
Journal of Internet Services
and Applications

Reniers et al. Journal of Internet Services and Applications (2017) 8:1
DOI 10.1186/s13174-016-0052-x

RESEARCH Open Access

Object-NoSQL Database Mappers: a
benchmark study on the performance
overhead
Vincent Reniers* , Ansar Rafique, Dimitri Van Landuyt and Wouter Joosen

Abstract

In recent years, the hegemony of traditional relational database management systems (RDBMSs) has declined in
favour of non-relational databases (NoSQL). These database technologies are better adapted to meet the
requirements of large-scale (web) infrastructures handling Big Data by providing elastic and horizontal scalability.
Each NoSQL technology however is suited for specific use cases and data models. As a consequence, NoSQL adopters
are faced with tremendous heterogeneity in terms of data models, database capabilities and application
programming interfaces (APIs). Opting for a specific NoSQL database poses the immediate problem of vendor or
technology lock-in. A solution has been proposed in the shape of Object-NoSQL Database Mappers (ONDMs), which
provide a uniform abstraction interface for different NoSQL technologies.
Such ONDMs however come at a cost of increased performance overhead, which may have a significant economic
impact, especially in large distributed setups involving massive volumes of data.
In this paper, we present a benchmark study quantifying and comparing the performance overhead introduced by
Object-NoSQL Database Mappers, for create, read, update and search operations. Our benchmarks involve five of the
most promising and industry-ready ONDMs: Impetus Kundera, Apache Gora, EclipseLink, DataNucleus and Hibernate
OGM, and are executed both on a single node and a 9-node cluster setup.
Our main findings are summarised as follows: (i) the introduced overhead is substantial for database operations
in-memory, however on-disk operations and high network latency result in a negligible overhead, (ii) we found
fundamental mismatches between standardised ONDM APIs and the technical capabilities of the NoSQL database, (iii)
search performance overhead increases linearly with the number of results, (iv) DataNucleus and Hibernate OGM’s
search overhead is exceptionally high in comparison to the other ONDMs.

Keywords: Object-NoSQL Database Mappers, Performance evaluation, Performance overhead, MongoDB

1 Introduction
Online systems have evolved into the large-scale web and
mobile applications we see today, such as Facebook and
Twitter. These systems face a new set of problems when
working with a large number of concurrent users and
massive data sets. Traditionally, Internet applications are
supported by a relational database management system
(RDBMS). However, relational databases have shown
key limitations in horizontal and elastic scalability [1–3].
Additionally, enterprises employing RDBMS in a

*Correspondence: vincent.reniers@cs.kuleuven.be
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, B-3001
Heverlee, Belgium

distributed setup often come at a high licensing cost,
and per CPU charge scheme, which makes scaling over
multiple machines an expensive endeavour.
Many large Internet companies such as Facebook,

Google, LinkedIn and Amazon identified these limitations
[1, 4–6] and in-house alternatives were developed, which
were later called non-relational or NoSQL databases.
These provide support for elastic and horizontal scalabil-
ity by relaxing the traditional consistency requirements
(the ACID properties of database transactions), and offer-
ing a simplified set of operations [3, 7, 8]. Each NoSQL
database is tailored for a specific use case and data model,
and distinction is for example commonly made between
column stores, document stores, graph stores, etc. [9].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208387733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-016-0052-x&domain=pdf
http://orcid.org/0000-0003-3895-702X
mailto: vincent.reniers@cs.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 2 of 16

This is a deviation from the traditional “one-size-fits-all”
paradigm of RDBMS [2], and leads to more diversity and
heterogeneity in database technology. Due to their spe-
cific nature and their increased adoption, there has been
a steep rise in the creation of new NoSQL databases.
In 2009, there were around 50 NoSQL databases [10],
whereas today we see over 200 different NoSQL technolo-
gies [11]. As a consequence, there is currently large het-
erogeneity in terms of interface, data model, architecture
and even terminology across NoSQL databases [7, 12].
Picking a specific NoSQL database introduces the risk
of vendor or technology lock-in, as the application code
has to be written exclusively to its interface [7, 13]. Ven-
dor lock-in hinders future database migrations, which in
the still recent and volatile state of NoSQL is undesirable,
and additionally makes the creation of hybrid and cross-
technology or cross-provider storage configurations [14]
more challenging.
Fortunately, a solution has been proposed in the shape

of Object-NoSQL Database Mappers (ONDM) [7, 12, 13].
ONDMs provide a uniform interface and standardised
data model for different NoSQL databases or even rela-
tional databases. Even multiple databases can be used
interchangeably, a characteristic called as polyglot or
cross-database persistence [13, 15]. These systems sup-
port translating a common data model and operations to
the native database driver. Despite these benefits, several
concerns come to mind with the adoption of such mid-
dleware, and the main drawback would be the additional
performance overhead associated with mapping objects
and translating APIs. The performance impact potentially
has serious economic consequences as NoSQL databases
tend to run in large cluster environments and involvemas-
sive volumes of data. As such, even the smallest increase
in performance overhead on a per-object basis can have a
significant economic cost.
In this paper, we present the results of an extensive

and systematic study in which we benchmark the per-
formance overhead of five different open-source Java-
based ONDMs: Impetus Kundera [16], EclipseLink [17],
Apache Gora [18], DataNucleus [19] and Hibernate
OGM [20]. These were selected on the basis of indus-
try relevance, rate of ongoing development activity and
comparability. We benchmarked the main operations of
write/insert, read, update and a set of six distinct search
queries on MongoDB. MongoDB is currently one of the
most widespread adopted, and mature NoSQL document
databases, in addition it is the only mutually supported
database by all five ONDMs. The benchmarks presented
in this paper are obtained in a single-node MongoDB
setup and in a distributed MongoDB cluster consisting of
nine nodes.
The main contribution of this paper is that it quantifies

the performance cost associated with ONDM adoption,

as such allowing practitioners and potential adopters to
make informed trade-off decisions. In turn, our results
inform ONDM technology providers and vendors about
potential performance issues, allowing them to improve
their offerings where necessary. In addition, this is to our
knowledge the first study that involves an in-depth per-
formance overhead comparison for search operations. We
specifically focus on six distinct search queries of varying
complexity.
In addition, the study is a partial replica study of an

earlier performance study [21], which benchmarked three
existing frameworks. We partially confirm the previous
findings, yet in turn strengthen this study by: (i) adopting
an improved measurement methodology, with the use of
Yahoo!’s Cloud Serving Benchmark (YCSB) [3]—an estab-
lished benchmark for NoSQL systems – and (ii) focusing
on an updated set of promising ONDMs.
Our main findings first and foremost confirm that cur-

rent ONMDs do introduce an additional performance
overhead that may be considered substantial. As these
ONDMs follow a similar design, the introduced overhead
is roughly comparable: respectively the write, read and
update overhead ranges between [4− 14%], [4− 21%] and
[60 − 194%] (on a cluster setup). The overhead on update
performance is significant due to interface mismatches,
i.e. situations in which discrepancies between the uni-
form API and the NoSQL database capabilities negatively
impact performance.
Regarding search, we found that query performance

overhead can become substantial, especially for search
queries involving many results, and secondly, that
DataNucleus and Hibernate OGM’s search overhead is
exceptionally high in comparison to the other ONDMs.
The remainder of this paper is structured as fol-

lows: Section 2 discusses the current state and back-
ground of Object-NoSQL Database Mappers. Section 3
states the research questions of our study and Section 4
discusses the experimental setup and motivates the selec-
tion of ONDMs. Section 5 subsequently presents the
results of our performance evaluation on write, read, and
update operations, whereas Section 6 presents the perfor-
mance results of search operations. Section 7 discusses the
overall results, whereas Section 8 connects and contrasts
our work to related studies. Finally, Section 9 concludes
the paper and discusses our future work.

2 Object-NoSQL DatabaseMappers
This section provides an overview of the current state of
Object-NoSQL Database Mappers (ONDMs) and moti-
vates their relevance in the context of NoSQL technology.

