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Background
Let (X, d) be a metric space, K a nonempty subset of X, and T : K → 2K  be a multi-
valued mapping. A vector x ∈ K  is a fixed point of T if x ∈ Tx. For a single valued 
mapping T, a fixed point is any x ∈ K  such that Tx = x. We denote the collection of all 
fixed points of T by F(T). Many well known researchers like Brouwer (1912), Daffer 
and Kaneko (1995), Deimling (1992), and Kirk Downing and Kirk (1977), Geana-
koplos (2003), Kakutani (1941), Markin (1973), Nadler (1969), Nash (1950, 1951) 
and Reich and Zaslavski (2002a, b, 2006), have studied fixed points for multi-valued 
mappings.

Fixed point theory for multi-valued mappings continues to attract a lot of attention 
because of its numerous real world applications in game theory and market economy, 
differential inclusions, and constrained optimization. They are also desirable in devising 
critical points in optimal control problems, energy management problems, signal pro-
cessing, image reconstruction and a host of other problems.

Game theory and market economy is, perhaps, the most socially recognized applica-
tion of multi-valued mappings.

Abstract 

This paper introduces a new averaged algorithm for finding a common fixed point of a 
countably infinite family of generalized k-strictly pseudocontractive multi-valued map-
pings. The new iterative sequence introduced is proved to be an approximating fixed 
point sequence for common fixed points of a countably infinite family of this class of 
mappings. Furthermore, under some mild assumptions, strong convergence theorems 
are also proved for this class of mappings. The method of proof used here is new and 
enables to overcome many strong restrictions appearing in contemporary literature. 
The stated theorems improve and generalize many recent works in iterative scheme for 
multi-valued mappings.
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Consider, for example, a game G(xn,Kn) involving N players, namely n = 1, 2, . . . ,N . 
Here, Kn, a nonempty compact and convex subset of Rmn, is the collection of possible 
strategies of the nth player. The continuous function xn : �N

i=1Kn → R, is the gain(payoff) 
function. Any vector yn in Kn is the action which is available to the individual n to take. 
The collective action of all the N players is then y := (y1, y2, . . . , yN ) ∈ K := �N

i=1Kn. 
Given any n, y and yn ∈ Kn, we use these standard notations:

In this regard, the n′th player maximizes his own gain, using a strategy y∗n, subject to 
the fact that the other players have chosen their strategies y−n if and only if

Define a multi-valued mapping Tn : K−n → 2Kn by

Then, the collective action y∗ = (y∗1, y
∗
2, . . . , y

∗
N ) is called a Nash equilibrium point if each 

y∗n is the most effective response that the n′th player can make to the actions y∗−n of the 
other N − 1 players. This is stated differently as

or, in other words,

Therefore, y∗ = (y∗1, y
∗
2, . . . , y

∗
N ) is a fixed point of the multi-valued mapping T : K → 2K  

given by

Though many theory for multi-valued mappings in the literature have dealth with the 
existence of fixed points for such mappings, only very few have dealth with iterative 
algorithms for computing them. The problem of how to find such fixed points is part of 
what is addressed in this paper.

Given a real Hilbert space H, we denote by CB(H) the family of nonempty, closed and 
bounded subsets of H. It is well known that the Hausdorff distance defined by

is a metric on this family CB(H).
The first work on fixed points for multi-valued (nonexpansive) mappings by the appli-

cation of Hausdorff metric was done by Markin (1973), and followed by an extensive 
work by Nadler (1969). Since then, there are many results that have appeared in the 

K−n : = K1 × K2 × · · · × Kn−1 × Kn+1 × · · · × Kn

y−n : = (y1, . . . , yn−1, yn+1, . . . , yN )

(yn, y−n) = (y1, y2, . . . , yn−1, yn, yn+1, . . . , yN ).

xn(y
∗
n, y−n) = max

yn∈Kn

xn(yn, y−n).

Tn(y−n) = Arg max
yn∈Kn

xn(yn, y−n)

xn(y
∗
n) = max

yn∈Kn

xn(yn, y
∗
−n),

y∗n ∈ Tn(y
∗
−n).

T (y) = [T1(y−1),T2(y−2), . . . ,TN (y−N )].

D(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

,
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literature and which have found novel applications in both pure and applied sciences. 
Notable among these results is the work of Browder (1967).

