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Abstract
In this paper, we investigate the second order self-adjoint discrete Hamiltonian
system �[p(n)�u(n – 1)] – L(n)u(n) + λa(n)∇G(u(n)) +μb(n)∇F(u(n)) = 0, where
p, L : Z → R

N×N are both positive definite for all n ∈ Z, and no symmetric condition
on G and F is needed. We establish two new criteria to guarantee that the above
system has at least two nontrivial homoclinic solutions or infinitely many homoclinic
solutions via critical point theory.
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1 Introduction
In this paper, we consider the following second order self-adjoint discrete Hamiltonian
system:

�
[
p(n)�u(n – )

]
– L(n)u(n) + λa(n)∇G

(
u(n)

)
+ μb(n)∇F

(
u(n)

)
= , ∀n ∈ Z, (.)

where u ∈R
N , �u(n) = u(n + ) – u(n) is the forward difference, p, L : Z →R

N×N . As usual,
we say that a solution u(n) of system (.) is homoclinic (to ) if u(n) →  as |n| → ∞. In
addition, if u(n) �≡  then u(n) is called a nontrivial homoclinic solution.

The discrete Hamiltonian system has found a great deal of interest last years because not
only it is important in applications but it provides a good model for developing mathemat-
ical methods. In general, system (.) may be regarded as a discrete analog of the following
second order Hamiltonian system:

d
dt

(
p(t)u̇(t)

)
– L(t)u(t) + λa(t)∇G

(
u(t)

)
+ μb(t)∇F

(
u(t)

)
= . (.)

With the aid of variational methods, the existence and multiplicity of homoclinic orbits for
system (.) or its special form has been extensively investigated in many recent papers;
see [–]. System (.) is the best approximation of (.) when one lets the step size not
be equal to  but the variable’s step size go to , so solutions of system (.) can give some
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desirable numerical features for system (.). Moreover, system (.) does have applications
as is shown in the monographs [, ].

In the past ten years, many authors have studied the existence and multiplicity of ho-
moclinic solutions for system (.) or its special form (with F = ) via variational methods;
see [–] and the references therein. In particular, see [, , , , , , ]. The
authors have studied the existence of multiple homoclinic solutions for system (.) under
the assumption that the nonlinear term is symmetric.

When no symmetric condition on the nonlinear term is assumed, as far as the authors
are aware, there is no research about the existence of multiple homoclinic solutions for
system (.). Motivated by the above facts, in this paper, our aim is to study the existence
of multiple homoclinic solutions for system (.) under the condition that the nonlinear
term possesses no symmetric condition.

We will use the following conditions:

(F) p(n) is a real symmetric positive definite matrix for all n ∈ Z.
(F) L(n) is a real symmetric positive definite matrix for all n ∈ Z and

l(n) = inf|u|=

(
L(n)u, u

) → +∞

as |n| → ∞.
(F) G ∈ C(RN ,R) and G() = .
(F) a ∈ l


–γ (Z,R) is a non-negative, non-zero function (for some γ ∈ (, )).

(F) limu→
|∇G(u)|

|u| = .
(F) lim|u|→∞ |∇G(u)|

|u| = .
(F) There exists ζ = (ζ, ζ, . . . , ζN ) ∈R

N such that G(ζ ) > .

Denote by � the set of functions F ∈ C(RN ,R), such that F() =  and satisfying the
property:

(F) There exist d >  and α >  such that

∣
∣∇F(u)

∣
∣ ≤ d

(|u| + |u|α)
, ∀u ∈ R

N .

(F) a ∈ l(Z,R) is a non-negative, non-zero function.
(F) ‖a‖√

(�+�)�
lim infη→∞

max|u|≤η G(u)
η < a(n)

l+l
lim sup|u|→∞

G(u)
|u| , where n ∈ Zwith a(n) =

max{a(n) : n ∈ Z}, � = inf{(p(n)x, x) : n ∈ Z, x ∈R
N , |x| = }, � = inf{l(n) : n ∈ Z}, l =

sup{(p(n)x, x) : n = n, n + , x ∈R
N , |x| = } and l = sup{(L(n)x, x) : x ∈R

N , |x| = }.
(F) There exist M >  and ν >  such that

∣
∣∇G(u)

∣
∣ ≤ M

(|u| + |u|ν–), ∀u ∈R
N .

Now, we state our main results.