2.1 Object-mapping frameworks for NoSQL
In general, object mapping frameworks convert in-
memory data objects into database structures (e.g.

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 3 of 16

database rows) before persisting these objects in the
database. In addition, such frameworks commonly pro-
vide a uniform, technology-independent programming
interface and as such enable decoupling the application
from database specifics, facilitating co-evolution of the
application and the database, and supporting the migra-
tion towards other databases.
In the context of relational databases, such frameworks

are commonly referred to as “Object-Relational Map-
ping” (ORM) tools [22], and these tools are used exten-
sively in practice. In a NoSQL context, these frameworks
are referred to as “Object-NoSQL Database Mapping”
(ONDM) tools [12] or “Object-NoSQL Mapping (ONM)”
tools [23].
In the context of NoSQL databases, data map-

ping frameworks are highly compelling because of the
increased risk of vendor lock-in associated to NoSQL
technology: without such platforms, the application has to
be written for each specific NoSQL database and due to
the heterogeneity in technology, programming interface
and data model [7, 13], later migration becomes diffi-
cult. As shown in an earlier study, the use of ONDMs
simplifies porting an application to another NoSQL
significantly [21].
An additional benefit is the support for multiple

databases, commonly referred to as database interoper-
ability or cross-database and polyglot persistence [13, 15].
Cross-database persistence facilitates the use of multi-
ple NoSQL technologies, each potentially optimised for
specific requirements such as fast read or write perfor-
mance. For example, static data such as logs can be stored
in a database that provides very fast write performance,
while cached data can be stored in an in-memory key-
value database. Implementing such scenarios without an
object-database mapper comes at the cost of increased
application complexity.
However, ONDM technology only emerged fairly

recently, and its adoption in industry is rather mod-
est. Table 1 outlines the benefits and disadvantages of
using ONDM middleware. The main argument against
the adoption of ONDMs is the additional performance
overhead. The study presented in this paper focuses on
quantifying this overhead. In the following section, we
outline the current state of ONDMmiddleware.

2.2 Current state of ONDMs
In this paper, we focus on object-database map-
pers that support application portability over multiple
NoSQL databases. Examples are Hibernate OGM [20],
EclipseLink [17], Impetus Kundera [16] and Apache
Gora [18].
Table 2 provides an overview of themain features of sev-

eral ONDMs such as: application programming interfaces
(APIs), support for query languages and database support.
The API is the predominant characteristic as it deter-

mines the used data model and the features that are made
accessible to application developers. A number of stan-
dardised persistence interfaces exist, such as the Java Per-
sistence API (JPA) [24], Java Data Objects (JDO) [25] and
the NPersistence API [26] for .NET. Some products such
as Apache Gora [18] or offer custom, non-standardised
development APIs.
Many of the currently-existing ODNMs (for Java) imple-

ment JPA. Examples are EclipseLink [17], DataNucleus
[19] and Impetus Kundera [16]. Some of these products
support multiple interfaces. For example, DataNucleus
supports JPA, JDO and REST. JPA relies extensively on
annotations. Classes and attributes are annotated to indi-
cate that their instances should be persisted to a database.
The annotations can cover aspects such as the rela-
tionships, actual column name, lazy fetching of objects,
predefined query statements and embedding of entities.
Associated with JPA is its uniform query language

called the Java Persistence Query Language (JPQL) [24].
It is a portable query language which works regardless
of the underlying database. JPQL defines queries with
complex search expressions on entities, including their
relationships [24].
The uniform interface (e.g. JPA) and query language (e.g.

JPQL) allow the user to abstract his/her application soft-
ware from the specific database. However, this abstraction
comes at a performance overhead cost, which stems from
translating operations and data objects to the intended
native operations and data structures and vice versa. For
example, on write, the object is translated to the intended
data structure of the underlying NoSQL database, while
on read, the query operation is translated to the native
query. Once the result is retrieved, the retrieved data
structure is converted back into an object.

Table 1 Advantages and disadvantages of adopting ONDMmiddleware

Advantages Disadvantages

Unified interface, query language and data model for Performance overhead incurred from translating the
multiple databases uniform interface and data model to its native counterparts

Increased application maintainability

Cross-database persistence and database portability Potential loss of database-specific features due to the
Third-party functionality (e.g. caching) abstraction level of the ONDM

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 4 of 16

Table 2 Features and database support for the evaluated ONDMs

Hibernate OGM Kundera Apache Gora EclipseLink DataNucleus

Evaluated Version 4.1.1 Final 2.15 0.6 2.5.2 5.0.0.M5

Interface JPA JPA, REST Gora API JPA JPA, JDO, REST

Query Languages JPQL, Native Queries JPQL, Native Queries Query interface JPQL, Expressions, JPQL, JDOQL,
Native Queries Native Queries

RDBMS ✕ ✓ ✕ ✓ ✓

NoSQL Databases MongoDB, Neo4j, MongoDB, Neo4j, MongoDB, HBase, Cassandra, MongoDB, JMS, XML, MongoDB, HBase,
Ehcache, CouchDB, CouchDB, Cassandra, Apache Solr, Oracle AQ, Oracle NoSQL, Cassandra, Neo4j,
Infinispan ElasticSearch, HBase, Apache Accumulo JSON, XML,

Redis, Oracle NoSQL Amazon S3,
GoogleStorage,
NeoDatis

Database support for such mapping and translation
operations varies widely. For example, EclipseLink is a
mature ORM framework which has introduced NoSQL
support only gradually over time, and it currently only
supports Oracle NoSQL and MongoDB. While Kundera
was intended specifically for NoSQL databases, it now
also provides RDBMS support by using Hibernate ORM.
Despite the heterogeneity between RDBMS and NoSQL,
a combination of both can be used.
The following section introduces our main research

questions, upon which we have built this benchmark
study.

3 Research questions
Our study is tailored to address the following research
questions:

RQ1 What is the overhead (absolute and relative) of a
write, read and update operation in the selected
ONDMs?

RQ2 What is the significance of the performance over-
head in a realistic database deployment?

RQ3 What is the impact of the development API on the
performance overhead?

RQ4 How does the performance overhead of a JPQL
search query (search on primary key) compare to
that of the JPA read operation (find on primary key)?

RQ5 What is the performance overhead of JPQL query
translation, and does the nature/complexity of the
query play a role?

Expectations and initial hypotheses. We summarise
our expectations and up-front hypotheses below:

• RQ1: Although earlier studies [21, 23] have yielded
mixed results, in general, the performance overhead
has been shown to be rather substantial: ranging
between 10 and 70% depending on the operation for a
single-node setup. DataNucleus in particular is
shown to have tremendous overhead [23]. We expect

to confirm such results and thus increase confidence
in these findings.

• RQ2: ONDMs are by design independent of the
underlying database, and therefore, we expect the
absolute overhead not to be affected by the setup or
the complexity of the database itself. As a
consequence, we expect the absolute overhead to
potentially more significant (i.e. a higher relative
overhead) for low-latency setups (e.g. a single node
setup or an in-memory database), in comparison to
setups featuring more network latency or disk I/O
(e.g. a database cluster or a disk-intensive setup).

• RQ3:We expect to find that the programming
interface does have a certain impact on performance.
For example, the JPA standard relies heavily on code
annotations, we expect the extensive use of reflection
on these objects and their annotations within the
ONDMmiddleware to substantially contribute to the
overall performance overhead.

• RQ4: This is in fact an extension to RQ3, focusing on
which development API incurs the highest
performance overhead. On the one hand, JPA is
costly due to its reliance on annotation-based
reflection, while on the other hand, query translation
can become costly as well. To our knowledge, this is
the first benchmark study directly comparing the JPA
and JPQL performance overhead over NoSQL search
queries.

• RQ5:We expect complex queries to be more costly
in query translation. Additionally, queries retrieving
multiple results should have increased overhead as
each result has to be mapped into an object.

