are the mean value and the standard deviation, respec-
tively, of the reference period. This period has been used
as a reference period to accomplish the WMO suggestions
(Ojo and Afiesimama, 2000). In addition, future projections
on climate change (e.g. Hulme and Sheard, 1999) use this
period as a reference period and express climate changes
as percentages of this period values. The reference pe-
riod was compared with the complete period and signifi-
cant differences were not found. Because normalization is
not made using the complete period 1912–2000, the mean
value and standard deviation of the zi series are not nec-
essarily equal to 1 and 0, respectively. Seasons consid-
ered here are winter (December–January–February), spring
(March–April–May), summer (June–July–August), and au-
tumn (September–October–November).

3 Methods

3.1 CA (Ward’s Method)

Ward (1963) proposed a very general hierarchical cluster
method known as “Ward’s method” or the “minimum vari-
ance method”. The Ward’s method calculates the distance
between two clusters as the sum of squares between the two
clusters added up over all the variables. At each generation,
the within-cluster sum of squares is minimised over all par-
titions obtainable by merging two clusters from the previous
generation. If Ck and Cl are two clusters that merged to form
cluster Cm, the combinatorial formula that defines the Eu-
clidean distance between the new cluster and another cluster
Cj is:

dj,m =
(nj + nk)djk + (nj + nl)dj l − njdkl

nj + nm

(3)

wherenj , nk, nl andnm are the number of objects in clus-
tersj, k, l andm, respectively, anddjk, dj l anddkl represent
the distances between the observations in clustersj andk,
betweenj andl, and betweenk andl, respectively (Ramos,
2001).

Thus, Ward’s algorithm can be implemented through up-
dating a stored Euclidean distance between cluster cen-
troides. Ward’s method can be quite a versatile technique for
CA, even though it has been limited to Euclidean distance
(Anderberg, 1973). Although clustering results may be sen-
sitive to the chosen method (e.g. average-linkage as opposed
to Ward), Blashfield (1976) found that the Ward’s method
“clearly obtained the most accurate solutions” among the
four hierarchical methods he tested and recommended it to
the researchers who wish to use a hierarchical method.

The progress and intermediate results of a cluster analysis
are conventionally illustrated using the dendogram or “tree”
diagram, a bidimensional figure that represents the sequence
and the distance at which the observations are clustered. Cli-
matic groups can be selected from the clusters of the den-
dogram. Beginning with the “twigs” at the beginning of the

Table 1. Rainfall data series in Spain for the period 1912–2000.

Station (CODE) Altitude (m a.s.l.) Latitude Longitude

Albacete (AB) 699 38◦56’00”N 01◦51’00’W
Almeria (AL) 21 36◦50’00”N 02◦23’00”W
Alicante (A) 82 38◦22’00”N 00◦29’40”W
Badajoz (BA) 195 38◦53’00”N 06◦48’00”W
Barcelona (B) 94 41◦25’05”N 02◦07’30”W
Burgos (BU) 854 42◦22’00”N 03◦38’00”W
Caceres (CC) 459 39◦29’00”N 06◦20’15”W
Ciudad Real (CR) 629 38◦59’00”N 03◦55’00”W
Cuenca (CU) 945 40◦04’00”N 02◦07’00”W
Granada (GR) 680 37◦08’00”N 03◦37’00”W
Huelva (H) 26 37◦15’00”N 06◦56’00”W
Huesca (HU) 542 42◦05’00”N 00◦19’35”W
Jaen (J) 510 37◦46’00”N 03◦47’00”W
La Corũna (LC) 67 43◦22’02”N 08◦25’10”W
Logroño (LO) 379 42◦28’05”N 02◦26’05”W
Madrid (M) 667 40◦24’40”N 03◦40’41”W
Malaga (MA) 7 36◦40’00”N 04◦29’00”W
Murcia (MU) 75 37◦57’00”N 01◦13’00”W
Pamplona (P) 442 42◦49’10”N 01◦38’36”W
Salamanca (SA) 782 40◦56’50”N 05◦29’41”W
San Fernando (SF) 30 36◦27’00”N 06◦12’00”W
San Sebastian (SS) 259 43◦18’24”N 02◦02’22”W
Santander (S) 65 43◦27’53”N 03◦49’08”W
Santiago Comp. (SC) 260 42◦53’00”N 08◦26’00”W
Segovia (SG) 1005 40◦48’00”N 04◦08’00”W
Sevilla(SE) 31 37◦25’00”N 05◦53’00”W
Soria (SO) 1080 41◦46’00”N 02◦28’00”W
Toledo (TO) 540 39◦51’26”N 04◦01’28”W
Tortosa (TT) 49 40◦49’14”N 00◦29’14”E
Valencia (V) 11 39◦28’48”N 00◦22’52”W
Valladolid (VA) 735 41◦46’00”N 04◦46’00”W
Zaragoza (Z) 233 41◦39’43”N 01◦00’29”W