Theorem . Assume that (F)-(F) hold. Then there exists λ >  such that for each λ > λ,
and for every function b ∈ l∞(Z,R) and every function F ∈ �, there is σ >  with property
that for each μ ∈ [,σ ], system (.) has at least two nontrivial homoclinic solutions.

Example . a(n) = ( 
+n )/, G(u) = min{|u|σ , |u|σ} with  < σ <  < σ.
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Example . a(n) = ( 
+n )/, G(u) = ((, , . . . , ), u) ln( + |u|). It is clear that G(u) is not

even.

Remark . In Example . and Example ., one cannot obtain the existence of homo-
clinic solutions in [, , , , , , ]. But in this paper, we obtain the existence of
two homoclinic solutions.

When F = , a new result is obtained.

Theorem . Assume that (F)-(F) and (F)-(F) hold. Then, for every

λ ∈ � :=
(

l + l

a(n) lim sup|u|→∞
G(u)
|u|

,
√

(� + �)�

‖a‖ lim infη→∞
max|u|≤η G(u)

η

)
,

system (.) (with F = ) possesses an unbounded sequence of homoclinic solutions.

Remark . In Theorem ., we can substitute η → ∞ and |u| → ∞ with η → + and
|u| → + by applying part (c) of Theorem . instead of part (b) of Theorem . in the
proof, and obtaining a sequence of pairwise distinct homoclinic solutions.

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proof of Theorems . and ..

2 Preliminaries
In this section, the following Ricceri-type three critical points theorem will be needed
in our argument. If X is a real Banach space, denote by X the class of all functionals
ψ : X →R possessing the following property: if {un} is a sequence in X converging weakly
to u ∈ X and lim infn→∞ ψ(un) ≤ ψ(u), then {un} has a subsequence converging strongly
to u.

For example, if X is uniformly convex and g : [, +∞) → R is a continuous, strictly in-
creasing function, then, by a classical result, the functional u → g(‖u‖) belongs to the
class X .

Theorem . ([], Theorem ) Let X be a separable and reflexive real Banach space; let
� : X → R be a coercive, sequentially weakly lower semicontinuous C functional, belong-
ing to X , bounded on each bounded subset of X and whose derivative admits a continuous
inverse on X∗; J : X → R a C functional with compact derivative. Assume that � has a
strict local minimum v with �(v) = J(v) = . Finally, setting

α = max

{
, lim sup

‖v‖→+∞
J(v)
�(v)

, lim sup
v→v

J(v)
�(v)

}
,

α = sup
v∈�–((,+∞))

J(v)
�(v)

,

assume that α < α.
Then, for each compact interval [b, b] ⊂ ( 

α
, 

α
) (with the conventions 

 = +∞, 
+∞ = ),

there exists N >  with the following property: for every λ ∈ [b, b] and every C functional
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� : X → R with compact derivative, there exists σ >  such that, for each μ ∈ [,σ ], the
equation

�′(v) = λJ ′(v) + μ� ′(v)

has at least three solutions in X whose norms are less than N.

In the next section we shall prove our results applying the classical Ricceri variational
principle ([], Theorem .).

Let X be a non-empty set and let �, J : X →R be two functionals.
For all r > infX �, we put

ϕ(r) = inf
u∈�–((–∞,r))

supv∈�–((–∞,r)) J(v) – J(u)
r – �(u)

and

γ := lim inf
r→+∞ ϕ(r),γ := lim inf

r→(infX �)+
ϕ(r).

Theorem . ([], Theorem .) Let X be a reflexive real Banach space, and let �, J :
X →R be two Gâteaux differentiable functionals such that � is sequentially weakly lower
semicontinuous, (strongly) continuous, and coercive and J is sequentially weakly continu-
ous. One has:

(a) For every r > infX � and every λ ∈ (, 
ϕ(r) ), the restriction of the functional � – λJ to

�–((–∞, r)) admits a global minimum, which is a critical point (local minimum) of
� – λJ in X .

(b) If γ < +∞ then, for each λ ∈ (, 
γ

), the following alternative holds: either

(b) � – λ� possesses a global minimum, or
(b) there is a sequence {un} of critical points (local minima) of � – λJ such that

limn→+∞ �(un) = +∞.

(c) If γ < +∞ then, for each λ ∈ (, 
γ

), the following alternative holds: either

(c) there is a global minimum of � which is a local minimum of � – λJ , or
(c) there is a sequence of pairwise distinct critical points (local minima) of � – λJ

which weakly converges to a global minimum of �.