The following section presents the design and setup of
our benchmarks that are tailored to provide answers to the
above questions.

4 Benchmark setup
This section discusses the main design decisions involved
in the setup of our benchmark study. Section 4.1 first

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 5 of 16

discusses the overall architecture of an ONDM frame-
work, and then Section 4.2 discusses the measurement
methodology for the performance overhead. Section 4.3
subsequently motivates our selection of Object-NoSQL
Database Mapping (ONDM) platforms for this study,
whereas Section 4.4 elaborates further on the bench-
marks we have adopted and extended for our study. Next,
Section 4.5 discusses the different deployment configu-
rations in which we have executed these benchmarks.
Finally, Section 4.6 summarises how our study is tailored
to provide answers to the research questions introduced
in the previous section.

4.1 ONDM Framework architecture
The left-hand side of Fig. 1 depicts the common archi-
tecture of Object-NoSQL Database Mappers (ONDMs)
which is layered. As shown at the top of Fig. 1, an
ONDM platform supports a Uniform Data Model
in the application space. In the Java Persistence API
(JPA) for example, these are the annotated classes. In
Apache Gora however, mapping classes are generated
from user specifications. An ONDM provides a Uniform
Interface based on the Uniform Data Model. The
Middleware Engine implements the operations of the
Uniform Interface and delegates these operations to
the correct Database Mapper.
The Database Mapper is a pluggable module that

implements the native Database Driver’s API.
Different Database Mapper modules are created for
different NoSQL databases. The Database Mapper
converts the uniform data object to the native data struc-
ture, and calls the corresponding native operation(s). The
Database Driver executes these native operations
and handles all communication with the database.
The right hand side of Fig. 1 illustrates the situation

in which no ONDM framework is employed, and the

Fig. 1 Generic architecture of an Object-NoSQL Database Mapper
(left), in comparison to a native client (right)

application directly uses the native client API to commu-
nicate with the database.
Comparing both alternatives in Fig. 1 clearly illustrates

the cost of object mapping as a key contributor to the
performance overhead introduced by ONDM platforms.
Both write requests (which involve translating in-memory
objects or API calls to native API calls) and read requests
or search queries (which involve translating database
objects to application objects) rely extensively on database
mapping. Our benchmark study, therefore, focuses on
measuring this additional performance overhead.
In addition, Fig. 1 clearly shows that an ONDM is

designed to be maximally technology-agnostic: other than
the Database Mapper which makes abstraction of a
specific database technology, the inner workings of the
ONDM do not take the specifics of the selected database
technology into account.

4.2 Measurement methodology
In order to measure the overhead of ONDMs, we first
measure tONDM, the total time it takes to perform a
database operation (read, write, update, search), which
is the sum of time spent by the ONDM components
depicted on the left-hand side of Fig. 1.
In addition, we measure tDB, the total time it takes

to execute the exact same database operations using the
native client API (right-hand side of Fig. 1). By subtract-
ing both measurements, we can characterise the perfor-
mance overhead introduced by the ODNM framework
as tOverhead = tONDM − tDB. This is exactly the addi-
tional overhead incurred by deciding to adopt an ONDM
framework instead of developing against the native
client API.
To maintain comparability between different ODNMs,

wemust: (i) select a specific database and database version
that is supported by the selected ONDM frameworks (our
baseline for comparison), (ii) ensure that each ONDM
framework uses the same database driver to communi-
cate with the NoSQL database, (iii) run the exact same
benchmarks in our different setups. These decisions are
explained in the following sections.

4.3 ODNM selection
Our benchmark study includes the following five
ONDMs: EclipseLink [17], Hibernate OGM [20], Impetus
Kundera [16], DataNucleus [19] and Apache Gora [18].
Table 2 lists these ONDMs and summarises their main
characteristics and features.
As mentioned above, to maintain comparability of

our benchmark results, it is imperative to ensure that
the selected ONDMs employ the exact same NoSQL
database, and database driver version as our baseline.
Driven by Table 2, we have selected MongoDB version 2.6
as the main baseline for comparison. In contrast to other

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 6 of 16

NoSQL technologies such as Cassandra for which many
alternative client APIs and drivers are available, Mon-
goDB provides only a single Java driver which is used by
all of the selected frameworks. Furthermore, MongoDB
can be used in various deployment configurations such
as a single node or cluster setup, which will allow us to
address RQ2.
In addition to MongoDB support as the primary selec-

tion criterion, we have also taken into account other com-
parability and industry relevance criteria: (i) JPA support,
(ii) search support via JPQL, (iii) maturity and level of
ongoing development activity. For example, we have delib-
erately excluded frameworks such as KO3-NoSQL [27] as
their development seems to have been discontinued.
Although Apache Gora [18] is not JPA-compliant, it is

included for the purpose of exploring the potential impact
of the development API on the performance overhead
introduced by these systems (RQ3).

4.4 Benchmark design
Our benchmarks are implemented and executed on top
of the Yahoo! Cloud Serving Benchmark (YCSB) [3], an
established benchmark framework initially developed to
evaluate the performance of NoSQL databases. YCSB pro-
vides a number of facilities to accurately measure and
control the benchmark execution of various workloads on
NoSQL platforms.

Read, write, update. YCSB comes with a number of pre-
defined workloads and is extensible, in the sense that
different database client implementations can be added
(by implementing the com.yahoo.ycsb.DB interface,
which requires implementations for read, update, insert
and delete (CRUD) operations on primary key).
Our implementation provides such extensions for

the selected ONDMs (Hibernate OGM, DataNucleus
EclipseLink, Kundera and Apache Gora). Especially the
implementations for the JPA-compliant ONDMs are
highly similar. To avoid skewing the results and to ensure
comparability of the results, we did not make use of
any performance optimization strategies offered by the
ONDMs, such as caching, native queries and batch oper-
ations.
Furthermore, since implementations for NoSQL

databases were already existing, we simply reused the
client implementation for MongoDB for obtaining our
baseline measurements.

Search. YCSB does not support benchmarking search
queries out of the box. Therefore, we have defined a set
of 6 read queries, which we execute on each platform
in YCSB. These queries differ in both complexity and
number of results. In support of these benchmarks, we
populate our existing objects with more realistic values

such as firstName and lastName, instead of YCSB’s
default behavior which involves generating lenghty strings
of random characters.
Note that we do not benchmark query performance for

Apache Gora, since it has no support for JPQL and lacks
support for basic query operators such as AND, OR1.

4.5 Deployment setup
To address RQ2 and assess the impact of the database
deployment configuration on the performance overhead
introduced by ONDMs, we have executed our bench-
marks over different deployment configurations. Figure 2
depicts these different configurations graphically. The
client node labeled YCSB Benchmark runs the ONDM
framework or the native driver which are driven by the
YCSB benchmarks discussed above.
The single-node setup (cf. Fig. 2a) involves two com-

modity machines, one executing the YCSB benchmark,
and the other hosting a single MongoDB database
instance.
The MongoDB cluster (cf. Fig. 2b) consists of a sin-

gle router server, 3 configuration servers and 5 database
shards. Each database is sharded and all of the inserted
entities in each database are load balanced across all 5
database shards without replication.
Each node consists of a Dell Optiplex 755 (Intel® Core™

2 Duo E6850 3.00GHz, 4GB DDR2, 250GB hard disk).
In both cases, the benchmarks were executed in a local
lab setting, and the average network latency between
nodes in our lab setup is quite low: around 135μs. As

YCSB Benchmark MongoDB

(a)

YCSB Benchmark Router

Configuration servers

Database shards

(b)
Fig. 2 Deployment setups: a single-node setup and b 9-node cluster

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 7 of 16

a consequence, our calculations of the relative overhead
often represent the absolute worst case.

