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Abstract
This paper deals with the vectorial Schrödinger operators with δ-interactions
generated by LX ,A,Q := – d2

dx2
+ Q(x) +

∑∞
k=1 Akδ(x – xk), x ∈ [0, +∞). First, we obtain an

embedding inequality. Then using standard form methods, we prove that the
operator HX ,A,Q given in this paper is self-adjoint. Finally, a sufficient condition and a
necessary condition are given for the spectrum of the operator HX ,A,Q to be discrete.
By giving additional restrictions on the symmetric potential matrix Q(x) and Ak , we
also give a necessary and sufficient condition for a special case. The conditions are
analogous to Molchanov’s discreteness criteria.

MSC: Primary 34B24; secondary 34L05; 47e05

Keywords: vectorial Schrödinger operators; δ-interactions; self-adjointness; discrete
spectrum

1 Introduction
The present paper deals with the vectorial (matrix) Schrödinger operators with δ-
interactions generated by the formal differential expression

LX,A,Q := –
d

dx + Q(x) +
∞∑

k=

Akδ(x – xk), x ∈ [, +∞), (.)

where Q(x) = (qij(x))m
i,j= ∈ L

loc(R+,Cm×m) and Ak = (ak
i,j)m

i,j= ∈ R
m×m are real valued and

symmetric m × m matrices. Denote A := {Ak}∞k= ⊂ R
m×m, and let X := {xk}∞k= ⊂ R+ be

a strictly increasing sequence such that xk → +∞. The minimal operator HX,A,Q can be
defined as follows:

H
X,A,QY := L(Y ) = –Y ′′ + Q(x)Y ,

Dom
(
H

X,A,Q
)

=
{

Y ∈ L
comp

(
R+,Cm)

: Y , Y ′ ∈ W ,(
R+\X,Cm)

,

L(Y ) ∈ L(
R+,Cm)

, Y () = θ , Y (xk+) = Y (xk–),

Y ′(xk+) – Y ′(xk–) = AkY (xk), k ∈N
}

. (.)

Here θ is the m-dimensional zero vector. It is clear that H
X,A,Q is a symmetric operator, and

the minimal operator HX,A,Q is the closure of H
X,A,Q in L(R+,Cm), that is, HX,A,Q := H

X,A,Q.
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L(R+,Cm) is the Hilbert space of vector-valued functions with the scalar product

(u, v) =
∫ ∞


(u, v)m dx,

where u = (u, u, . . . , um)T , v = (v, v, . . . , vm)T , (u, v)m := vT u =
∑m

i= viui, ui, vi ∈ L(R+).
Schrödinger operators with δ-interactions can be used as solvable models in many sit-

uations. The operators HX,A,Q in the scalar case describes δ-interactions of strength at
the points xk . Numerous results can be found in [–]. Also, there are some papers about
a vectorial operator with δ-interactions. For example, a detailed spectral theoretic treat-
ment of Schrödinger operators with distributional matrix-valued potentials is developed
in []. Some results about the defect index of the matrix case HX,A,Q when Q is missing
are obtained in []. However, there are a few results about the spectral properties of such
operators.

The main objective of the present paper is to give conditions for the spectra of the vec-
torial Schrödinger operators HX,A,Q to be discrete. First, we prove that the operator HX,A,Q

given in this paper is self-adjoint. If the singular part in (.) is missing, then HQ = HX,,Q is
just a classical vectorial Sturm-Liouville expression. Liu and Wang [] gave some criterions
that guarantee the operator HQ to have a purely discrete spectrum. This result was proved
by direct sum decomposition methods of operators and estimation of the corresponding
quadratic forms. Clark and Gesztesy [] derived Povzner-Wienholtz-type self-adjointness
results for the classical matrix Sturm-Liouville operators. A generalization of this result
to the case of scalar (m = ) operators with point interactions was obtained by Albeverio
et al. []. Second, after we derive an embedding inequality of vector-valued functions, we
obtain some criterions that guarantee the operator HX,A,Q to have a purely discrete spec-
trum. The condition is an analog of the classical discreteness criterion due to Molchanov
[]. Our result reads as follows:

∫ x+ε

x
μmin

(
Q(x)

)
dx +

∑

xk∈(x,x+ε)

μmin(Ak) → ∞ as x → ∞. (.)

However, condition (.) is no longer necessary in the case of matrix Hamiltonians HX,A,Q

(see Theorem ). This results coincides with the corresponding result obtained by Albeve-
rio et al. [] in the scalar case (m = ), whereas in this case it is also necessary. Subsequently,
giving additional restrictions on the symmetric potential matrix Q(x) and Ak , we obtain a
sufficient and necessary condition for a special case (see Theorem ).

This paper is organized as follows. In Section , we introduce some basic definitions
and lemmas and a generalized embedding theorem. Section  contains some lemmas and
quadratic forms associated with the operator HX,A,Q for our main results. Some criteri-
ons based on the Molchanov’s theorem, which guarantee that the operator has a purely
discrete spectrum, are given in Section .

2 Preliminaries
Let H be a Hilbert space with inner product (·, ·), and let t be a densely defined quadratic
form in H with lower bound –c, that is, t[u] ≥ –c‖u‖

H
, c ∈R. Let t[·, ·] be the sesquilinear

form associated with t. Then the equality

(u, v)t = t[u, v] + ( + c)(u, v)
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defines a scalar product on Dom(t) such that ‖u‖t ≥ ‖u‖H for all u ∈ Dom(t), where

‖u‖
t := t[u] + ( + c)‖u‖

H, u ∈ Dom(t).