In what follows, we always assume that p(n) and L(n) are real symmetric positive definite
matrices for all n ∈ Z. Let

H =
{{

u(n)
}

n∈Z : u(n) ∈R
N , n ∈ Z

}
,

X =
{

u ∈ H :
∑

n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n), u(n)

)]
< +∞

}

and for u, v ∈ X, let

〈u, v〉 =
∑

n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]
,
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and the corresponding norm is

‖u‖ =
{∑

n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n), u(n)

)]
} 


, ∀u ∈ X.

Then X is a Hilbert space with the above inner product. As usual, for  ≤ q < +∞, j =
 or N , let

lq(
Z,Rj) =

{{
u(n)

}
n∈Z : u(n) ∈R

j, n ∈ Z,
∑

n∈Z

∣∣u(n)
∣∣q < +∞

}

and

l∞
(
Z,Rj) =

{{
u(n)

}
n∈Z : u(n) ∈R

j, n ∈ Z, sup
n∈Z

∣∣u(n)
∣∣ < +∞

}
,

and their norms are defined by

‖u‖q =
(∑

n∈Z

∣∣u(n)
∣∣q

) 
q

, ∀u ∈ lq(
Z,Rj);

‖u‖∞ = sup
n∈Z

∣
∣u(n)

∣
∣, ∀u ∈ l∞

(
Z,Rj),

respectively.

Lemma . (see []) For u ∈ X,

‖u‖∞ ≤ 

√

(� + �)�
‖u‖, (.)

where � = inf{(p(n)x, x) : n ∈ Z, x ∈ R
N , |x| = } and � = inf{l(n) : n ∈ Z} and, for u ∈

l(Z,RN ),

‖u‖∞ ≤ 
√

{∑

n∈Z

[∣∣�u(n)
∣∣ +

∣∣u(n)
∣∣]

} 


. (.)

Lemma . (see []) Assume that L satisfies (F). Then X is compactly embedded in
lq(Z,RN ) for any  ≤ q < ∞, and

‖u‖q
q ≤ �–


[
(� + �)�

] –q
 ‖u‖q, ∀u ∈ X, (.)

∑

|n|>N

∣∣u(n)
∣∣q ≤ [(� + �)�]

–q


min|n|≥N l(n)
‖u‖q, ∀u ∈ X, N ≥ . (.)

For any u ∈ X, put

�(u) =


‖u‖, J(u) =

∑

n∈Z
a(n)G

(
u(n)

)
, �(u) =

∑

n∈Z
b(n)F

(
u(n)

)
. (.)
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Lemma . Assume that (F)-(F) hold. Then the functional I : X →R defined by

I(u) =


‖u‖ – λ

∑

n∈Z
a(n)G

(
u(n)

)
– μ

∑

n∈Z
b(n)F

(
u(n)

)

= �(u) – λJ(u) – μ�(u), ∀u ∈ E, (.)

is well defined and of class C(X,R) and

〈
I ′(u), v

〉
=

∑

n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]

–
∑

n∈Z

[
λ
(
a(n)∇G

(
u(n)

)
, v(n)

)
+ μ

(
b(n)∇G

(
u(n)

)
, v(n)

)]
, ∀u, v ∈ X. (.)

Furthermore, J ′,� ′ : X → X∗ are compact and the critical points of I in X are solutions of
system (.) with u(±∞) = .

Proof We first show that J : X → R. It follows from (F) and (F) that for any ε > , there
exists Dε such that

∣∣∇G(u)
∣∣ ≤ ε|u| + Dε |u|. (.)

By (.), (F), and (.), we have

∣∣∣
∣
∑

n∈Z
a(n)G

(
u(n)

)
∣∣∣
∣ ≤ ‖a‖∞

(
ε
∑

n∈Z

∣∣u(n)
∣∣ + Dε

∑

n∈Z

∣∣u(n)
∣∣

)

≤ D
(‖u‖ + ‖u‖) (.)

for some D > . Analogously, we see that � is well defined on X. Thus, I is well defined
on X.