4.6 Setup: research questions
Below, we summarise how we address the individual
research questions introduced in Section 3:

• RQ1: Create, read, update.We answer RQ1 by
running the benchmarks discussed above for the
create, read and update operations. Our benchmarks
are sequential: in the load phase, 20 million entities
(20GB) are written to the database. In the transaction
phase, the desired workload is executed on the data
set (involving read and update). The inserted entity is
a single object.

• RQ2: Significance of performance overhead. To
put the absolute performance overhead
measurements into perspective, we have executed
our benchmarks in two different environments: (i) a
remote single-node MongoDB instance, and (ii) a
9-node MongoDB cluster. These concrete setups are
depicted in Fig. 2. In both cases, the actual execution
of the benchmark is done on a separate machine to
avoid CPU contention. The inserted data size
consumes the entire memory pool of the single node
and cluster shards. Read requests are not always able
to find the intended record in-memory, resulting in
lookup on disk. Based on the two types of responses
we determine the general impact of ONDMs on
overhead for deployments of varying data set sizes
and memory resources.

• RQ3: Impact of development API. By comparing
the results for the JPA middleware (Kundera,
Hibernate ORM, DataNucleus and EclipseLink) to
the results for Apache Gora (which offers custom,
non-JPA compliant developer APIs), we can at least
exploratively assess the potential performance impact
of the interface.

• RQ4: JPA vs JPQL. To answer RQ5, we compare the
basic JPA find on primary key (read lookup) to a
JPQL query on primary key. By comparing both, we
can assess the extra overhead cost of JPQL query
translation.

• RQ5: Search query performance overhead.We
have benchmarked queries on secondary indices in
increasing order of query complexity for the ONDMs
and compare the results to the benchmarks of the
native MongoDB client API.

The next two sections present and discuss our findings
in relation to these five research questions.

5 Write, read and update performance results
This section presents the results of our benchmarks that
provide answers to questions RQ1-3. Research questions

RQ4-5 regarding search performance are discussed in
Section 6.
The next sections first determine the overhead intro-

duced by the selected ONDMs on the three operations
(write, read, and update) in the context of the single
remote node setup. In order to understand how the
ONDMs introduce overhead, the default behaviour of
MongoDB (our baseline for comparison) must be taken
into account, which we discuss in the next Section 5.1.

5.1 Database behaviour
In our benchmarks, twenty million records (which corre-
sponds to roughly 20GB) are inserted into the single node
MongoDB database. Considering the machine only has
4GB RAM, it is clear that not all of the records will fit
in-memory. As a consequence, read operations will read
a record from memory around 5% of the time, but mainly
require disk I/O. In-memory operations are, on average,
30 times as fast as operations requiring disk I/O. Similarly,
the update operations will only be able to update a sub-
set of objects in-memory. This, however, does not apply
to the write operation: on write, the database regularly
flushes records to disk, which also influences the base-
line. Figure 3 shows the distribution in latency for each
type of operation.We can clearly identify a bimodal distri-
bution for read and update operations. Write operations
are normally distributed, however skewed to the right, as
expected.
The aim of this study is to identify the overhead intro-

duced by ONDMs. However, the variance on latency for
objects on-disk is quite high (±25ms) and in this case, the
behaviour of the ONDM frameworks may no longer be
the contributing factor determining the overhead. There-
fore, we have analysed the separate distributions of read
and update. To alleviate this, we compare both data sets
(in-memory versus on-disk) separately.

5.2 RQ1 Impact on write, read and update performance
on a single node

Table 3 shows the overhead for write, read and update
operations. Read and update operations are divided
according to the overhead for objects in-memory and
on-disk. We first discuss the results for operations in-
memory. The write and read overhead of ONDMs ranges
respectively between [9.9%, 36.5%] and [6.7%, 42.2%] and
as such may be considered significant. However, the
update operation is considerably slower and introduces
twice as much latency for a single update operation in
comparison to the native MongoDB driver2. The main
reason for this is that update operations in the ODNMs
frameworks first perform a read operation before actu-
ally updating a certain object. This is in contrast to the
native database’s capabilities: for example MongoDB can
update records without requiring a read. Surprisingly

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 8 of 16

MongoDB write

Latency (µs)

F
re

qu
en

cy

0 2000 6000 10000

0
20

00
50

00

MongoDB read

Latency (µs)
F

re
qu

en
cy

0 10000 30000 50000

0
60

00
0

14
00

00

MongoDB update

Latency (µs)

F
re

qu
en

cy

0 10000 30000 50000

0
40

00
0

10
00

00

(a) (b) (c)

Fig. 3MongoDB latency distribution for a write, b read and c update operations on a single node

enough, each of the observed frameworks require a read
before update, resulting in the addition of read latency on
update and thus significant overhead. Moreover, DataNu-
cleus executes the read again, even though the object
provided on update is already read, thus executing a read
twice. This is a result of DataNucleus its mechanisms to
ensure consistency, and local objects are verified against
the database. The requirement of read on update in the
ONDMs is a clear mismatch between the uniform inter-
face and the native database’s capabilities.
While operations on in-memory data structures show

consistent overhead results, this is not the case for oper-
ations which trigger on-disk lookup. It may seem that the
ONDM frameworks in some cases outperform the native
database driver, but this is mainly due to the variance of
database latency. The ordering in performance is not pre-
served for on-disk operations, and Kundera in particular
experienced a higher latency. Considering the small over-
head of around [15μs, 300μs] which ONDMs introduce
for operations in-memory, this is only a minimal con-
tributor in the general time for on-disk operations. For
example, MongoDB takes on average 15.9ms ± 5.2ms for
read on-disk. This is an increase in latency of 2 to 3 orders
of magnitude. In other words, the relative overhead intro-
duced by ONDMs is insignificant, when data needs to be
searched for on-disk.

5.3 RQ2: Impact of the database topology
As shown for a single remote node, the overhead on write,
read or update is significant for in-memory data. In case
of the cluster, we expect the absolute overhead to be com-
parable to the single-node setup. Table 4 shows the results
for write, read and update. As shown, the relative over-
head percentages are substantially smaller in comparison
to the single node. EclipseLink has only a minor write
and read overhead of respectively 2.5 and 3.6%, which can
be explained by considering that the absolute overhead
remains more or less constant, while the baseline latency
does increase. For example, EclipseLink’s absolute read
overhead is 15μs for the single node, and identically 15μs
on the cluster. However, the write overhead decreases
from 43μs to 29s. This is attributed to the fact that Mon-
goDB experienced more outliers, as its standard deviation
for write is 12μs higher. The behaviour of each run is
always slightly different, therefore the standard deviation,
and thus behaviour of the database must be taken into
account when interpreting these results. The ideal case is
read in-memory, where the standard deviation is almost
identical for all four frameworks and the native MongoDB
driver. In general, the write and read overhead is still quite
significant and ranges around [4%, 9%] for EclipseLink and
Kundera, which are clearly more optimised than the other
frameworks.