The form t is called closable if the norm ‖ · ‖t is compatible with ‖ · ‖H, that is, for every
‖ · ‖t-Cauchy sequence {un}∞n= in Dom(t), ‖un‖H →  implies ‖un‖t → . Let Ht be the
‖ · ‖t-completion of Dom(t). In this case, the completion Ht can be considered as a subset
of H. The form t is closed if the sets Ht and Dom(t) are equal. Let A be a self-adjoint lower
semibounded operator in H, that is, (Au, u) ≥ –c(u, u) for all u ∈ Dom(A) and some c ∈R.
Denote by t′

A the densely defined quadratic form given by

t′
A[u] = (Au, u), Dom

(
t′

A
)

= Dom(A).

Clearly, this form is closable and lower semibounded, t′
A ≥ –c, and its closure tA satisfies

tA ≥ –c. We set HA := HtA . By the first representation theorem [], Theorem .., for any
closed lower semibounded quadratic form t ≥ –c in H, there corresponds a unique self-
adjoint operator A = A∗ in H satisfying (Au, u) ≥ –c(u, u) for all u ∈ Dom(A) such that t is
the closure of t′

A. The form t is uniquely determined by the conditions Dom(A) ⊂ Dom(t)
and

(Au, v) = t[u, v], u ∈ Dom(A), v ∈ Dom(t).

Lemma  Let A = A∗ be a lower semibounded operator inH, and let tA be the corresponding
form. The spectrum σ (A) of the operator A is discrete if and only if the embedding iA : HA ↪→
H is compact.

Proof See []. �

Definition  Let the operator A be self-adjoint and positive on H, and let tA be the cor-
responding form. The form t is called relatively form bounded with respect to tA (tA-
bounded) if Dom(tA) ⊂ Dom(t) and there are positive constants a, b such that

∣
∣t[f ]

∣
∣ ≤ atA[f ] + b‖f ‖

H, f ∈ Dom(tA).

The infimum of all possible a is called the form bound of t with respect to tA. If a can be
chosen arbitrary small, then t is called infinitesimally form bounded with respect to tA.

Lemma  Let tA be the form corresponding to the operator A = A∗ >  in H. If the form t is
tA-bounded with relative bound a < , then the form

t := tA + t, Dom(t) = Dom(tA),

is closed and lower semibounded in H and hence gives rise to a self-adjoint semibounded
operator. Moreover, the norms ‖ · ‖A and ‖ · ‖t are equivalent.

Proof See []. �
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We also need a generalized embedding inequality of vector-valued functions, which
we state here. In [], p., Theorem A., Muller-Pfeiffer gave an embedding theo-
rem for scalar functions. We extend the theorem to vectorial functions. For an inter-
val I , let u(x) = (u(x), u(x), . . . , um(x))T , where uj ∈ W l,p(I), j = , , . . . , m, and we de-
note by W l,p(I,Cm) the space of all such vectorial functions. The norm is ‖u‖

W l,p(I,Cm) =
∑m

i= ‖ui‖
W l,p(I), ‖ui‖W l,p(I) = (

∑l
k=

∫
I |u(k)

i (x)|p dx)/p. If uj ∈ Ck(I), j = , , . . . , m, then we
denote by Ck(I,Cm) the space of all such vectorial functions. The norm is ‖u‖

Ck (I,Cm) =
∑m

i= ‖ui‖
Ck (I), ‖ui‖Ck (I) =

∑k
l= supx∈I |u(l)

i (x)|. If uj ∈ Lk(I), j = , , . . . , m, then we denote by
Lk(I,Cm) the space of all such vectorial functions. The norm is ‖u‖

Lk (I,Cm) =
∑m

i= ‖ui‖
Lk (I),

‖ui‖Lk (I) = (
∫

I |ui(x)|k)/k . We get the following embedding inequality for vectorial func-
tions.

Lemma  If l > k ≥  and  < p < ∞, W l,p((x, x),Cm) is continuously embedded into the
space Ck((x, x),Cm), and, for any ε > , there exists a constant Cε such that

‖u‖
Ck ((x,x),Cm) ≤ ε

∥
∥u(l)∥∥

Lp((x,x),Cm) + Cε‖u‖
Lp((x,x),Cm) (.)

for all u ∈ W l,p((x, x),Cm).

Proof Using the embedding theorem in [], for any ε >  and every component function
ui, i = , , . . . , m, there are constants Ci,ε >  such that

‖ui‖
Ck (x,x) ≤ ε

∥
∥u(l)

i
∥
∥

Lp(x,x) + Ci,ε‖ui‖
Lp(x,x).