analysis, when each of the p observationsx constitutes its
own cluster, one pair of “branches” is joined at each step as
the closest two clusters are merged. The distance between
these clusters before they are merged are also indicated in
the diagram by the distance of the point of merger from the
initial n-cluster stage of the “twigs”.

A CA will produce a different grouping of n observations
at each of the n-1 steps. On the first step each observation
is a separate group, and on the last step all the observa-
tions are in a single group. An important practical problem
in cluster analysis is the choice of which intermediate stage
will be chosen as the final solution. One decision that must
be made concerns the number of clusters to be retained for
each method but there are no universally accepted objective
techniques by which to accomplish this (Gong and Richman,
1995). Thus, one needs to choose the level of aggregation in
the dendogram at which to stop the merging of the cluster.
Generally the stopping point will require a subjective choice.

A traditional subjective approach for the determination of
the stopping level is to inspect a plot of the distances between
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Figure 2 
 
 

Fig. 2. Dendrogram (top), agglomeration distance plot (middle) and
scree plot (bottom) for winter.

merged clusters as a function of the stage of the analysis.
When similar clusters are being merged early in the process,
these distances are small, and they increase relatively little
from step to step. Late in the process there may be only
a few clusters, separated by large distances. If a point can
be discerned where the distances between merged clusters
jumps markedly, the process can be stopped just before these
distances become large (Wilks, 1995).

3.2 PCA

PCA is a technique useful for reducing information in a large
number of variables, into a smaller set, while losing only a
small amount of information. The purpose is to identify the
most important correlation structures between a number of
variables in order to obtain a description of the major part of
the overall variance with few linear combinations based on
the original variables.
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Figure 3 
 

Fig. 3. As Fig. 2, for spring.

There is no single clear criterion that can be used to choose
the number of principal components that are best retained in a
given circumstance. While the choice of the truncation level
can be aided by one or more of the many available selection
rules, it is ultimately a subjective choice that will depend in
part on the data at hand and the purposes of the analysis. Ac-
cording to Rogers (1990) and Rogers and McHugh (2002),
the decision regarding how many patterns to retain for rota-
tion may be based on scree plots of the eigenvalues. Use of
the scree plots requires a subjective judgment about the ex-
istence and location of a break in the plotted curve (Wilks,
1995). In making the decision, we identify the location of
the first major shelf in the eigenvalues (O’Lenic and Livezey,
1988), wherein the final shelf eigenvalue still accounts for
more than 5% of the total unrotated data set variance.

There are methodological differences among PCA studies,
often based around the question of whether to apply orthog-
onal or oblique rotation to the unrotated eigenvector fields.
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Table 2. Percentages of explained variance for each unrotated EOF
for seasonal data.

EOFs Winter Spring Summer Autumn

1st 46.80 41.34 30.44 37.60
2nd 14.80 10.74 12.60 12.95
3rd 7.27 9.03 6.76 8.29
4th 4.53 4.26 5.26 5.57