Table 3 Average latency and relative overhead for each platform on a single node

Write Read in-memory Read on-disk Update in-memory Update on-disk

Samples n = 20.000.000 n = 45.000 n = 750.000 n = 39.000 n = 750.000
Platform Latency (μs) Latency (μs) Latency (ms) Latency (μs) Latency (ms)

MongoDB 403 ± 110 - 217 ± 34 - 15.9 ± 5.2 - 298 ± 106 - 19.3 ± 9.1 -

EclipseLink 446 ± 105 10.8% 232 ± 41 6.7% 14.2 ± 5.0 −10.45% 579 ± 91 93.9% 16.9 ± 8.0 −12.0%

Kundera 442 ± 96 9.9% 256 ± 57 17.7% 17.1 ± 5.6 +8.0% 338 ± 56 13.3% 20.7 ± 9.8 +7.6%

Hibernate OGM 452 ± 72 12.3% 289 ± 42 32.8% 15.1 ± 6.5 −4.7% 620 ± 53 107.6% 16.8 ± 8.0 −12.8%

Apache Gora 495 ± 92 22.9% 282 ± 65 29.8% 14.5 ± 5.0 −8.5% 570 ± 108 91.0% 17.4 ± 8.2 −9.5%

DataNucleus 550 ± 76 36.5% 309 ± 64 42.2% 14.3 ± 5.0 −9.8% 882 ± 49 194.8% 17.7 ± 8.3 −8.0%

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 9 of 16

Table 4 Average latency and relative overhead for each platform on a cluster

Write Read inmemory Read on disk Update inmemory Update on disk

Samples n = 20.000.000 n = 360.000 n = 610.000 n = 300.000 n = 600.000
Platform Latency (μs) Latency (μs) Latency (ms) Latency (μs) Latency (ms)

MongoDB 694 ± 90 - 434 ± 26 - 11.7 ± 3.8 - 534 ± 122 - 14.6 ± 6.7 -

EclipseLink 723 ± 78 4.1% 449 ± 27 3.6% 11.0 ± 3.5 −5.4% 1052 ± 72 97.1% 15.2 ± 6.8 3.6%

Kundera 725 ± 79 4.4% 471 ± 27 8.7% 11.2 ± 3.5 −4.2% 858 ± 57 60.8% 15.9 ± 7.4 8.9%

Hibernate OGM 764 ± 68 10.1% 505 ± 28 16.4% 11.2 ± 3.6 −3.6% 1083 ± 67 102.9% 14.9 ± 6.6 2.1%

Apache Gora 791 ± 62 14.0% 506 ± 26 16.7% 11.5 ± 3.7 −1.2% 1034 ± 75 93.7% 15.7 ± 7.2 7.5%

DataNucleus 788 ± 54 13.6% 526 ± 27 21.2% 11.4 ± 3.6 −2.2% 1567 ± 40 193.8% 15.4 ± 6.5 5.5%

In case of update, the frameworks again introduce a sub-
stantial overhead, because they perform a read operation
before an update. The cost of the additional read is even
higher in the cluster context, considering that a single read
takes around 434μs.
When operations occur on-disk, it may seem that the

frameworks outperform the baseline. Once again, this is
attributed to the general behaviour of the MongoDB clus-
ter. The standard deviation for reading on-disk for the
baseline is, for example, 10% higher than the frameworks.
The results of each workload execution may also vary due
to records being load balanced at run-time. However, the
cluster allows for a more precise determination of the
overhead as there are more memory resources available,
which in turn results in less variable database behaviour
such as on-disk lookups. In addition, the write perfor-
mance is less affected by the regular flush operation of a
single node.

5.4 RQ3: Impact of the interface on performance
In contrast to the four JPA-compliant frameworks, we now
include Apache Gora in our benchmarks, which offers a
non-standardised, REST-based programming interface.
Tables 3 and 4 presents the average latency of Apache

Gora for write, read and update on the two database
topologies. Even though the interface and data model is
quite different from JPA, the overhead is very similar.
Surprisingly enough, we do not see a large difference

in update performance. As we actually observe the same
behaviour for Apache Gora’s update operation: Apache
Gora’s API specifies no explicit update operation, but
instead uses the same write method put(K key, T
object) for updating records. As a result, the object has
to be read before updating. If an object has not yet been
read and needs to be updated, it may be best to perform
an update query instead.

5.5 Conclusions
In summary, the following conclusions are made from
the results regarding RQ1-3 about the performance of
ONDMs:

• The write, read and update performance overhead
can be considered significant. Overheads are
observed between [4%, 14%] for write, [4%, 21%] for
read and [60%, 194%] for update, on the cluster.

• The relative overhead becomes insignificant as the
database latency increases. Examples are cases which
trigger on-disk lookups or even when a higher
network latency is present.

• Interface mismatches can exist between the uniform
interface and the native database’s capabilities which
decrease performance.

The next section discusses our benchmark results
regarding the performance overhead introduced by the
uniform query language JPQL for the JPA ONDMs.

6 JPQL search performance
Contrary to the name, NoSQL databases often do feature
a query language. In addition, ONDMs provide a uniform
SQL-like query language on top of these heterogeneous
languages. For example, JPA-based object-data mappers
provide a standardised query language called JPQL. We
have evaluated the performance of JPQL for the JPA-
based platforms: EclipseLink, Kundera, DataNucleus and
Hibernate OGM.
While it is clear that there can be quite some over-

head attached to a create, read or update operation, the
question RQ4 still remains whether or not the JPQL
search overhead is similar to JPA read. Section 6.1 there-
fore first compares two different ways to retrieve a single
object: using a JPQL search query, or with a JPA lookup.
Then, Section 6.2 addresses RQ5 by considering how

the performance overhead of a JPQL query is affected by
its nature and complexity.

6.1 RQ4: Single object search in JPA and JPQL
We compare a read for a single object using the JPA inter-
face, to the same read in JPQL query notation. This allows
us to determine the exact difference in read overhead
between JPA and JPQL for RQ4.

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 10 of 16

In order to be able to compare the results from the
earlier JPA read to the JPQL search on the same object
for RQ4, we have re-evaluated the read performance by
inserting 1 million entities (roughly 1GB of data). The
data set is completely in-memory for the single-node and
cluster setup, allowing for a consistent measurement of
the performance overhead. More specifically, our bench-
marks compare the performance overhead incurred by
Query A (JPA code) with the overhead incurred by
Query B (JPQL equivalent code) in Listing 1.

Listing 1 JPQL and JPA search on primary key

A) ent i tyManager . f i n d (Person . c l a s s , i d) ;

B) SELECT ∗ FROM Person p WHERE p . id = : i d

Table 5 shows the average latency for a find in JPA and a
search in JPQL for the same object.We can clearly see that
in general, a query in JPQL comes at a higher performance
overhead cost (RQ4). Additional observations:

• Kundera and EclipseLink both perform similarly in
JPA and JPQL single entity search performance.

• Interestingly, DataNucleus and Hibernate OGM are
drastically slower for JPQL queries.

In DataNucleus the additional JPQL overhead stems
from the translation of the query to a generic expres-
sion tree, which is then translated to the native MongoDB
query.
Additionally, DataNucleus makes use of a lazy query

loading approach to avoid memory conflicts. As a result,
it executes a second read call to verify if there are any
records remaining.
Code inspection in Hibernate OGM revealed that this

platform extensively re-uses components from the Hiber-
nate ORM engine, which may result in additional over-
head due to architectural legacy.
JPQL provides more advanced search functionality than

JPA’s single find on primary key. The next section dis-
cusses the performance benchmark results on a number
of JPQL queries of increasing complexity.

Table 5 The average latency on single object search in JPA,
JPQL, and MongoDB’s native read

Native driver 1-node read 9-node read

MongoDB 197μs 434μs

Platform JPA JPQL JPA JPQL
Latency Latency s Latency Latency

Kundera 243μs 285μs 478μs 520μs

EclipseLink 218μs 291μs 448μs 520μs

Hibernate OGM 270μs 1.804μs 521μs 2.098μs

DataNucleus 288μs 811μs 492μs 1.236μs

6.2 RQ5: Relation between the nature and complexity of
the query and its overhead

This section discusses the results of our search bench-
marks, and more specifically how the overhead of a search
query is related to the complexity of the query for RQ5.
Queries which retrievemultiple results incurmore perfor-
mance overhead, as all the results have to be mapped to
objects.
The benchmarked search queries are presented in

Listing 2. The respective queries are implemented in
JPQL and executed in the context of all four ONDM
platforms. Our baseline measurement is the equivalent
MongoDB native query. The actual search arguments are
chosen randomly at runtime by YCSB and are marked as
:variable.
The queries are ordered according to the average results

retrieved per query. Query C is a query on secondary
indices using the AND operator and always retrieves a sin-
gle result. By comparison to Query B, which retrieves a
single object on the primary key, we can determine the
impact of a more complex query text translation.
In contrast, Queries D, E and F retrieve respec-

tively on average 1.35, 94 and 2864 objects. When we
compare the performance of Queries D,E and F, we can
assess what impact the amount of results have on the over-
head. First, we evaluate the case where we retrieve a single
result with a more complex query.