Then

‖u‖
Ck ((x,x),Cm) =

m∑

i=

‖ui‖
Ck (x,x)

≤
m∑

i=

ε
∥
∥u(l)

i
∥
∥

Lp(x,x) +
m∑

i=

Ci,ε‖ui‖
Lp(x,x)

≤
m∑

i=

ε
∥
∥u(l)

i
∥
∥

Lp(x,x) +
m∑

i=

Cε‖ui‖
Lp(x,x),

where Cε = max≤i≤m{Ci,ε}. For integer l >  and  < p < ∞,

∥
∥u(l)∥∥

Lp((x,x),Cm) =

( m∑

i=

∥
∥u(l)

i
∥
∥

Lp(x,x)

)

≥
m∑

i=

∥
∥u(l)

i
∥
∥

Lp(x,x);

hence, we get (.). �

3 Quadratic forms associated with the operator
We begin this section with the operators HX,A,Q and their corresponding quadratic forms
in the Hilbert space L(R+,Cm). First, we recall some notation for the convenience of the
readers. The inequality Q(x) ≥ (>) means that for any Y (x) = (y(x), y(x), . . . , ym(x))T ,
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(Q(x)Y (x), Y (x))m ≥ (>), and Q(x) is called bounded from below if (Q(x)Y (x), Y (x))m ≥
–c(Y (x), Y (x))m, where c is a constant. Then we consider the quadratic forms

q[Y ] :=
∫ ∞



(
Q(x)Y (x), Y (x)

)
m dx, (.)

Dom(q) =
{

Y ∈ L(
R+,Cm)

:
∣
∣q[Y ]

∣
∣ < ∞}

.

We denote by μmin(Q(x)) and μmax(Q(x)) respectively the minimal and maximal eigenval-
ues of Q(x), and by μmin(Ak) and μmax(Ak) respectively the minimal and maximal eigen-
values of Ak . The quadratic form q[Y ] is called semibounded from below (above) if and
only if so is μmin(Q(x))(μmax(Q(x))). We denote by t[Y ] the following quadratic form:

t[Y ] :=
∫ ∞



(
Y ′(x), Y ′(x)

)
m dx, Dom

(
t[Y ]

)
= W ,


(
R+,Cm)

. (.)

Together with the form q, we consider the form

tQ[Y ] := t[Y ] + q[Y ] =
∫ ∞



[(
Y ′(x), Y ′(x)

)
m +

(
Q(x)Y (x), Y (x)

)
m

]
dx, (.)

Dom(tQ) = W ,


(
R+,Cm) ∩ Dom(q)

=
{

Y ∈ L(
R+,Cm) ∩ ACloc

(
R+,Cm)

, tQ[Y ] < +∞, Y () = θ
}

.

Dom(t[Y ]) is the set of all Y ∈ L(R+,Cm) such that Y (x) is absolutely continuous,
Y ′ ∈ L(R+,Cm), and Y () = θ . The form t[Y ] is symmetric and closed. Dom(q) is the
set of all Y ∈ L(R+,Cm) such that

∫ ∞
 (Q(x)Y (x), Y (x))m dx < +∞. The form q is also sym-

metric and closed. Thus, tQ[Y ] = t[Y ] + q[Y ] is symmetric and closed (see [], Chap-
ter VI, Theorem .). If the potential Q(x) is lower semibounded with bound –c, that
is, (Q(x)Y , Y ) ≥ –c(Y , Y ), ∀Y ∈ C

m, then Dom(tQ) equipped with the norm ‖Y‖
HQ

:=
‖Y‖

W , + tQ[Y ] + ( + c)‖Y‖
H

is the Hilbert space HQ := HtQ := W ,
 (R+,Cm; Q). Let

tR[Y ] =
∞∑

k=

(
AkY (xk), Y (xk)

)
m (.)

be defined on the domain

Dom(tR) =
{

Y ∈ L(
R+,Cm)

, tR[Y ] < +∞}
.

Denote by t±
R [Y ] the sum of k positive (negative) parts of (AkY (xk), Y (xk))m, that is,

t±
R [Y ] =

∞∑

k=

(
AkY (xk), Y (xk)

)±
m, (.)

Dom
(
t±

R [Y ]
)

=
{

Y ∈ W ,


(
R+,Cm)

, t±
R [Y ] < +∞}

.

Similarly,

q
±[Y ] :=

∫ ∞



(
Q(x)Y (x), Y (x)

)±
m dx, Dom

(
q

±)
=

{
Y ∈ ACloc

(
R+,Cm)

,q±[Y ] < +∞}
.
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Then we define the form

tX,A,Q = tQ + tR, tQ = t + tQ = t + q
+ + q

–,

t+
Q = t + q

+, t–
Q = t + q

–,

Dom(tX,A,Q) = Dom(tQ) ∩ Dom(tR),

which is naturally associated with the differential expression, and the form is as follows:

tX,A,Q[Y ] =
∫ ∞



[(
Y ′(x), Y ′(x)

)
m +

(
Q(x)Y (x), Y (x)

)
m

]
dx

+
∞∑

k=

(
AkY (xk), Y (xk)

)
m. (.)

Notation If the form tX,A,Q is nonnegative, then HX,A,Q := HtX,A,Q denotes the domain
Dom(tX,A,Q) equipped with the norm

‖Y‖
HX,A,Q

= tQ[Y ] + tR[Y ] + ‖Y‖
L(R+,Cm),

sup
x>

∫ x+

x

∣
∣μ–

max

(
Q(x)

)∣
∣dx < +∞, sup

x>

∑

xk∈[x,x+]

∣
∣μ–

max(Ak)
∣
∣ < +∞, (.)

where μ±
max(Q(x)) := (μmax(Q(x)) ± |μmax(Q(x))|)/, μ(A)± := {μ(Ak)±}∞ , and μ±

max(Ak) :=
(μmax(Ak) ± |μmax(Ak)|)/.

Lemma  If the minimal operator Hmin = HX,A,Q is lower semibounded, then the operator
HX,A,Q is self-adjoint, HX,A,Q = (HX,A,Q)∗.