In unrotated analyses the first eigenvector, or empirical or-
thogonal function (EOF) accounts for the largest amount of
overall data set variance. The major advantage of eigenvec-
tor rotation is to obtain a more accurate representation of the
dominant spatial modes of the data fields than occurs in the
unrotated solutions, although it is achieved by a redistribu-
tion of the data set variance contained in the first few unro-
tated EOFs (Rogers and McHugh, 2002). In order to obtain
statistically robust patterns, orthogonal rotation is performed
on a certain number of the unrotated patterns, using a vari-
max rotation procedure. Varimax defines a simple factor as
one with only 1s and 0s in the column. Such a simplification
is equivalent to maximising the variance of the squared load-
ings in each column (On-Kim, 1970). As a consequence of
the rotation of the eigenvectors, a second set of new variables
is produced. A number of procedures for rotating the original
eigenvectors exist, but all seek to produce what is known as
a simple structure in the resulting analysis, if a large number
of the elements of the resulting rotated vectors are near zero,
and few of the remaining elements correspond to elements
that are also not near zero in the other rotated vectors. The re-
sult is that the rotated vectors represent mainly the few orig-
inal variables corresponding to the elements not near zero,
and that the representation of the original variables is split be-
tween as few of the rotated eigenvectors as possible (Wilks,
1995). Part of the scientific community advocates the use of
rotation fervently, arguing that it is a means with which to
diagnose physically meaningful, statistically stable patterns
from data. The technique produces compact patterns that can
be used for regionalization, that is, to divide an area into a
limited number of homogeneous sub-areas (von Storch and
Zwiers, 1999). A detailed description of the Varimax method
can be found in the statistical textbooks by On-Kim (1970),
Preisendorfer (1988) and von Storch and Zwiers (1999).

4 Analysis and results

4.1 Spatial patterns

Figure 2 (top) shows the results of clustering the data cor-
responding to winter, using the squared Euclidean distance
measure and the Ward’s method. Figure 2 (middle) shows the
distance between merged clusters as a function of the stages
in the analysis. Subjectively, these distances climb gradually
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Figure 4 
 

Fig. 4. As Fig. 2, for summer.

until stage 29 or 30, when the distances between combined
clusters begin to become noticeably larger. A reasonable in-
terpretation of this change in slope is that true clusters have
been defined at this point, and that larger distances at later
stages indicate mergers of clusters that should be distinct. A
plausible point at which to stop the analysis would be after
stage 29. This stopping point results in the definition of three
clusters on the dendogram. Cluster 1 includes 68.7% of the
observations, cluster 2 21.9% and cluster 3 9.4%. Figure 2
(bottom) shows eigenvalues as a function of the EOF number.
In this case, three factors have been extracted, the third one
accounting for more than 5% of the variance (Table 2). The
first three EOFs account for the 68.87% of the total variance.

Similar analysis can be seen in Figs. 3 to 5, corresponding
to the other seasons of the year. Table 2 shows the percentage
of explained variance corresponding to the first four unro-
tated EOFs. If the criterium of accounting for more than 5%
of the variance is accepted, results indicate that the number
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Figure 5 
 

Fig. 5. As Fig. 2, for autumn.

Table 3. Correlation coefficients between centroid time series and
principal component time series.

Series Winter Spring Summer Autumn

C1-EOF1 0.99 0.99 0.96
C2-EOF2 0.87
C3-EOF3 0.86 0.93
C2-EOF3 0.95
C3-EOF2 0.84
C1-EOF3 0.87
C2-EOF1 0.88 0.86
C3-EOF1 0.86
C4-EOF2 0.91 0.75

of EOFs to be considered in varimax rotation is 3, 3, 4 and 4
for, respectively, winter, spring, summer and autumn. These
numbers coincide with the number of clusters determined
from the visual inspection of dendrograms and agglomera-
tion distance plots.

Figures 6 to 9 show the spatial structure detected in data
by both methods for each season of the year. In these figures,
the top panel shows the spatial grouping detected by CA,
and the other panels show the loading factors correspond-
ing to each EOF after the varimax rotation is made (4th EOF
for summer and autumn not shown). Figure 6, correspond-
ing to winter, shows that cluster 1 coincides with the spatial
structure of the first EOF, cluster 2 with EOF 2 and clus-
ter 3 with EOF 3. Results are similar to the previous analysis
(Esteban-Parra et al., 1998; Rodriguez-Puebla et al., 1998).
The first EOF and cluster 1 are centred in western Iberia,
where rainfall is mainly associated with westerly circulation
(Trigo and Palutikof, 2001). The second rotated EOF and
cluster 2 are associated with the precipitation regime in the
Mediterranean coast, where precipitation is mainly produced
by eastern flows (Romero et al., 1999). The third EOF and
cluster 3 are associated with rainfall fluctuations in the north-
ern coast, where rainfall mainly originated in a meridional
north or northwest circulation (Goodess and Jones, 2002).