Listing 2 JPQL search queries

C) SELECT p FROM Person p WHERE
(p . emai l = : emai l) AND
(p . personalnumber = : personalnumber)

D) SELECT p FROM Person p WHERE
p . emai l = : emai l

E) SELECT p FROM Person p WHERE
(p . personalnumber < : upperBound) AND
(p . personalnumber > : lowerBound)

F) SELECT p FROM Person p WHERE
(p . f i r s tName = : f i r s tName) OR
(p . lastName = : lastName)

6.2.1 JPQL search using the AND operator
Table 6 presents the results for Query C, the JPQL
search using AND on secondary indices. The query always
returns a single object in our experiment. In compari-
son to the results from JPQL search on a primary key in
Table 5, we observe an increase in baseline latency due to
the use of secondary indices and the AND operator.
Additionally for the ONDMs, we observe an increase

in read overhead for the more complex query on the sin-
gle node for Kundera and Eclipselink. As it turns out
EclipseLink is less efficient than Kundera in handling the
more complex query. Furthermore, DataNucleus shows a
higher increase in performance overhead, as the query is

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 11 of 16

Table 6 The average latency and overhead for Query C, which
retrieves a single object

1-node 9-node

Native driver Latency Overhead Latency Overhead

MongoDB 281μs - 621μs -

Platform

Kundera 408μs 127μs 743μs 122μs

EclipseLink 453μs 172μs 783μs 162μs

Hibernate OGM 590μs 309μs 921μs 301μs

DataNucleus 1.010μs 729μs 1.581μs 960μs

translated to a more complex expression tree first, and
secondly due to the additional read from its lazy loading
approach.
Surprisingly, Hibernate OGM’s absolute overhead on

the remote node is 309μs for the more complex Query
C, while for the simple search (Query B) on primary
key this was 1.607μs. Clearly, Hibernate OGM has some
inefficiencies regarding its query performance.

6.2.2 JPQL search on a secondary index
Query D is a simple search on a secondary index of
a person. The query retrieves on average 1.35 objects.
Therefore, multiple records can be retrieved on search
which have to be mapped into objects.
Table 7 shows the average latency and relative overhead

of Query D for the four JPA platforms, as for the similar
query implemented in MongoDB’s native query language.
Again, we conclude that Kundera and EclipseLink are

most efficient at handling the query.

6.2.3 JPQL search on a range of values
Table 8 shows the average latency for the JPQL search
Query E. The performance overhead introduced by the
ONDM platforms increases as on average 94 results
have to be mapped into objects, and ranges between
[453μs, 3.615μs] on the single node, and [473μs, 3.988μs]
on the cluster.

Table 7 The average latency and overhead for Query D, which
retrieves on average 1.35 objects

1-node 9-node

Native driver Latency Overhead Latency Overhead

MongoDB 250μs - 576μs -

Platform

Kundera 347μs 97μs 677μs 100μs

EclipseLink 396μs 146μs 729μs 152μs

Hibernate OGM 553μs 304μs 883μs 306μs

DataNucleus 957μs 707μs 1.520μs 944μs

Table 8 The average latency and overhead for Query E, which
retrieves on average 94 objects

1-node 9-node

Native driver Latency Overhead Latency Overhead

MongoDB 943μs - 1.901μs -

Platform

Kundera 1.396μs 453μs 2.374μs 473μs

EclipseLink 1.556μs 613μs 2.550μs 649μs

Hibernate OGM 4.558μs 3.615μs 5.889μs 3.988μs

DataNucleus 3.831μs 2.888μs 4.786μs 2.885μs

6.2.4 JPQL search using the OR operator
The average latency of Query F is presented in Table 9.
Again, the performance overhead introduced by the
ONDMs increases as this query involves retrieval of on
average 2.864 records, to the range of [7.6ms, 56.6ms]
and [10.2ms, 42ms] on the respective database topolo-
gies. These results allow us to highlight the specific
object-mapping cost of each ONDM. Kundera seems
to have significantly more efficient object-mapping than
EclipseLink. The average overhead for each object
retrieved ranges between [3μs, 17μs].

6.3 Search performance conclusion
In summary, several conclusions can be made from the
results regarding RQ4-5 about the query search perfor-
mance of ONDMs:

• JPQL search on a primary key has a higher overhead
than JPA’s find for the same object (RQ4).

• The performance overhead of a JPQL query is closely
related to the complexity of its translation and the
amount of results retrieved (RQ5) and there are large
differences between the ONDM in terms of the
performance cost associated to search queries.
Finally, the additional performance overhead per
search result in general decreases for queries

Table 9 The average latency and overhead for Query F, which
retrieves on average 2.864 objects

1-node 9-node

Native driver Latency Overhead Latency Overhead

MongoDB 20.226μs - 39.689μs -

Platform

Kundera 27.989μs 7.763μs 49.889μs 10.210μs

EclipseLink 33.640μs 13.414μs 56.059μs 16.370μs

Hibernate

OGM 58.806μs 38.580μs 75.234μs 35.545μs

DataNucleus 77.093μs 56.587μs 81.628μs 41.993μs

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 12 of 16

involving large amounts of results, which motivates
the use of JPQL for large result sets.

The next section discusses our benchmark results in
further detail.

7 Discussion
First, Section 7.1 discusses the main threats to valid-
ity. Then, we provide a more in-depth discussion about
some of the more surprising results of our bench-
marks, more specifically about Kundera’s fast update
performance (Section 7.2), and the observed mismatch
between standards such as JPA and NoSQL technology
(Section 7.3). Finally, we discuss the significant overhead
in search performance for Hibernate OGM and DataNu-
cleus (Section 7.4).

7.1 Threats to validity
As with any benchmark study, a number of threats to
validity apply. We outline the most notable topics below.

Internal validity We discuss a number of threats:

• Throughput rate control. A possible threat to
validity is related to the method of measurement.
Although YCSB allows specifying a fixed throughput
rate, we did not make use of this function. Limiting
the throughput ensures that no platform is
constrained by the resources of the server or client.
For example, the MongoDB native database driver
can process create, read and update operations at a
faster rate than the ONDMs, as shown. In such a
case, the MongoDB driver may reach its threshold of
maximum performance, as dictated by its
deployment constraints. In contrast, the ONDMs
work at a slower rate and are less likely to reach this
threshold. Consequentially, the computing resources
of the MongoDB node will not be as much of an
issue. When applying throughput rate control, the
possibility of reaching this threshold is excluded, and
the average latency would be a more truthful
depiction of the individual performance.
To increase our confidence in the obtained results,
we did run a smaller-scale additional evaluation in
which we applied throughput rate control (limited to
10.000 operations per write, read and update) and did
not notice any deviations from our earlier results.
Furthermore, during our main experiment we have
measured CPU usage, I/O wait time and memory
usage. From these measurements3 we gather that no
cluster node used more than 10% CPU usage on
average. Although the single-node database setup
experienced the heaviest load, during workload
execution, it was still idling 50% of the time.

As such, we conclude that the MongoDB cluster and
single-node setup did not reach their limits during
our benchmarks.

• Choice of the baseline. In this study, we implicitly
assume that the choice for MongoDB as the back-end
database has no significant impact on the
performance overhead of ONDMs, because we
subtract the MongoDB latency in our performance
overhead calculations. Furthermore, the
database-specific mapper is a modularly pluggable
module which is independent of the core middleware
engine responsible for data mapping. Each
database-specific implementation only varies in its
implementation of these engine interfaces. These
arguments lead us to believe that there will be
minimal variation in overhead between NoSQL
technologies. We can confirm this by referring to a
previous study on the performance overhead [21], in
which Cassandra and MongoDB were used as the
baseline for comparison. The study shows similar
relative overheads despite using a different database
technology as the baseline for comparison.