In studying the operator equation Au = 0 (when the mapping A is monotone), Brow-
der (1967), introduced a new operator T defined by T := I − A, where I is the identity 
mapping on the Hilbert H. He called the operator a pseudocontractive mapping and the 
solutions of Au = 0, are exactly the fixed points of the pseudocontractive mapping T. An 
important proper subclass of the pseudocontractive mappings is the well know nonex-
pansive mappings.

Definition 1.1 A single-valued mapping T : K ⊆ H → H is called

  • pseudo-contractive, in the terminology of Browder and Petryshyn (1967), if there 
exists k ∈ [0, 1) such that 

  • monotone if 

The class of pseudocontractive mappings is particularly important due to this close 
connection it has with the well known class of monotone mappings. Fixed points of the 
pseudocontractive mapping T are zeroes of the monotone mapping A = I − T . A well 
known example of a monotone operator in optimization theory is the multi-valued map-
ping ∂f : D(f ) ⊆ H → 2H called the subdifferential of the functional f and defined by

The theory of multi-valued nonexpansive mappings(and, in particular, pseudocontrac-
tive mappings) is much harder than the corresponding theory of single valued nonex-
pansive mappings [see e.g. Khan and Yildirim (2012)]. The extension of the notion of 
single valued pseudocontractive mappings to multi-valued pseudocontractive mappings 
has some of these challenges:

  • Definition of the mapping There is a problem of getting a right definition for the 
multi-valued analogue which would be a generalization of the single-valued case. 
There are several definitions available which will be a generalisation of the single val-
ued case and one has to get the most natural among them to be able to establish 
some convergence theorems.

  • Identities In multi-valued settings, the metric induced by the norm on X is not appli-
cable and there is the need to develop new identities and other notions of distances 
which will be applicable. One notion of metric for sets that is readily applicable here 
is the Hausdorf metric.

  • Inference Many theorems and lemmas that are developed for single valued mappings 
cannot be carried over to multi-valued cases and it is always difficult to make conclu-
sions.

(1)�Tx − Ty�2 ≤ �x − y�2 + k�(x − Tx)− (y− Ty)�2, ∀x, y ∈ K .

�Tx − Ty, x − y� ≥ 0, ∀x, y ∈ D(T ).

∂f (x) := {x∗ ∈ X∗ : �x − y, x∗� ≤ f (x)− f (y), ∀y ∈ X}.
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Chidume et al. (2013), introduced a multi-valued analogue of Definition 1.2 as follows;

Definition 1.2 Let H be a real Hilbert space and let D be a nonempty, open and convex 
subset of H. Let T : D → CB(D) be a mapping. Then, T is called a multi-valued k-strictly 
pseudocontractive mapping if there exists k ∈ (0, 1) such that for all x, y ∈ D(T ), we have

for all u ∈ Tx, v ∈ Ty.
They proved a convergence theorem for this class of mapping as stated below:

Theorem 1.3 (Chidume et al. (2013)) Let K be a nonempty, closed and convex subset of 
a real Hilbert space H. Suppose that T : K → CB(K )   is a multi-valued k-strictly pseudo-
contractive mapping such that F(T ) �= ∅. Assume that Tp = {p} for all p ∈ F(T ). Suppose 
that T is hemicompact and continuous. Let {xn} be a sequence defined iteratively from 
x0 ∈ K  by

  where yn ∈ Txn and � ∈ (0, 1− k). Then, limn→∞ d(xn,Txn) = 0.
The result of Chidume et al. (2013) is more interesting than other similar result in the 

literature because it deals with strictly pseudocontractive mappings(which is more gen-
eral than nonexpansive mappings) and also the problem of finding zn ∈ Txn such that 
�zn − x∗� = d(x∗,Txn) as it is, for example, in Sastry and Babu (2005), does not arise. 
However, the inequality (2) is equivalent to

which is very restrictive
Very recently, Chidume and Okpala (2014) introduced a different class of multi-valued 

strictly pseudocontractive mapping as given below:

Definition 1.4 Chidume and Okpala (2014) Let H be a real Hilbert space and let K be a 
nonempty subset of H. Let T : K → CB(K ) be a multi-valued mapping. Then T is called 
generalized k-strictly pseudocontractive multi-valued mapping if there exists k ∈ (0, 1) 
such that for all x, y ∈ D(T ), there holds

and I is the identity operator on K.
The class of mapping introduced here is natural and has been proved to be a proper 

superset of the class introduced in Chidume et al. (2013).
They developed some new identities regarding Hausdorf metric and used a Krasno-

selskii type algorithm and obtained the following theorem.