This pattern is repeated with slight differences in spring
(Fig. 7), with the enlargement of the cluster 3 to cover the
entire north coast of the peninsula. In this season the to-
tal variance explained by the three first unrotated EOFs is
slightly minor, a 61.11%. In this case, the correspondences
are between cluster 1 and EOF 1 (western Iberia), cluster 2
and EOF 3 (Mediterranean coast), and cluster 3 and EOF 2
(northern coast).

In summer (Fig. 8) this spatial structure seems to break,
noticeably in the Mediterranean coast. An explanation of
this behaviour may be found in the fact that the northeast
region (cluster 2, EOF 1) is affected by the incidence of sum-
mertime incursions of maritime air and frontal disturbances
around the northern flank of the Mediterranean summer anty-
ciclone, while the southeast region (cluster 1, EOF 3), which
possesses the lowest average precipitation, is not influenced
by this mechanism (Sumner et al., 2001). EOF 2 and clus-
ter 4 show a very similar pattern, while EOF 4 (not shown)
indicates a sparse pattern, with maxima of the loading fac-
tors in the northwest (cluster 3) and southwest areas. CA
distinguishes between the northwest and southwest regions,
but PCA does not establish this difference clearly.

Autumn (Fig. 9) seems a transition season, with four re-
gions, but a clear similarity with the winter pattern, and the
64.41% of the total variance explained by the first four un-
rotated EOFs. In a certain sense, this pattern reflects the
influence of convective and local storms in early autumn,
and the influence of westerly circulation types from Octo-
ber onwards, showing the transition from summer to winter
conditions. Clusters 1 and 2 seem to correspond to EOF 1,
cluster 4 to EOF 2, cluster 3 to EOF 3, while EOF 4 (not
shown) indicates a very sparse pattern, perhaps indicating the
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Figure 6 

Fig. 6. Regionalization determined by cluster analysis (top panel) and loading factors for the three first rotated EOFs, for winter. In top panel
percentage of observations corresponding to each cluster are included.
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Fig. 7. As Fig. 6, for spring.
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Figure 8 

Fig. 8. As Fig. 6, for summer.
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Figure 9 

Fig. 9. As Fig. 6, for autumn.
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Figure 10 
 

Fig. 10.Temporal evolution of the centroid series (left axis, contin-
uous line) and principal component series (right axis, dashed line)
for the period 1912–2000, corresponding to each cluster/EOF for
winter.

influence of local convective storms in September (Sumner et
al., 2001).

As a main result, both methods establish a similar region-
alization, with slight differences mainly in summer and au-
tumn, when local mechanisms (convective rainfall) are more
important than large-scale rainfall forcings.

4.2 Temporal patterns

The centroid series in CA is analogous to the principal com-
ponent series in PCA. While the centroid series consists of
the simple average of the individual elements belonging to
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Figure 11 
 

Fig. 11. As Fig. 10, for spring.

the cluster, the principal component is the result of a linear
combination of the original data. To compare both meth-
ods, correlation coefficients between centroid series and the
principal components associated with the EOFs that show a
regionalization similar to that of the CA have been calcu-
lated. Results are shown in Table 3. All the coefficients were
significant at the 99% confidence level. Note that the best
results correspond to cluster 1 and EOF 1 for winter, spring
and autumn, an area mainly affected by fluctuations in west-
ern circulation, and in particular, by fluctuations of the North
Atlantic Oscillation. Figures 10 to 13 represent the time evo-
lution of the centroid and principal component series for each
season of the year. Scale differences are due to the fact that in
CA we obtain the average from the members of the cluster,
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Figure 12 

Fig. 12. As Fig. 10, for summer.

while in PCA each of the principal component is a sort of
weighted average of the original data. As a result, the range
of centroid series is less. However, the main result is the great
similarity of series, showing identical distribution of positive
and negative anomalies.

In general terms, all the time series show a fluctuating be-
haviour, with alternating dry and wet periods. With regards
to the winter series (Fig. 10), important dry periods can be
detected, for, example, around 1920 for the three regions,
or around 1990 for the western (C1, EOF1) and northern
(C3, EOF3) regions, and noticeably wet periods, for instance,
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Figure 13 

Fig. 13. As Fig. 10, for autumn.