External validity. There is a number of ways in which the
results may deviate from realistic deployments of ONDM
systems. Specifically, our benchmark is designed to quan-
tify the worst-case performance overhead in a number of
ways.

• Entity relationships. For simplicity, we chose to
work with single entities containing no relationships.
There are a number of different ways relationships
can be persisted in NoSQL databases: denormalizing
to a single entity, storing them as separate entities,
etc. This may have a drastic effect on the object-data
mapper’s performance. A single entity containing no
relationships allows us to monitor the overhead of
each platform without unnecessary complexity. The
performance overhead of an application that relies
extensively on associations between entities may vary
from the results obtained in our study.

• Optimization strategies. The studied ONDMs offer
various caching strategies and transaction control
mechanisms. EclipseLink even supports
cross-application cache coordination, which may
improve performance significantly. As already
discussed in Section 4.4, to maximally ensure
comparability of our results, we disabled these
mechanisms in our benchmarks. In the case of
Object-Relational Mappers (ORMs), the impact of
performance optimizations has already been studied
[28, 29]. A similar study can prove useful for ONDMs
and should be considered future work.

• Database deployment.We have shown that
although these frameworks introduce more or less a

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 13 of 16

constant absolute performance overhead, the
significance of this performance overhead may
depend highly on the nature and complexity of the
overall database setup and the application case. For
example, in the context of an in-memory database
featuring a high-bandwidth and low-latency
connection, the introduced overhead may be deemed
significant. In contrast, general database deployments
often read from disk and feature a higher network
latency, and in such a context, the introduced
overhead may be considered minimal or negligible.

It is therefore important to stress that for the above
reasons, different and in many cases, better perfor-
mance characteristics can be expected in realistic ONDM
deployments.

7.2 Kundera’s update performance
Looking at the update performance results of Impetus
Kundera in Tables 3 and 4, one might conclude that Kun-
dera significantly outperforms EclipseLink and Hibernate
OGM when it comes to updating. However, upon closer
inspection, we discovered that in the tested version of
Kundera an implementation mistake was made.
More specifically, Kundera’s implementation does not

make use of the MongoDB property WriteConcern.
ACKNOWLEDGED, which forces the client to actively wait
until MongoDB acknowledges issued update requests (a
default property in MongoDB since version 2.6 [30]). By
not implementing this, Kundera’s implementation gains
an unfair advantage since some of the network latency is
not included in the measurement.
We have reported this bug in the Kundera bug reporting

system [31].

7.3 JPA-NoSQL interface mismatch
One remarkable result is the observation that update
operations consistently introduce more performance
overhead when compared to read or write operations
(cf. Table 3). The main cause for this is that the JPA
standard imposes that updates can only be done on
managed entities, i.e. it forces the ONDM to read the
object prior to update. This causes the update opera-
tion to be significantly costlier than a read operation4. As
pointed out by [21], similar drawbacks are associated to
delete operations (which were not benchmarked in this
study).
In the context of Object-Relational Mappers (ORMs),

this problem is commonly referred to as the object-
relational impedance mismatch [32], and one may argue
that in a NoSQL context, such mismatch problems may
be more significant due to the technological heterogene-
ity among NoSQL systems and the wide range of features
and data models supported in NoSQL.

Similar drawbacks apply to JPQL search operations,
especially when there is a discrepancy between the native
search capabilities and the features assumed by JPQL.
Future work is required to determine whether other

existing standardised interfaces such as REST-based APIs,
Java Data Objects (JDO) are better suited, and more
in-depth research is required toward dedicated, NoSQL-
specific abstraction interfaces that can further reduce the
cost inherent to database abstraction.

7.4 JPQL search performance
When comparing the results of our query benchmarks
(cf. Section 6), it becomes clear that the performance over-
head results for DataNucleus and Hibernate OGM are
drastically worse than those of EclipseLink and Impetus
Kundera: in some cases, Hibernate OGM introduces up to
383% overhead whereas the overhead introduced by the
other two ONDMs never exceeds 66%.
According to the Hibernate OGMReference Guide [20],

the search implementation is a direct port of the search
implementation of Hibernate’s Object-Relational Map-
per (ORM). Architectural legacy could therefore be one
potential explanation for these surprising results.
Similarly to Hibernate OGM, DataNucleus shows a

more consistent overhead of around 300%. In this case,
the overhead is mainly attributed to the fact that it exe-
cutes additional and unnecessary reads. Furthermore, the
queries are translated first into a more generic expres-
sion tree, and then to the native database query. Various
optimization strategies are provided to cache these query
compilations, which might in turn provide more optimal
performance. However, it is clear that the compilation of
queries to generic expression trees, independent of the
data store, takes a toll on performance.

8 Related work
This section addresses three domains of related work:
(i) performance studies on Object-relational Mapper
(ORM) frameworks, (ii) academic prototypes of Object-
NoSQL Database Mappers and (iii) (performance) studies
on ONDMs.

8.1 Performance studies on ORM frameworks
In the Object-relational Mapper (ORM) space, several
studies have evaluated the performance of ORM frame-
works, mainly focused on a direct comparison between
frameworks [33–37]. Performance studies were mainly
conducted on Java-based ORM frameworks, however,
some studies also evaluated ORM in .NET based frame-
works [38, 39]. However, few studies actually focused
on the overhead, but more on the differences between
the frameworks. The benchmark studies of Sembera [40]
and Kalotra [35] suggest that EclipseLink is slower than
Hibernate. However, a study by ObjectDB actually lists

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 14 of 16

EclipseLink as faster than Hibernate OGM [41]. The
methods used in each study differ and the results are not
directly applicable to NoSQL. Since none of these stud-
ies quantify the exact overhead of these ORM systems,
comparison to our results is difficult.
The studies by Van Zyl et al. [42] and Kopteff [34] com-

pare the performance of Java ORM-frameworks to the
performance of Object-databases. These studies evaluate
whether object databases can be used instead of ORM
tools and traditional relational databases, reducing the
mapping cost.
Although executed in a different technological context

(.NET), the studies of Gruca et al. [38] and Cvetkovic et al.
[39] seem to indicate that there is less overhead associated
to translating abstraction query languages (such as Entity
SQL, LINQ or Hibernate HQL) to SQL in the context of
relational databases, when compared to our results. The
relatively high search overhead in our results is caused by
the larger abstraction gap between NoSQL query inter-
faces and JPQL (which is a SQL-inspired query language
by origin).

8.2 Academic prototypes
Our study focused mainly on Object-NoSQL Database
Mappers (ONDMs) with a certain degree of maturity and
industry-readiness. Apart from these systems, a number
of academic prototypes exist that provide a uniform API
for NoSQL data stores. This is a very wide range of sys-
tems, and not all of them perform object-data mapping.
ODBAPI, presented by Sellami et al. [13], provides a uni-
fied REST API for relational and NoSQL data stores.
Dharmasiri et al. [43] have researched a uniform query
implementation for NoSQL. Atzeni et al. [7] and Cabibbo
[12] have presented Object-NoSQL Database Mappers
which employ object entities as the uniform data model.
Cabibbo [12] is the first to coin the term “Object-NoSQL
Datastore Mapper”.
We have excluded such systems as most of these imple-

mentations are proof-of-concepts, and few of them are
readily available.