Proof Without loss of generality, we assume that HX,A,Q ≥ I . It is sufficient to show that
ker((HX,A,Q)∗) = {θ}, that is, the equation

–Y ′′(x) + Q(x)Y (x) = θ , x ∈R+\X, Y ∈ Dom
(
(HX,A,Q)∗

)
(.)

has only a trivial solution (the derivative is understood in a distribution sense).
Assume the converse, that is, let Y (x) = (y(x), y(x), . . . , ym(x))T be a solution of equation

(.). Let χi ∈ C∞
 (R+,Cm) (i = , , . . . , m) be such that  ≤ ‖χi‖ ≤  and

χi(x) =

{
ei,  ≤ x ≤ /,
θ , x ≥ ,

i = , , . . . , m,

where ‖ · ‖ is the Euclidean norm. Let the matrix X(x) be the combination of χi(x), i =
, , . . . , m, that is, X(x) = [χ(x),χ(x), . . . ,χm(x)]. Define

Yn(x) := Xn(x)Y (x) = X(x/n)Y (x), n ∈N.

Obviously, sup pYn ⊂ [, n]. Since Yn(xk–) = Yn(xk+) and χi ∈ C∞
 (R+,Cm) (i = , , . . . , m),

we get

Y ′
n(xk+) – Y ′

n(xk–) = Xn(xk)
[
Y ′(xk+) – Y ′(xk–)

]
= Xn(xk)AkY (xk) = AkYn(xk),
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and hence Yn ∈ Dom(Hmin). Furthermore,

(HminYn, Yn) =
∫ ∞



([
–Y ′′

n (x) + Q(x)Yn(x)
]
, Yn(x)

)
m dx

= –
∫ ∞



(
X ′

n(x)Y ′(x) + X ′′
n (x)Y (x), Xn(x)Y (x)

)
m dx

= –
∫ ∞



[(
X ′

n(x)Y ′(x), Xn(x)Y (x)
)

m +
(
X ′′

n (x)Y (x), Xn(x)Y (x)
)

m

]
dx. (.)

By HX,A,Q ≥ I ,

(HminYn, Yn) ≥ (Yn, Yn) =
∫ ∞



(
Xn(x)Y (x), Xn(x)Y (x)

)
m dx. (.)

On the other hand, transforming the first part of (.), integrating by parts, and noting
that Xn(x) has a compact support, we get

∫ ∞



(
X ′

n(x)Y ′(x), Xn(x)Y (x)
)

m dx =
∫ ∞


Y (x)T Xn(x)T X ′

n(x)Y ′(x) dx

=
m∑

i=

∫ ∞


yi(x)χi,i(x/n)χ ′

i,i(x/n)y′
i(x) dx

=
m∑

i=

∫ ∞





(
y

i (x)
)′(

χ
i,i(x/n)

)′ dx

= –
m∑

i=

∫ ∞


y

i (x)
[
χ ′′

i,i(x/n)χi,i(x/n)

+
(
χ ′

i,i(x/n)
)]dx, (.)

where χi,i(x/n) denotes the ith component function of χi(x/n), which is the ith column of
the matrix Xn(x) (i = , , . . . , m). The second part of (.) is as follows:

∫ ∞



(
X ′′

n (x)Y (x), Xn(x)Y (x)
)

m dx =
m∑

i=

∫ ∞


y

i (x)χ ′′
i,i(x/n)χi,i(x/n) dx. (.)

By (.), (.), and (.) we get

(HminYn, Yn) =
m∑

i=

∫ ∞


y

i (x)
(
χ ′

i,i(x/n)
) dx =

∫ ∞



(
X ′

n(x)Y (x), X ′
n(x)Y (x)

)
m dx. (.)

Therefore, by (.) and (.) we obtain

∫ n/



(
Y (x), Y (x)

)
m dx =

∫ n/


Y (x)T Y (x) dx ≤

∫ ∞


Y (x)T Xn(x)T Xn(x)Y (x) dx

≤
∫ ∞


Y (x)T X ′

n(x)T X ′
n(x)Y (x) dx

≤ C
n

∫ n

n/
Y (x)T Y (x) dx =

C
n

∫ n

n/

(
Y (x), Y (x)

)
m dx, (.)
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where C := supx∈[,] |X ′(x)|. Noting that Y ∈ L(R+,Cm), inequality (.) yields Y = θ . This
contradiction completes the proof. �

Before proceeding further, we need the following fact.

Lemma  If

C := sup
n∈N

∫ n+

n

∣
∣μmax

(
Q(t)

)∣
∣dt < ∞, (.)

C := sup
n∈N

∑

xk∈[n,n+]

∣
∣μmax(Ak)

∣
∣ < ∞, (.)

then the forms q and tR := t+
R + t–

R are infinitesimally t-bounded, and hence the form tX,A,Q

is closed and lower semibounded, and Dom(tX,A,Q) = W ,(R+,Cm) algebraically and topo-
logically.