Now, we show that J is Gâteaux differentiable on X. By virtue of (.) and (F), for any
ξ ∈ [, ], it is easy to check that

∣
∣(a(n)∇G(u + ξv), v

)∣∣ ≤ C
(|u| + |v| + |u| + |v|), ∀n ∈ Z and u, v ∈R

N ,

where C is a constant independent of ξ . Therefore, for any u, v ∈ X, by the mean value
theorem and the Lebesgue dominated convergence theorem, we have

lim
h→

J(u + hv) – J(u)
h

= lim
h→

∑

n∈Z

(
a(n)∇G

(
u(n) + θnhv(n)

)
, v

)

=
∑

n∈Z

(
a(n)∇G

(
u(n)

)
, v(n)

)

=: W (u, v), (.)

where θn ∈ [, ] depends on u, v, h. It is easy to see that W (u, v) is linear. Next we show
that W (u, v) is bounded. In fact, for any u ∈ X, by (F), (F), (.), and Hölder’s inequality,
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we have

∣∣W (u, v)
∣∣ =

∣
∣∣
∣
∑

n∈Z

(
a(n)∇G

(
u(n)

)
, v(n)

)
∣
∣∣
∣

≤
∑

n∈Z

∣∣a(n)∇G
(
u(n)

)∣∣∣∣v(n)
∣∣

≤ ‖a‖∞
∑

n∈Z

(
ε
∣∣u(n)

∣∣ + Dε

∣∣u(n)
∣∣)∣∣v(n)

∣∣

≤ C
(‖u‖ + ‖u‖)‖v‖ (.)

for some C > . Therefore, DJ(u) = W (u, ·) is the Gâteaux derivative of J at u.
Next, we prove that DJ(u) is weakly continuous in u. To this end, we first claim that if

uk ⇀ u in X, then fk → f in l(Z,RN ), where fk = {∇G(uk(n))}n∈Z and f = {∇G(u(n))}n∈Z.
Arguing indirectly, by Lemma ., we may assume that there exists a subsequence {uki}
such that

uki → u in both l(
Z,RN)

and l(
Z,RN)

,

uki (n) → u(n), ∀n ∈ Z as i → ∞
(.)

and

∑

n∈Z

∣
∣∇G

(
uki (n)

)
– ∇G

(
u(n)

)∣∣ ≥ ε, ∀i ∈ Z (.)

for some ε > . By (.), passing to a subsequence if necessary, we can assume that

∞∑

i=

‖uki – u‖
 < +∞

and

∞∑

i=

‖uki – u‖
 < +∞.

Let

e(n) =

( ∞∑

i=

∣∣uki (n) – u(n)
∣∣

)/

and

e(n) =

( ∞∑

i=

∣∣uki (n) – u(n)
∣∣

)/

,

then {e(n)}n∈Z ∈ l(Z,R) and {e(n)}n∈Z ∈ l(Z,R). It follows from (.) that

∣
∣∇G

(
uki (n)

)
– ∇G

(
u(n)

)∣∣

≤ (
ε
∣∣uki (n)

∣∣ + ε
∣∣u(n)

∣∣ + Dε

∣∣uki (n)
∣∣ + Dε

∣∣u(n)
∣∣)
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≤ (
ε
∣∣uki (n) – u(n)

∣∣ + ε
∣∣u(n)

∣∣ + Dε

∣∣uki (n) – u(n)
∣∣ + Dε

∣∣u(n)
∣∣)

≤ ε(∣∣uki (n) – u(n)
∣∣ + 

∣∣u(n)
∣∣) + D

ε

(

∣∣uki (n) – u(n)

∣∣ + 
∣∣u(n)

∣∣)

≤ ε(∣∣e(n)
∣
∣ + 

∣
∣u(n)

∣
∣) + D

ε

(

∣
∣e(n)

∣
∣ + 

∣
∣u(n)

∣
∣) (.)

for all i, n ∈ Z. Combining (.) and (.), by Lebesgue dominated convergence, we have

lim
i→∞

∑

n∈Z

∣
∣∇G

(
uki (n)

)
– ∇G

(
u(n)

)∣∣ = ,

which contradicts (.). Hence the claim above is true. We assume that uk ⇀ u in X, then
fk → f in l(Z,RN ), where fk = {∇G(uk(n))}n∈Z and f = {∇G(u(n))}n∈Z. By (.), (F), and
Hölder’s inequality, we obtain

∥
∥DJ(uk) – DJ(u)

∥
∥

X∗ = sup
‖v‖=

∣
∣〈DJ(uk) – DJ(u), v

〉∣∣

= sup
‖v‖=

∣∣
∣∣
∑

n∈Z

(
a(n)

(∇G
(
uk(n)