around 1960 for the Mediterranean region (C2, EOF2). In
spring (Fig. 11), a prolonged dry period began around 1970
for the western (C1, EOF1) and Mediterranean (C2, EOF3)
regions, and another dry period is detected from approxi-
mately 1935 to 1955 for northern region (C3, EOF2). Wet
peaks can be seen around 1945 for western (C1, EOF1) and
Mediterranean (C2, EOF3) areas. In summer (Fig. 12), a
season normally dry, wet peaks are detected around 1930
for northern (C2, EOF1, and C3, EOF1) and southwest (C4,
EOF2) areas, and around 1975 for Mediterranean regions
(C1, EOF3 and C2, EOF1). Finally, in autumn (Fig. 13) wet
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peaks can be seen from 1960 to 1970, and a dry period is
detected from 1970 to 1995 for the four regions. The pre-
dominance of dry conditions in Spain during the last decades
of the century has been related to the predominance of the
positive phase of the North Atlantic Oscillation during this
period (Hurrell et al., 2003).

5 Conclusions

Unfortunately, Portuguese data were not available for this
work. However, other analysis (e.g. Goodess and Jones,
2002; Rocha, 1999) covering the whole Iberian Peninsula,
include Portugal in the western area. The inclusion of Por-
tuguese data, therefore, would enlarge the regions estab-
lished in this work, that is, cluster 1 for autumn, winter, and
spring, and cluster 4 for summer.

PCA method is an alternative to traditional CA tools to
obtain homogeneous groups. In PCA, variables are assigned
to groups according to their loading factor values. PCA re-
gions are “fuzzy”, that is, the main difference lies in the fact
that PCA solutions may be overlapping, with some variables
may be included in more than a single group (Gong and
Richman, 1995). The analyses presented in Sect. 4.1 indi-
cate that there are three regions (clusters) of seasonal rainfall
over the Iberian Peninsula in winter and spring: the west-
ern area of the Peninsula, the eastern Mediterranean Coast,
and the northern zone. Four clusters have been obtained
in summer and autumn, when local and convective mech-
anisms are more important in rainfall generation. On the
other hand, PCA results are very similar, with the first EOFs
corresponding to the regions established by CA, mainly in
winter and spring. These broad regionalizations are sup-
ported by other studies (Rodó et al., 1997; Esteban-Parra et
al., 1998; Rodŕıguez-Puebla et al., 1998; Martı́n-Vide and
Gómez, 1999; Serrano et al., 1999; Goodess and Jones,
2002). They are based on the analysis of 32 stations. The
Iberian topography and other geographical factors are re-
sponsible for spatial heterogeneity at the sub-regional scale
(Romero et al., 1999). A certain annual cycle is detected if
the spatial patterns of the different seasons are compared.

While CA includes the complete variance of original data,
PCA allows one to distinguish between “signal” and “noise”.
Noise in original data is excluded if the dimensionality re-
duction stage of the PCA is successful. Conversely, tradi-
tional CA includes the full original raw variance information.
In this sense, PCA is a technique more powerful than CA.
However, the use of standardized anomalies as input data in
CA allows one to obtain analogous time series to describe
this variability. Although the series obtained are fluctuat-
ing, with alternating dry and wet peaks, some features can be
noted, mainly the predominance of dry conditions in the last
decades of the century, coinciding with the predominance of
the positive phase of the North Atlantic Oscillation during
this period (Hurrell et al., 2003). The analysis of the influ-
ence of the North Atlantic Oscillation on these series will be
the object of a work now in preparation.

The fact that CA does not restrict the input database to
particular statistical distributions (Gaussian) and the coinci-
dences with the results of applying PCA allow one to affirm
that, at least in a first approach, CA is a suitable tool to de-
scribe the variability of rainfall in the study region.
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Rodŕıguez-Puebla, C., Encinas, A. H., Nieto, S., and Gardenia, J.:
Spatial and temporal patterns of annual precipitation variability
over the Iberian Peninsula, Int. J. Climatol., 18, 299–316, 1998.

Rogers, J. C.: Patterns of low-frequency monthly sea level pres-
sure variability (1899–1986) and associated wave cyclone fre-
quencies, J. Clim., 3, 1364–1379, 1990.

Rogers, J. C. and McHugh, M. J.: On the separability of the North
Atlantic oscillation and Artic oscillation, Clim. Dyn., 19, 599–
608, 2002.

Romero, R., Sumner, G., Ramis, C., and Genoves, A.: A classifica-
tion of the atmospheric circulation patterns producing significant
daily rainfall in the Spanish Mediterranean area, Int. J. Climatol.,
19, 765–785, 1999.
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