Proof By Lemma , for any ε > , we have the following inequality:

‖Y‖
C(R+,Cm) ≤ ε

∫ n+

n

(
Y ′(t), Y ′(t)

)
m dt + Cε

∫ n+

n

(
Y (t), Y (t)

)
m dt

≤ ε
∥
∥Y ′∥∥

W ,([n,n+],Cm) + Cε‖Y‖
L([n,n+],Cm), (.)

where x ∈ [n, n + ], and the constant Cε >  does not depend on Y and n ∈N. Combining
(.) and (.) with (.), we obtain, for Y ∈ Dom(t) = W ,

 (R+,Cm),

∫

R+

(
Q(x)Y (x), Y (x)

)
m dx +

∞∑

k=

(
AkY (xk), Y (xk)

)
m

=
∞∑

n=

(∫ n+

n

(
Q(x)Y (x), Y (x)

)
m dx +

∑

xk∈[n,n+]

(
AkY (xk), Y (xk)

)
m

)

≤
∞∑

n=

∫ n+

n

∣
∣μmax

(
Q(x)

)∣
∣‖Y‖ dx +

∑

xk∈[n,n+]

∣
∣μmax(Ak)

∣
∣‖Y‖

≤ (C + C)
∞∑

n=

‖Y‖
C[n,n+]

≤ (C + C)ε‖Y‖
W ,(R+,Cm) + (C + C)Cε‖Y‖

L(R+,Cm).

Since ε >  is arbitrary, the forms q and tR are infinitesimally form bounded with respect
to t. It remains to apply Lemma . �

We refer to A := {Ak}∞k= ⊂ R
m×m again. We denote by l

m(‖A‖) the weighted space
of m-dimensional vector sequences f = {fk}∞k= ⊂ C

m, where ‖A‖ is any norm of a ma-
trix A, and every element fk of the sequence is an m-dimensional column vector. Let
fk = (fk,, fk,, . . . , fk,m)T ; then {fk,i}∞k= ∈ l, i = , , . . . , m, and hence ‖fk,i‖ =

∑∞
k= |fk,i| < ∞

and ‖f ‖ =
∑m

i= ‖fk,i‖. The space l
m(‖A‖) equipped with the weighted norm ‖f ‖lm(‖A‖) =

(
∑m

i=
∑∞

k= ‖Ak‖|fk,i|) 
 is a Banach space.
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Lemma  Assume that Q(x) ≥  and Ak ≥  for k = , , . . . . Then the form tX,A,Q is non-
negative and closed.

Proof It is obvious that the form tX,A,Q is nonegative if Q(x) ≥  and Ak ≥ . Now we prove
the closeness of the form tX,A,Q. Let us equip HX,A,Q = Dom(tX,A,Q) with the norm

‖Y‖
HX,A,Q

= tQ[Y ] + tR[Y ] + ‖Y‖
L(R+,Cm).

Let {Yn}∞n= be a Cauchy sequence in HX,A,Q. Since W ,
 (R+,Cm) and l

m(‖A‖) are Hilbert
spaces, there exist Y ∈ W ,

 (R+,Cm) and

{ξk}∞k= ∈ l
m
(‖A‖)

such that

lim
n→∞‖Yn – Y‖W ,

 (R+,Cm) = 

and

lim
n→∞

∞∑

k=

‖Ak‖
∣
∣Yn(tk) – ξk

∣
∣ = ,

where ξi and Yn are m-dimensional vectors. Since the space W ,
 (R+,Cm) is continuously

embedded into C(R+,Cm), the Banach space of bounded continuous functions on R+.
Therefore,

lim
n→∞ Yn(x) = Y (x),

and then Y ∈HX,A,Q and

lim
n→∞‖Yn – Y‖HX,A,Q = .

In addition, since Q(x) ≥  and {Ak}∞k= ≥ ,HX,A,Q is a Hilbert space with the inner product

(Y , Z)HX,A,Q =
∫ ∞



(
Y ′, Z′)

m dx +
∫ ∞



((
Q(x) + E

)
Y , Z

)
m dx

+
∞∑

k=

(
AkY (xk), Z(xk)

)
m,

where E is the identity matrix. Then the form tX,A,Q is closed. �

Lemma  If the form tX,A,Q is lower semibounded, then the set Dom(H
X,A,Q) is a core of the

form tX,A,Q.

Proof We need to show that Dom(H
X,A,Q) is dense in Dom(tX,A,Q) with respect to the norm

‖Y‖
HX,A,Q

= tQ[Y ] + tR[Y ] + ‖Y‖
L(R+,Cm). Let D′

min be the linear span of C∞ functions with
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compact support in a single interval (xi–, xi), i ∈ N. Each function fi ∈ C∞
 ((xi–, xi),Cm)

can be extended to [,∞), and the extended function

f̃i(x) =

{
fi(x), x ∈ (xi–, xi),
θ , x ∈ [,∞)\(xi–, xi)

belongs to D′
min ⊂ Dom(H

X,A,Q).
We need to prove that for u ∈ Dom(tX,A,Q) and for all f ∈ Dom(H

X,A,Q),

(u, f ) =
∫ ∞



(
u′, f ′)

m dx +
∫ ∞



((
Q(x) + E

)
u, f

)
m dx +

∞∑

k=

(
Aku(xk), f (xk)

)
m =  (.)

implies that u = . Equation (.) holds for all f ∈ Dom(H
X,A,Q), and thus, for each interval

(xi–, xi), the equation

∫ xi

xi–

(
u′, f ′

i
)

m +
∫ xi

xi–

(
(Q + E)u, fi

)
m = 

holds for all fi ∈ C∞
 ((xi–, xi),Cm). Then u′′ = (Q+E)u on each interval (xi–, xi) in the sense

of distributions.
Since equation (.) holds for all f ∈ Dom(H

X,A,Q), integrating by parts, we get
u ∈ Dom((H

X,A,Q)∗). Then by a similar method as in Lemma , the only function u ∈
Dom(tX,A,Q) satisfying equation (.) is u = . So we obtain that the set Dom(H

X,A,Q) is a
core of the form tX,A,Q. �

Lemma  If the form tX,A,Q is closed and HX,A,Q is self-adjoint, then the operator associated
with the form tX,A,Q coincides with HX,A,Q = (HX,A,Q)∗.