)
– ∇G

(
u(n)

))
, v(n)

)
∣∣
∣∣

≤ ‖a‖∞
(∑

n∈Z

∣∣∇G
(
uk(n)

)
– ∇G

(
u(n)

)∣∣
) 

 ‖v‖

≤ √
�

‖a‖∞
(∑

n∈Z

∣∣∇G
(
uk(n)

)
– ∇G

(
u(n)

)∣∣
) 

 → 

as k → ∞. This implies that DJ(u) is weakly continuous in u. Hence, J ′(u) = DJ(u), i.e.,
J ∈ C(X,R). Furthermore, J ′ is compact by the weakly continuity of J ′ since X is a Hilbert
space. Similarly, we can prove that � ∈ C(X,R) and � ′ is compact. Due to the form of I
in (.), (.) is verified and hence I ∈ C(X,R).

Finally, we show that the critical points of I in X are solutions of system (.) with
u(±∞) = . Observe that, for any u, v ∈ X,

∑

n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)

– λ
(
a(n)∇G

(
u(n)

)
, v(n)

)
– μ

(
b(n)∇F

(
u(n)

)
, v(n)

)]

=
∑

n∈Z

[(
p(n + )�u(n), v(n + )

)
–

(
p(n + )�u(n), v(n)

)]

+
∑

n∈Z

[(
L(n)u(n), v(n)

)
– λ

(
a(n)∇G

(
u(n)

)
, v(n)

)
– μ

(
b(n)∇F

(
u(n)

)
, v(n)

)]

=
∑

n∈Z

[(
p(n)�u(n – ), v(n)

)
–

(
p(n + )�u(n), v(n)

)]

+
∑

n∈Z

[(
L(n)u(n), v(n)

)
– λ

(
a(n)∇G

(
u(n)

)
, v(n)

)
– μ

(
b(n)∇F

(
u(n)

)
, v(n)

)]

=
∑

n∈Z

(
–�

(
p(n)�u(n – )

)
+ L(n)u(n) – λa(n)∇G

(
u(n)

)
– μb(n)∇F

(
u(n)

)
, v(n)

)
.

It follows from (.) and the above equations that 〈I ′(u), v〉 =  for all v ∈ X if and only if

�
[
p(n)�u(n – )

]
– L(n)u(n) + λa(n)∇G

(
u(n)

)
+ μb(n)∇F

(
u(n)

)
= , ∀n ∈ Z.
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So, the critical points of I in X are the solutions of system (.). On the other hand, it
follows from (.) that u(±∞) = . This completes the proof. �

Lemma . � is coercive, sequentially weakly lower semicontinuous, bounded on each
bounded subset of X and its derivative admits a continuous inverse on X∗.

Proof It is easy to verify that � is coercive. Let uk ⇀ u in X, we see that lim infn→∞ ‖uk‖ ≥
‖u‖. Then we have

lim inf
n→∞ �(uk) = lim inf

n→∞


‖uk‖ ≥ 


‖u‖ = �(u).

So � is sequentially weakly lower semicontinuous. Moreover, it is easy to see that � is
bounded on each bounded subset of X.

Next we will show that �′ admits a continuous inverse on X∗. For each u ∈ X\{}, by
(.), we have

〈
�′(u), u

〉
= ‖u‖.

So lim‖u‖→+∞〈�′(u), u〉/‖u‖ = +∞, that is, �′ is coercive. For any u, v ∈ X, in view of (.),
we have

〈
�′(u) – �′(v), u – v

〉
= ‖u – v‖.

So �′ is uniformly monotone. By ([], Theorem .A(d)), we see that �′ admits a con-
tinuous inverse on X∗. �

3 Proof of Theorems 1.1 and 1.2
We will prove Theorem . by using Theorem .. First, we give the following four useful
lemmas.

Lemma . lim supu→
J(u)
�(u) ≤ .

Proof It follows from (F), (F), and (F) that, for any ε > , there exists Tε such that

∣
∣G(u)

∣
∣ ≤ ε

( + ‖a‖∞)
|u| + Tε |u|. (.)