Theorem 1.5 (Chidume and Okpala (2014)) Let K be a nonempty, closed, convex subset 
of a real Hilbert space H. Let T : K → CB(K )  be a generalized k-strictly pseudocontractive 

(2)D2(Tx,Ty) ≤ �x − y�2 + k�(x − u)− (y− v)�2,

(3)xn+1 = (1− �)xn + �yn,

(4)D2(Tx,Ty) ≤ �x − y�2 + k inf
(u,v)∈(Tx,Ty)

�(x − u)− (y− v)�2.

(5)D2(Tx,Ty) ≤ �x − y�2 + kD2(Ax,Ay), where A := I − T ,
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multi-valued mapping such that F(T ) �= ∅. Assume Tp = {p} ∀p ∈ F(T ). Define a 
sequence {xn} by x0 ∈ K ,

 for yn ∈ Un and � ∈ (0, 1− k). Then, d(xn,Txn) → 0 as n → ∞, where

We seek to prove strong convergence theorems, using a new averaged algorithm, for 
common fixed point of a countably infinite family of this general class of mappings in 
a real Hilbert space. Our theorem generalizes the results of Chidume et al. (2013), Chi-
dume and Ezeora (2014), Panyanak (2007), Song and Wang (2008), among others and 
extends to a countable family the results of Chidume and Okpala (2014).

Preliminaries
We shall need the following definitions and notations in the sequel:

We casually denote (D(A,B))2 by D2(A,B) for all A,B ∈ CB(X) for simplicity of 
notation.

Definition 2.1 A multi-valued mapping T : K ⊆ H → CB(H) is called

  • Lipschitzian if there exists L > 0 such that for each x, y ∈ K , 

  • nonexpansive if there exist L ≤ 1 such that T is Lipschitchitzian.

Proposition 2.2 (Chidume and Okpala (2014)) Let K be a nonempty subset of a real 
Hilbert space H and T : K → CB(K ) be a generalized k-strictly pseudocontractive multi-
valued mapping. Then T is Lipschitzian.

Remark 2.3 Since every Lipschitz map is continuous, we would not make any continu-
ity assumption on our mapping T throughout this paper.

Definition 2.4 A map T : K → CB(K ) is said to be hemicompact if, for any sequence 
{xn} such that lim

n→∞
d(xn,Txn) = 0, there exists a subsequence, say, {xnk } of {xn} such that 

xnk → p ∈ K .

Remark 2.5 Trivial example of hemicompact mappings are mapping with compact 
domains.

Definition 2.6 Let H be a real Hilbert space and let T be a multi-valued mapping. The 
multi-valued mapping I − T  is said to be strongly demiclosed at 0 (see, e.g., Garcí a-Fal-
set et al. (2011)) if for any sequence {xn} ⊆ D(T ) such that xn → p and d(xn,Txn) con-
verges strongly to 0, then d(p,Tp) = 0.

(6)xn+1 = (1− �)xn + �yn

Un :=
{

yn ∈ Txn : D2({xn},Txn) ≤ �xn − yn�2 +
1

n2

}

.

(7)D(Tx,Ty) ≤ L�x − y�,
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Proposition 2.7 (Chidume and Okpala (2014)) Let K be a nonempty and closed subset 
of a real Hilbert space H and let T : K → CB(K ) be a generalized k-strictly pseudocon-
tractive multi-valued mapping. Then, (I − T ) is strongly demiclosed at zero.

The following recurrent inequality will be used to make estimates in the sequel.

Lemma 2.8 (Tan and Xu (1993)) Let {an} be a sequence of nonnegative real numbers 
satisfying the following relation:

  such that 
∑∞

n=1 σn < ∞. Then, lim an exists. If, in addition, {an} has a subsequence that 
converges to 0, then an converges to 0 as n → ∞.

Lemma 2.9  (Chidume and Ezeora (2014)) Let H be a real Hilbert space and let 
{xi, i = 1, 2, . . . ,m} ⊆ H. For αi ∈ (0, 1), i = 1, 2, . . . ,m such that 

∑m
i=1 αi = 1, the fol-

lowing identity holds:

The following characterizations of the Hausdorf metric can be found in Chidume and 
Okpala (2014).

Lemma 2.10 (Chidume and Okpala (2014)) Let E be a normed linear space, 
B1,B2 ∈ CB(E) and x, y ∈ E arbitrary. The following hold;

(a) D(B1,B2) = D(x + B1, x + B2). Translation Invariance.
(b) D(B1,B2) = D(−B1,−B2).