Proof Integrating by parts, we can get from (.) that Dom(H
X,A,Q) ⊂ Dom(tX,A,Q). For

u, v ∈ Dom(H
X,A,Q),

tX,A,Q[u, v] =
∫ ∞



[(
u′, v′)

m +
(
Q(x)u, v

)
m

]
dx +

∞∑

k=

(
Aku(xk), v(xk)

)
m

=
(
H

X,A,Qu, v
)
.

Assume that T is the self-adjoint operator associated with tX,A,Q. Since Dom(H
X,A,Q) is

a core of the form tX,A,Q by Lemma , by the first representation theorem we have u ∈
Dom(T) and Tu = H

X,A,Qu, and hence T = HX,A,Q. �

Lemma  Assume that Q(x) ≥ , x ∈ R+. Let the forms tQ and t+
R be defined by (.) and

(.). Then the form tX,A+,Q = tQ + t+
R is nonnegative and closed.

Proof The proof is similar to that of Lemma . �

Lemma  Let qij ∈ L
loc(R+), and let the forms tQ and t±

R be given by (.) and (.).
(i) If μ–

max(Q(x)) and μ–
max(Ak) satisfy (.), then the form tX,A,Q is closed and lower

semibounded. Moreover, Dom(tX,A,Q) = Dom(tX,A+,Q+ ), and the operator associated
with tX,A,Q coincides with HX,A,Q.
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(ii) If μmax(Q(x)) = μ–
max(Q(x)) and μmax(Ak) = μ–

max(Ak), then conditions (.) are
necessary and sufficient for the form tX,A,Q to be lower semibounded.

Proof (i) By the Lemma  the form tX,A+,Qis closed. Moreover, by Lemma , t–
Q and t–

R are
infinitesimally t+

Q-bounded and hence infinitesimally tX,A+,Q+ -bounded. Using Lemma ,
we complete the proof.

(ii) Sufficiency is implied by (i). Let us prove necessity. Assume the converse, that is, the
second condition in (.) does not hold. Then there exists {nj}∞ ⊂N such that

∑

xk∈[nj ,nj+]

μ–
max(Ak) < –nj, j ∈N. (.)

Define ϕj(x) := ϕ(x – nj), j ∈ N, where ϕ ∈ C∞
 (R+,Cm) is such that sup pϕ ∈ (– 

 , 
 ),

 ≤ ‖ϕ‖ ≤ , and ϕ(x) = e, x ∈ [, ], where e denotes the m-dimensional column unit
vector whose first component is . By (.) and the form (.) we obtain tX,A,Q[ϕj] ≤
–nj + ‖ϕ‖

W ,(R+,Cm), and we note that when nj → ∞, tX,A,Q is not lower semibounded.
Hence, the contradiction finishes the proof. �

Corollary  If

inf
k∈N

μ–
max(Ak)

dk
> –∞, dk := xk – xk–, (.)

then the form tX,A = tX,A, is closed, and lower semibounded, and Dom(tX,A) = W ,
 (R+,Cm).

Moreover, the operator associated with the form tX,A coincides with HX,A.

Proof Clearly, (.) yields (.) and (.). Lemma  completes the proof. �

4 Discrete spectrum
4.1 Sufficient conditions and necessary conditions
In this section we find conditions under which the vectorial Schrödinger operator HX,A,Q

has a purely discrete spectrum. The discrete spectrum of a self-adjoint operator T , σd(T),
is the set of all isolated eigenvalues of T with finite multiplicity, and the essential spectrum
of T is the complement in σ (T) of σd(T) (see [, ]).

Theorem  Assume that qij ∈ L
loc(R+) and (.) is satisfied. Then the operator HX,A,Q is

lower semibounded and self-adjoint, and its spectrum σ (HX,A,Q) is discrete if, for every
ε > ,

∫ x+ε

x
μmin

(
Q(x)

)
dx +

∑

xk∈(x,x+ε)

μmin(Ak) → ∞ as x → ∞. (.)

If the spectrum σ (HX,A,Q) is discrete, then

∫ x+ε

x
μmax

(
Q(x)

)
dx +

∑

xk∈(x,x+ε)

μmax(Ak) → ∞ as x → ∞. (.)

Remark  Before giving the proof, we note the following facts about matrices.



Liu et al. Boundary Value Problems  (2016) 2016:24 Page 12 of 16

(i) If a matrix-valued function Q(x) ≥ , then its eigenvalues are all positive.
(ii) If Q(x) ∈ L

loc(R+,Cm×m), then the eigenvalue functions are also integrable.

Proof We divide the proof into two steps.
(i) First, assume that the potential Q(x) is lower semibounded. Let Y (x) = (y(x), y(x),

. . . , ym(x))T .
Sufficiency. Without loss of generality we assume that (Q(x)Y (x), Y (x))m ≥ (Y (x), Y (x))m.