By (.) and (.), one has

J(u) =
∑

n∈Z
a(n)G

(
u(n)

)

≤
∑

n∈Z
a(n)

∣
∣G

(
u(n)

)∣∣

≤
∑

n∈Z
a(n)

[
ε

( + ‖a‖∞)
∣
∣u(n)

∣
∣ + Tε

∣
∣u(n)

∣
∣

]

≤ ε

�
‖u‖ + �–


[
(� + �)�

] –
 Tε‖a‖∞‖u‖, ∀u ∈ X.
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Thus, for each u ∈ X\{},

J(u)
�(u)

≤
ε

�
‖u‖ + �–

 [(� + �)�] –
 Tε‖a‖∞‖u‖


‖u‖

≤ ε

�
+ �–


[
(� + �)�

] –
 Tε‖a‖∞‖u‖.

Taking the ‘lim sup’ of the above estimation when u → , the arbitrariness of ε gives the
required inequality. �

Lemma . lim sup‖u‖→∞
J(u)
�(u) ≤ .

Proof By (F) and (F), for every ε > . there exists ηε ∈ (, ) such that

∣∣∇G(u)
∣∣ ≤ ε

( + ‖a‖∞)
|u| for all |u| ≥ η–

ε or |u| ≤ ηε . (.)

Since G ∈ C(RN ,R), there exists a constant Cε >  such that

|∇G(u)|
|u|γ ≤ Cε for all |u| ∈ [

ηε ,η–
ε

]
, (.)

where γ is given in (F). By virtue of (.), (.), and (F), we have

∣
∣G(u)

∣
∣ ≤ ε

( + ‖a‖∞)
|u| + Cε |u|γ +. (.)

By (F), (.), (.), and Hölder’s inequality, we obtain

J(u) =
∑

n∈Z
a(n)G

(
u(n)

)

≤
∑

n∈Z
a(n)

∣∣G
(
u(n)

)∣∣

≤
∑

n∈Z
a(n)

[
ε

( + ‖a‖∞)
∣∣u(n)

∣∣ + Cε

∣∣u(n)
∣∣γ +

]

≤ ε

�
‖u‖ + Cε‖a‖ 

–γ
‖u‖γ +



≤ ε

�
‖u‖ + �

– +γ


 Cε‖a‖ 
–γ

‖u‖γ +, ∀u ∈ X.

Thus, for each u ∈ X\{},

J(u)
�(u)

≤
ε

�
‖u‖ + �

– +γ


 Cε‖a‖ 
–γ

‖u‖γ +


‖u‖

≤ ε

�
+ �

– +γ


 Cε‖a‖ 
–γ

‖u‖γ –.

Taking the ‘lim sup’ of the above estimation when ‖u‖ → ∞, the arbitrariness of ε gives
the required inequality. �
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Lemma . sup�(u)>
J(u)
�(u) > .

Proof Since a is a non-negative, non-zero function, there exists n ∈ Z such that a(n) > .
Define

v(n) =

{
ζ , n = n,
, n �= n.

(.)

Obviously, �(v) = 
‖v‖ > . It follows from (.), (F), and (F) that

J(v) =
∑

n∈Z
a(n)G

(
v(n)

)
= a(n)G(ζ ) > . (.)

Hence we have

α = sup
�(u)>

J(u)
�(u)

> .

The proof is complete. �

Lemma . λ = 
α

≥ 
D�–

 ‖a‖∞
, where α is defined in Theorem . and D = maxu�=

G(u)
|u| .

Proof It follows from (F) and (.) that

J(v) =
∑

n∈Z
a(n)G

(
v(n)

)

≤ D‖a‖∞‖v‖


≤ D�–
 ‖a‖∞‖v‖. (.)

By (.), we have

α = sup
�(u)>

J(u)
�(u)

≤ D�–
 ‖a‖∞,

which ends the proof. �

Now we give the proof of Theorem ..

Proof Obviously, X is a separable, reflexive and uniformly convex Banach space. It follows
from Lemmas ., ., and Lemmas .-. that �, J , and � satisfy all conditions of The-
orem .. Thus, for each λ > λ ≥ 

D�–
 ‖a‖∞

, there is σ >  with the property that for each
μ ∈ [,σ ], I has at least three solutions in X whose norms are less than N. It is easy to
see that  is a solution of (.). Hence, system (.) has at least two nontrivial homoclinic
solutions. �

Now we give the proof of Theorem ..

Proof Obviously, X be a reflexive real Banach space. With similar arguments to those used
in the proofs of Lemmas . and ., we can see that �, J : X → R are two Gâteaux differ-
entiable functionals such that � is sequentially weakly lower semicontinuous, continuous,
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and coercive and J is sequentially weakly continuous. Our aim is to apply part (b) of The-
orem ..