(c) D(x + B1, y+ B2) ≤ �x − y� + D(B1,B2). Triangle inequality.
(d) D({x},B1) = sup

b1∈B1
�x − b1�.

(e) D({x},B1) = D(0, x − B1).

Fixed point iterations
The example given below shows that this general class of k-strictly pseudocontrac-
tive mappings actually exists and properly contains the class studied by Chidume 
et  al. (2013), Osilike and Isiogugu (2011), Panyanak (2007), and a host of other 
authors. For the example, we shall need the following lemma, which is easy to verify.

Lemma 3.1  Let a, b, c be real numbers such that 0 ≤ a ≤ bc, c > 0. Then 

an+1 ≤ an + σn, n ≥ 0,

∥

∥

∥

∥

∥

m
∑

i=1

αixi

∥

∥

∥

∥

∥

2

=
m
∑

i=1

αi�xi�2 −
∑

1≤i<j≤m

αiαj�xi − xj�2,

(8)(a− b)2 ≤ b2 +
(

c − 2

c

)

a2.
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Remark 3.2 By setting c = 4 in the lemma above, we will recover Lemma (3.5) of Chi-
dume and Okpala (2014).

Example 3.3 Define a multi-valued mapping Ti : l2(R) → CB(l2(R)) by

where αi = 7i
3i−1, i = 1, 2, . . . , . We obtain that

Then, for arbitrary x, y ∈ l2(R), we compute as follows:

and

Now, set

Then, a− b = D(Tix,Tiy) and

Now, for each i, set 2+ αi = ci = c in Lemma (3.1) above. We obtain the identity 
ci−2
ci

= αi
2+αi

, and by the same lemma, we have

Thus, each Ti, i = 1, 2, . . ., is a generalized κi-strictly pseudo-contractive multi-valued 
mapping with κi = αi

2+αi
∈ (0, 1) and each κi ≤ κ := 7

13. Moreover, we have p ∈ Tip if 
and only if p = 0. Thus, for p ∈ ∩∞

i=1F(Tip), Tip = {p}.
The following Lemma would be used in the sequel.

Lemma 3.4  Let H be a real Hilbert space and let {xi}i∈N be a bounded sequence in H. 
For δi ∈ (0, 1), such that 

∑∞
i=1 δi = 1, the following identity holds:

(9)Tix :=
{

{y ∈ l2 : �x + y� ≤ αi�x�}, x �= 0
{0}, x = 0,

x − Tix :=
{

{y ∈ l2 : �y− 2x� ≤ αi�x�}, x �= 0
{0}, x = 0

D(Tix,Tiy) = �x − y� + αi

∣

∣

∣
�x� − �y�

∣

∣

∣
,

D(x − Tix, y− Tiy) = 2�x − y� + αi

∣

∣

∣
�x� − �y�

∣

∣

∣
.

a := D(x − Tix, y− Tiy); b := �x − y�.

a = 2�x − y� + αi

∣

∣

∣
�x� − �y�

∣

∣

∣

≤ (2+ αi)�x − y�.

D2(Tix,Tiy) ≤ �x − y�2 +
αi

2+ αi
D(x − Tix, y− Tiy).

(10)

∥

∥

∥

∥

∥

∞
∑

i=1

δixi

∥

∥

∥

∥

∥

2

=
∞
∑

i=1

δi�xi�2 −
∑

1≤i<j<∞
δiδj�xi − xj�2.
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Proof Define δi(n) := (1−
∑∞

n+1 δi)
−1δi for each n. It is easily seen that 

∑n
i=1 δi(n) = 1 

and that δi(n) → δi as n → ∞. Moreover, by Lemma 2.9, we obtain that

Since the inequality is true for all natural numbers n, we pass to the limit on both sides 
and obtain the identity (10) as proposed.  �

Next, given a countably infinite family {Ti}i≥1 of generalized κi-strictly pseudo-con-
tractive multi-valued mappings and an arbitrary sequence {xn} subset of K,  denote by Ŵi

n 
the set of inexact distal points of xn with respect to the set Tixn, i.e

Obviously, Ŵi
n is closed, convex and nonempty for each n ≥ 1 due to Lemma (2.10)(d).

In particular, if Tix is assumed to be proximinal and bounded for each x ∈ K , then Tixn 
has a vector, say ηin, of maximum norm, i.e.

In that case, it is certain that ηin ∈ Ŵi
n.