By Lemma  the form tX,A,Q is closed in H = L(R+,Cm). Let HX,A,Q be the Hilbert space
generated by tX,A,Q. Let us show that the unit ball in HX,A,Q,

UX,A,Q :=

{

Y ∈ W ,


(
R+,Cm)

: ‖Y‖
W ,(R+,Cm)

+
∥
∥
(
Q(x)Y (x), Y (x)

)/∥∥
L(R+,Cm) +

∞∑

k=

(
AkY (xk), Y (xk)

)
m ≤ 

}

,

is compact in L(R+,Cm). Since the embedding W ,([, a],Cm) ↪→ L([, a],Cm) is com-
pact for any a > , it suffices to show that the tails

∫ ∞
N (Y (x), Y (x))m dx uniformly tend to

zero in UX,A,Q.
Let us divide the semiaxis R+ into intervals 
n := 
n(ε) of length ε, 
k ∩ 
j = ∅.

Clearly, for any Y ∈ W ,(R+,Cm) and any x, z ∈ 
n, we have

∣
∣
(
Y (x), Y (x)

)
m –

(
Y (z), Y (z)

)
m

∣
∣ = 

∣
∣
∣
∣

∫ x

z

(
Y (t), Y ′(t)

)
m dt

∣
∣
∣
∣

≤ 
∫ x

z

∣
∣
(
Y (t), Y ′(t)

)
m

∣
∣dt

≤ ∥
∥Y (x)

∥
∥

W ,(
n ,Cm). (.)

Since Y is continuous on R+, there exists tn ∈ 
n such that

∫


n

(
Q(x)Y (x), Y (x)

)
m dx +

∑

xk∈
n

(
AkY (xk), Y (xk)

)
m

=
∫


n

m∑

i=

m∑

j=

qijyjyi dx +
∑

xk∈
n

[ m∑

i=

m∑

j=

ak
ijyj(xk)yi(xk)

]

dx

≥
∫


n

μmin
(
Q(x)

) m∑

i=

|yi| dx +
∑

xk∈
n

μmin(Ak)
m∑

i=

∣
∣yi(xk)

∣
∣

=
m∑

i=

∣
∣yi(tn)

∣
∣

(∫


n

μmin
(
Q(x)

)
dx +

∑

xk∈
n

μmin(Ak)
)

. (.)

Integrating (.) over 
n and taking (.) into account, we obtain

∫


n

(
Y (x), Y (x)

)
dx

≤ ε
(
Y (tn), Y (tn)

)
+ ε

∥
∥Y (x)

∥
∥

W ,(
n ,Cm)
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≤ ε

(∫


n

(
Q(x)Y (x), Y (x)

)
m dx

+
∑

xk∈
n

(
AkY (xk), Y (xk)

)
m

)(∫


n

μmin
(
Q(x)

)
dx +

∑

xk∈
n

μmin(Ak)
)–

+ ε
∥
∥Y (x)

∥
∥

W ,(
n ,Cm). (.)

According to condition (.), there exists N ∈N such that

∫ x+ε

x
μmin

(
Q(x)

)
dx +

∑

xk∈(x,x+ε)

μmin(Ak) >  for n ≥ N . (.)

Combining (.) and (.), we get

∫ ∞

tN

(
Y (x), Y (x)

)
m dx ≤

∞∑

n=N

∫


n

(
Y (x), Y (x)

)
m dx

≤ ε

∞∑

n=

(∫


n

m∑

i=

m∑

j=

qijyjyi dx

+
∑

xk∈
n

[ m∑

i=

m∑

j=

ak
ijyj(xk)yi(xk)

])

+ ε
∥
∥Y (x)

∥
∥

W ,(R+,Cm)

≤ ε.

Hence,
∫ ∞

N (Y (x), Y (x))m dx uniformly tends to zero in UX,A,Q. By Lemma  the spectrum
σ (HX,A,Q) is discrete.

Necessity. Assume that condition (.) is violated. Then there exist ε >  and a sequence
xk → ∞ such that the inequality

∫ xn+ε

xn

μmax
(
Q(x)

)
dx +

∑

xk∈(xn ,xn+ε)

μmax(Ak) ≤ C < ∞, n ∈ N, (.)

holds with some C > . Let ϕ ∈ W ,(R+) with ‖ϕ‖W , =  and sup pϕ ⊂ (, ε). Let

ϕn(x) := ϕ(x – xn), n ∈ N. (.)

Clearly, ‖ϕn‖W , = ‖ϕ‖W , = . Since supx∈R+ |ϕ(x)| = C < ∞, we get

tX,A,Q[ϕn] + ‖ϕn‖
L =

∫

R+

[(
ϕ′

n(x),ϕ′
n(x)

)
m +

(
ϕn(x),ϕn(x)

)
m

+
(
Q(x)ϕn(x),ϕn(x)

)
m

]
dx +

∞∑

k=

(
Akϕn(xk),ϕn(xk)

)
m

≤  +
∫

R+

μmax
(
Q(x)

) m∑

i=

|ϕn,i| dx



Liu et al. Boundary Value Problems  (2016) 2016:24 Page 14 of 16

+
∑

xk∈(xn ,xn+ε)

μmax(Ak)
m∑

i=

∣
∣ϕn,i(xk)

∣
∣

≤  + C


∫ xn+ε

xn

μmax
(
Q(x)

)
dx + C



∑

xk∈(xn ,xn+ε)

μmax(Ak)

≤  + C
C.

Thus, the sequence {ϕn}∞ is bounded in HX,A,Q but is not compact in L(R+,Cm). By
Lemma  the spectrum σ (HX,A,Q) is not discrete.