Next, we show that γ < +∞. Let {ηk} be a sequence of positive numbers such that
limk→∞ ηk = +∞ and

lim
k→∞

max|u|≤ηk G(u)
η

k
= lim inf

η→∞
max|u|≤η G(u)

η . (.)

Take rk = η
k
√

(�+�)�
 for all k ∈ N. By (.), one has

‖v‖∞ ≤ ηk (.)

for any v ∈ X with ‖v‖ < rk . In view of (.), (.), and �() = J() = , we have

ϕ(rk) = inf
u∈�–((–∞,rk ))

supv∈�–((–∞,rk )) J(v) – J(u)
rk – �(u)

≤ supv∈�–((–∞,rk )) J(v)
rk

≤ ‖a‖√
(� + �)�

max|u|≤ηk G(u)
η

k
.

Thus, by (F), we have

 ≤ γ ≤ ‖a‖√
(� + �)�

lim inf
η→∞

max|u|≤η G(u)
η < +∞. (.)

In view of (F), we can consider the interval �. A simple reasoning related to (.) and
(F) shows that

� ⊆
(

,

γ

)
.

Now, we will verify that I is unbounded from below. It follows from the choice of λ that
there exists a sequence {ρk} in R

N with |ρk| → ∞ such that

G(ρk)
|ρk| >

l + l

λa(n)
, ∀k ∈N. (.)

We define the function

vk(n) =

{
ρk , n = n,
, n �= n.

(.)

It is easy to see that vk ∈ X. By (F), (F), (.), and (.), we have

I(vk) = �(vk) – λJ(vk)

=


[((

p(n) + p(n + )
)
ρk ,ρk

)
+

(
L(n)ρk ,ρk

)]
– λ

∑

n∈Z
a(n)G

(
vk(n)

)
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=


[((

p(n) + p(n + )
)
ρk ,ρk

)
+

(
L(n)ρk ,ρk

)]
– λa(n)|ρk| G(ρk)

|ρk|

≤ |ρk|
(




(l + l) – λa(n)
G(ρk)
|ρk|

)
. (.)

Combining (.) and (.), we find that I is unbounded from below, that is, I has no
global minimum.

By part (b) of Theorem ., there is a sequence {uk} of critical points (local minima)
of � – λJ such that limk→+∞ �(uk) = +∞. Hence, system (.) possesses an unbounded
sequence of homoclinic solutions. �

4 Example
In order to illustrate Theorem ., we give an example.

Example . Consider the following problem for the case of N = :

–�u(n – ) + u(n) = λa(n)g
(
u(n)

)
, n ∈ Z, (.)

where p = L = , a(n) = 
+n , and

g(u) =

{
π (k + )![((k + )!) – (k!)] sin(π (k + )!(u – dk)), if u ∈ ⋃

k∈N[dk , ek],
, otherwise,

with dk = k!(k+)!–
(k+)! and ek = k!(k+)!+

(k+)! for every k ∈N.
Define

G(u) =
∫ u


g(s) ds (.)

for all u ∈R. It is easy to verify that

g(u) ≥ , ∀u ∈ R, (.)

moreover, for any k ∈N,
∫ ek

dk

g(s) ds =
(
(k + )!

) – (k!). (.)

By (.) and (.), we see that G ∈ C(R) is nondecreasing. For any k ∈N one has

G(dk) =
∫ dk


g(s) ds

=
∫ ek–


g(s) ds

=
k–∑

j=

∫ ej

dj

g(s) ds

=
k–∑

j=

[(
(j + )!

) – (j!)]

= (k!) – 
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and

G(ek) =
∫ ek


g(s) ds

=
k∑

j=

[(
(j + )!

) – (j!)]

=
(
(k + )!

) – .

Thus,

lim
k→∞

G(dk)
d

k
= , lim

k→∞
G(ek)

e
k

= ,

and in fact, since limu→–∞ G(u)
u = , it is a simple computation to verify that

lim inf
η→∞

max|u|≤η G(u)
η = lim inf

η→∞
G(η)
η = , lim sup

η→∞
G(η)
η = .

Applying Theorem ., then, for λ > 
 , problem (.) has an unbounded sequence of ho-

moclinic solutions.

Remark . In Example ., one cannot obtain the existence of homoclinic solutions in
[, , , , , , ]. But in this paper, we obtain the existence of infinitely many
homoclinic solutions.
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