Based upon these analyses, we now prove our main theorem. We will assume hence-
forth that K is a nonempty, closed and convex subset of a real Hilbert space H.

Theorem 3.5 Let Ti : K → CB(K ) be a countably infinite family of generalized κi-strictly 
pseudocontractive multi-valued mappings such that for some κ ∈ (0, 1), κi ∈ (0, κ]. 
Assume that ∩∞

i=1F(Ti) �= ∅ and for p ∈ ∩∞
i=1F(Ti), Tip = {p}. Define the sequence {xn} 

recursively by

 Then, for each i, limn→∞ d(xn,Tixn) = 0.

Proof We will first of all establish that the recursion formula xn+1 := δ0xn +
∑∞

i=1 δiζ
i
n 

in the algorithm (11) is well defined. Take p ∈ ∩∞
i=1F(Ti) arbitrary. We have

∥

∥

∥

∥

∥

n
∑

i=1

δi((n)xi

∥

∥

∥

∥

∥

2

=
n

∑

i=1

δi(n)�xi�2 −
∑

1≤i<j<≤n

δi(n)δj(n)�xi − xj�2.

Ŵi
n :=

{

ζ in ∈ Tixn : D2({xn},Tixn) ≤ �xn − ζ in�2 +
1

n2

}

.

�xn − ηin� = sup
ζ in∈Tixn

�xn − ζ in� =: D({xn},Tixn).

(11)























x0 ∈ K , arbitrary,

ζ in ∈ Ŵi
n,

xn+1 = δ0xn +
∞
�

i=1

δiζ
i
n,

δ0 ∈ (κ , 1),
�∞

i=0 δi = 1.

�xn − ζ in� ≤ D(xn,Tixn),

= D(xn + p, p+ Tixn).
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Therefore, we obtain by Lemma 2.10(c) that

As a matter of fact, we may apply the triangle inequality and take limits to obtain

It follows then that

and therefore

which shows that xn+1 is well defined. We show the convergence of {xn} as follows:

Since ζ in ∈ Ŵi
n, we obtain that

This is summarised as:

�xn − ζ in� ≤ �xn − p� + D(Tp,Tixn),

≤ �xn − p� +
1+

√
κ

1−
√
κ
�xn − p�.

�ζ in� ≤ Kn := �xn� +
2

1−
√
κ

inf
p∈F(T )

�xn − p�.

�xn+1� ≤ δ0�xn� +
∞
∑

i=1

δi�ζ in�,

�xn+1� ≤ δ0�xn� +
∞
∑

i=1

δiKn ≤ Kn.

�xn+1 − p�2 = �δ0(xn − p)+
∞
∑

i=1

δi(ζ
i
n − p)�2

= δ0�xn − p�2 +
∞
∑

i=1

δi�ζ in − p�2 −
∞
∑

i=1

δ0δi�xn − ζ in�2 −
∑

1≤i≤j≤∞
δiδj�ζ in − ζ

j
n�2

≤ δ0�xn − p�2 +
∞
∑

i=1

δiD
2(Tixn,Tp)−

∞
∑

i=1

δ0δi�xn − ζ in�2

≤ δ0�xn − p�2 +
∞
∑

i=1

δi(�xn − p�2 + κiD
2({0}, xn − Tixn))−

∞
∑

i=1

δ0δi�xn − ζ in�2

=
∞
∑

i=0

δi�xn − p�2 +
∞
∑

i=1

δiκiD
2({xn},Tixn)−

∞
∑

i=1

δ0δi�xn − ζ in�2

�xn+1 − p� ≤
∞
∑

i=0

δi�xn − p�2 +
∞
∑

i=1

δiκ(�xn − ζ in�2 +
1

n2
)−

∞
∑

i=1

δ0δi�xn − ζ in�2

≤ �xn − p�2 +
κ

n2
−

∞
∑

i=1

δi(δ0 − k)(�xn − ζ in�2).

(12)�xn+1 − p�2 ≤ �xn − p�2 +
κ

n2
−

∞
∑

i=1

δi(δ0 − κ)�xn − ζ in�2,
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and therefore

In accordance with Lemma  (2.8), �xn − p� has a limit and thus {xn} is bounded. Also, 
from inequality (12), there holds:

and so for each i ≥ 1,

Taking limits on both sides as n → ∞, we conclude that limn→∞ �xn − ζ in� = 0. Using 
the fact that d(xn,Tixn) ≤ �xn − ζ in�, we get limn→∞ d(xn,Tixn) = 0.  �

Corollary 3.6 Let Ti : K → CB(K ) be a countably infinite family of general-
ized κi-strictly pseudocontractive multi-valued mappings such that for some 
κ ∈ (0, 1), κi ∈ (0, κ]. Assume that ∩∞

i=1F(Ti) �= ∅ and suppose that for p ∈ ∩∞
i=1F(Ti), 

Tip = {p}. Assume Ti0 is hemicompact for some i0. Then, the sequence {xn} defined by algo-
rithm (11) converges strongly to a fixed point of T.