(ii) Assume now that Q(x) satisfies condition (.). Then by Lemma (i) the operator
HX,A,Q is self-adjoint and lower semibounded if Ak (k = , , . . .) satisfy (.). Furthermore,
by (.), μmax(Q(x)) and μ+

max(Q(x)) satisfy (.) simultaneously. By the above considera-
tions, the spectrum of the operator HX,A,Q+ is discrete if μ+

max(Q(x)) satisfies (.). Note
that q– is infinitesimally tQ+ -bounded if Q(x) satisfies condition (.). This yields

W ,(
R+,Cm; Q

)
= HtQ = HtQ+ = W ,(

R+,Cm; Q+)
,

and the proof of Lemma  is finished. �

Remark  This result coincides with the corresponding result obtained in [] in the scalar
case (m = ), and in this case it is also necessary. But in the vectorial case, condition (.) is
no longer necessary. In the next subsection, by giving additional restrictions on symmetric
potential matrix Q(x) and Ak we obtain a sufficient and necessary condition.

Corollary  Let Q(x) and Ak satisfy (.). Then the spectrum σ (HX,A,Q) is discrete when-
ever

∑

xk∈(x,x+ε)

μmin(Ak) = ∞

for every ε > . If, in addition,

sup
x>

∫ x+ε

x
μmin

(
Q(t)

)
dt < ∞

for some ε > , then

∑

xk∈(x,x+ε)

μmax(Ak) = ∞

is necessary for σ (HX,A,Q) to be discrete.

Proof The proof is immediate from Theorem . �

Corollary  Let the symmetric potential function Q(x) and the matrix sequence {Ak} sat-
isfy (.). Assume also that d∗ = infk∈N dk > . Then the spectrum σ (HX,A,Q) is discrete if,
for every ε > ,

∫ x+ε

x
μmin

(
Q(x)

)
dx → ∞ as x → ∞. (.)
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Proof Sufficiency is immediate from Theorem . �

4.2 Sufficient and necessary conditions for a special case
In this subsection, we give some restrictions on Q(x) and Ak to get a sufficient and neces-
sary condition for the spectrum σ (HX,A,Q) to be discrete:

()
∑

i=j qij(x) ≤ aqjj(x), j = , , . . . , m,  ≤ a < ;
()

∑
i=j ak

ij ≤ bak
jj, j = , , . . . , m, k = , , . . . ,  ≤ b < .

Let Q(x) = Q(x) + Q(x) and Ak = Ak + Ak, where Q(x) = (qij(x)δij)m
i,j= and Ak =

(ak
ijδij)m

i,j=. By (.) and (.) we denote the following forms:

q[Y ] = q[Y ] + q[Y ] =
∫ ∞



(
Q(x)Y (x), Y (x)

)
m dx +

∫ ∞



(
Q(x)Y (x), Y (x)

)
m dx,

tR[Y ] = tR [Y ] + tR [Y ] =
∞∑

k=

(
Ak,Y (xk), Y (xk)

)
m +

∞∑

k=

(
Ak,Y (xk), Y (xk)

)
m.

Theorem  Under conditions ()-(), q[Y ] is q[Y ] relatively form bounded with bound
a < , and tR [Y ] is tR [Y ] relatively form bounded with bound b < .

Proof

q[Y ] =
∫ ∞



(
Q(x)Y (x), Y (x)

)
m dx =

∫ ∞



m∑

i,j=;i=j

qijyiyj dx

≤
∫ ∞


a

m∑

j=

qjjy
j dx = a

∫ ∞



(
Q(x)Y (x), Y (x)

)
m dx = aq[Y ] + c‖Y‖.

Similarly, tR [Y ] ≤ btR [Y ] + c‖Y‖, where c is a positive constant. Then by Definition 
the theorem is proved. �

We denote the operator corresponding to the differential expression

L = –d/dx + Q(x) +
∑

Akδ(x – xk)

by H. Obviously, H equals the direct sum of scalar operators Hi on L(R+) that are defined
by the expressions

Li = –d/dx + qii(x) +
∑

ak
iiδ(x – xk).

Then σ (H) =∪m
i=σ (Hi), which is obtained by the direct sum decomposition method of op-

erators (see []). Denote tH = q[Y ] + tR [Y ] + t[Y ]. Note that tX,A,Q = tH + q[Y ] + tR [Y ],
q[Y ] + tR [Y ] is tH relatively form bounded, and tH is associated with the operator H.
By Lemma  the norms ‖ · ‖tX,A,Q and ‖ · ‖H are equivalent. If iH : HH ↪→ L(R+,Cm) is
compact, then iH : HHX,A,Q ↪→ L(R+,Cm) is also compact. Thus, if σ (H) is discrete, then
σ (HX,A,Q) is also discrete.

It is evident that H has a purely discrete spectrum if and only if the operator Hi has such
a spectrum for all i = , , . . . , m. But the operator Hi is the ordinary ‘scalar’ Schrödinger
operator with positive potential and δ-interactions, and the theorem of discrete criterion
in [] holds. Hence. we get the following theorem.
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Theorem  Let Q(x) and Ak satisfy conditions ()-(). Then the spectrum σ (HX,A,Q) is
discrete if and only if, for each i = , , . . . , m and for every ε > ,

∫ x+ε

x
qii(t) dt +

∑

xk∈(x,x+ε)

ak
ii → ∞ as x → ∞.

Example  Let m = , Y (x) = (y(x), y(x))T , Q(x) =
( x– 

 x–

)
, Ak =

( k+ 
 k

)
, and xk =

√
k.

Then by Theorem  we have that the spectrum of such an operator is discrete.
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