Proof We already have that lim
n→∞

d(xn,Tixn) = 0 due to Theorem (3.5). The mapping Ti0 
being hemicompact guarantees the existence of some subsequence, say {xnk }, of {xn} such 
that xnk → q as k → ∞. Let ζ ink ∈ Tixnk be such that �xnk − ζ ink� ≤ d(xnk ,Tixnk )+

1
k
. 

We estimate that

If we take limits on both sides when k → ∞, we have d(q,Tiq) = 0. Using the fact 
that each Tiq is closed, we obtain that q ∈ Tiq for each i, and therefore conclude that 
q ∈ ∩∞

i=1Tiq. Moreover, xnk → q as n → ∞ gives �xnk − q� → 0 as n → ∞. Thus, by 
Lemma (2.8) and inequality (13), we get lim

n→∞
�xn − q� = 0. Thus {xn} converges strongly 

to a fixed point q of T as claimed.  �

Corollary 3.7 Let Ti : K → CB(K ) be a countably infinite family of generalized  
κi-strictly pseudocontractive multi-valued mapping, with ∩∞

i=1F(Ti) �= ∅ and assume 
that for p ∈ ∩∞

i=1F(Ti), Tip = {p}. Then, the sequence {xn} defined by Eq.  (11) converges 
strongly to a fixed point of T.

(13)�xn+1 − p�2 ≤ �xn − p�2 +
κ

n2
.

∞
∑

i=1

δi(δ0 − κ)�xn − ζ in�2 ≤ �xn − p�2 +
κ

n2
− �xn+1 − p�2

δi(δ0 − κ)�xn − ζ in�2 ≤ �xn − p�2 +
κ

n2
− �xn+1 − p�2, → 0(as n → ∞),

d(q,Tiq) ≤ �q − xnk� + �xnk − ζ ink� + d(ζ ink ,Tiq)

≤ �q − xnk� + d(xnk ,Tixnk )+
1

k
+ D(Tixnk ,Tiq)

≤ �q − xnk� + d(xnk ,Tixnk )+
1

k
+

1+
√
κ

1−
√
κ

∥

∥

∥
xnk − q

∥

∥

∥
.
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Proof Since K is compact, the mappings Ti : K → CB(K ) is hemicompact. Thus, by 
Corollary (3.6), we have that {xn} converges strongly to some p ∈ F(T ).  �

Remark 3.8 In comparison with Theorem 7.1.5 of Chidume and Ezeora (2014), Corol-
lary 3.6 has these merits.

(i)   We proved the theorem for a countably infinite family of a much larger class of 
mapping which is the generalized k-strictly pseudo-contractive multi-valued 
mappings.

(ii)  We only needed just one of the maps to be hemicompact and not all of them.
(iii) We replaced the ‘strong condition’ δi ∈ (k , 1) by a weaker condition δ0 ∈ (k , 1).
(iv)  The condition ζ in ∈ Ŵi

n is more readily applicable than requiring that Tx is proxi-
minal and weakly closed for each x, and then, computing ζn = PTxnxn at each 
iterative step.

Conclusion
Our theorem and corollaries improve the convergence theorems for multi-valued non-
expansive mappings in Abbas et  al. (2011), Chidume et  al. (2013), Chidume and Eze-
ora (2014), Chidume and Okpala (2014), Khan and Yildirim (2012), Ofoedu and Zegeye 
(2010), Panyanak (2007), Sastry and Babu (2005), Song and Wang (2008), in the follow-
ing sense:

(i)   The class of mappings considered in this paper contains the class of multi-valued 
k-strictly pseudocontractive mappings as a special case, which itself properly 
contain the class of multi-valued nonexpansive maps.

(ii)   The algorithm here is of Krasnoselkii type, which is known to have a geometric 
order of convergence.

(iii)  The condition that Tx be weakly closed for each x ∈ K  as can be found, for exam-
ple, in Chidume et al. (2013) and Chidume and Ezeora (2014) is dispensed with here.
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