8.3 Studies on ONDMs
Three existing studies have already performed an eval-
uation and comparison of Object-NoSQL Database
Mappers. Wolf et al. [44] extended Hibernate, the ORM
framework, to support RIAK, a NoSQL Key-Value data
store. In support of this endeavour, they evaluated the
performance and compared it with the performance of
Hibernate ORM configured to use with MySQL. The
study provides valuable insights as to how NoSQL tech-
nology can be integrated into object-relational mapping
frameworks.
Störl et al. [23] conducted a comparison and perfor-

mance evaluation of Object-NoSQL Database Mappers

(ONDMs). However, the study does not quantify the
overhead directly, making a comparison difficult. More-
over, these benchmarks were obtained on a single node,
and as a consequence, the results may be affected by CPU
contention. Highly surprising in their results is the read
performance of DataNucleus, which is shown to be at least
40 times as slow EclipseLink. We only measured similar
results when entity enhancement was left enabled at-
runtime, which recompiles entity classes to a meta model
on each read. As a result, this may indicate fundamental
flaws in the study’s measurement methodology.
Finally, our study is a replica study of an earlier perfor-

mance study by Rafique et al. [21], and we confirm many
of these results. Our study differs in the sense that: (i) we
adopted an improved measurement methodology, provid-
ing more insight on the correlation between the overhead
and the database’s behaviour and setup. Secondly, (ii) we
conducted our evaluation using YCSB (an established
NoSQL benchmark), (iii) we focus on a more mature set
of ONDMs which have less overhead, and finally (iv) we
evaluated the performance impact of ONDMs over search
operations.

9 Conclusions and future work
Object-NoSQL Database Mapper (ONDM) systems have
large potential: firstly, they allowNoSQL adopters tomake
abstraction of heterogeneous storage technology by mak-
ing source code independent of specific NoSQL client
APIs, and enable them to port their applications rela-
tively easy to different storage technologies. In addition,
they are key enablers for novel trends such as feder-
ated storage systems in which the storage tier of the
application is composed of a combination of different het-
erogeneous storage technologies, potentially even hosted
by different providers (cross-cloud and federated storage
solutions).
There are however a number of caveats, such as the

potential loss of NoSQL-specific features (due to the
mismatch between APIs), and most notably, the addi-
tional performance overhead introduced by ONDM sys-
tems. The performance benchmarks presented in this
paper have quantified this overhead for a standardised
NoSQL benchmark, the Yahoo! Cloud Serving Benchmark
(YCSB), specifically for create, read and update, and most
notably search operations. In addition, we have explored
the effect of a number of dimensions on the overhead: the
storage architecture deployment setup, the amount of
operations involved and the impact of the development
API on performance.
Future work however is necessary for a survey study

or gap analysis on existing ORM and ONDM framework
with support for NoSQL and its features, specifically in
the context of e.g. security and cross-database persis-
tence. Additionally, we identify the need for a NoSQL

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 15 of 16

search benchmark, as we have seen YCSB used for these
purposes, although it is not supported by default. In addi-
tion, we aim to provide an extended empirical validation
of our results on top of additional NoSQL platform(s).
The results obtained in this study inform potential

adopters of ONDM technology about the cost associ-
ated to such systems, and provides some indications as
to the maturity of these technologies. Especially in the
area of search, we have observed large differences among
ONDMs in terms of the performance cost.
This work fits in our ongoing research on policy-based

middleware for multi-storage architectures in which these
ONDMs represent a core layer.

Endnotes
1 Furthermore, Apache Gora implements most query

functionality based on client-side filtering, which can be
assumed quite slow.

2The results indicate that this is however not the case
for Kundera, which is attributable to an implementation
mistake in Kundera’s update mechanism (see Section 7.2)

3Our resource measurements indicate that factors such
as I/O and CPU play a negligible role in the results. For
example, the utilization of ONDM platforms required
only limited additional CPU usage at the client side for
read (Additional file 1).

4 Kundera’s update strategy is slightly different: the
merge(object) update operation in Kundera reads
the object only when it is unmanaged, whereas in the
other platforms this is explicitly done by the developer.
The solution in Kundera therefore avoids the cost of
mapping the result of the read operation to an object.

Additional file

Additional file 1: CPU Metric. (TXT 2 kb)

Acknowledgements
This research is partially funded by the Research Fund KU Leuven (project
GOA/14/003 - ADDIS) and the DeCoMAdS project, which is supported by
VLAIO (government agency for Innovation by Science and Technology).

Availability of data andmaterials
The datasets supporting the conclusions are included within the article. The
benchmark, which is an extension of YCSB, can be found at: https://github.
com/vreniers/ONDM-Benchmarker The software is distributed under the
Apache 2.0 license. The project is written in Java and is therefore platform
independent.

Authors’ contributions
VR conducted the main part of this research with guidance from AR, who has
done earlier research in this domain. DVL supervised the research and
contents of the paper, and WJ conducted a final supervision. All authors read
and approved the final manuscript.

Authors’ information
The authors are researchers of imec-DistriNet-KU Leuven at the Department of
Computer Science, KU Leuven, 3001 Heverlee, Belgium.

Competing interests
The authors declare that they have no competing interests.

Received: 24 February 2016 Accepted: 2 December 2016

References
1. Băzăr C, Iosif CS, et al. The transition from rdbms to nosql. a comparative

analysis of three popular non-relational solutions: Cassandra, mongodb
and couchbase. Database Syst J. 2014;5(2):49–59.

2. Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N,
Helland P. The end of an architectural era:(it’s time for a complete
rewrite). In: Proceedings of the 33rd International Conference on Very
Large Data Bases. Vienna: VLDB Endowment; 2007. p. 1150–1160. http://
dl.acm.org/citation.cfm?id=1325851.1325981.

3. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM
symposium on Cloud computing - SoCC ’10. Association for Computing
Machinery (ACM); 2010. p. 143–154. doi:10.1145/1807128.1807152.
http://dx.doi.org/10.1145/1807128.1807152.

4. Lakshman A, Malik P. Cassandra: a decentralized structured storage
system. ACM SIGOPS Oper Syst Rev. 2010;44(2):35–40.

5. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for
structured data. ACM Trans Comput Syst (TOCS). 2008;26(2):4.

6. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin
A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo. ACM SIGOPS
Operating Systems Review. 2007;41(6):205–220.
doi:10.1145/1323293.1294281. http://dx.doi.org/10.1145/1323293.
1294281.

7. Atzeni P, Bugiotti F, Rossi L. Uniform access to nosql systems. Inform Syst.
2014;43:117–133.

8. Stonebraker M. Sql databases v. nosql databases. Commun ACM.
2010;53(4):10–11. doi:10.1145/1721654.1721659.

9. Cattell R. Scalable sql and nosql data stores. ACM SIGMOD Rec. 2011;39(4):
12–27.

10. Stonebraker M. Stonebraker on nosql and enterprises. Commun ACM.
2011;54(8):10–11.

11. NoSQL databases. http://www.nosql-database.org. Accessed 22 Feb 2016.
12. Cabibbo L. Ondm: an object-nosql datastore mapper: Faculty of

Engineering, Roma Tre University; 2013. Retrieved June 15th. http://
cabibbo.dia.uniroma3.it/pub/ondm-demo-draft.pdf.

13. Sellami R, Bhiri S, Defude B. Odbapi: a unified rest API for relational and
NoSQL data stores. In: 2014 IEEE International Congress on Big Data. IEEE;
2014. p. 653–660. doi:10.1109/bigdata.congress.2014.98. http://dx.doi.
org/10.1109/bigdata.congress.2014.98.

14. Rafique A, Landuyt DV, Lagaisse B, Joosen W. Policy-driven data
management middleware for multi-cloud storage in multi-tenant saas. In:
2015 IEEE/ACM 2nd International Symposium on Big Data Computing
(BDC); 2015. p. 78–84. doi:10.1109/BDC.2015.39.

15. Fowler M. Polyglot Persistence. 2015. http://martinfowler.com/bliki/
PolyglotPersistence.html. Accessed 22 Feb 2016.

16. Impetus: Kundera Documentation. https://github.com/impetus-
opensource/Kundera/wiki. Accessed 28 May 2016.

17. Eclipselink: Understanding EclipseLink 2.6. 2016. https://www.eclipse.org/
eclipselink/documentation/2.6/concepts/toc.htm. Accessed 27 May 2016.

18. Apache Gora: Apache Gora. http://gora.apache.org/. Accessed28May2016.
19. DataNucleus: DataNucleus AccessPlatform. 2016. http://www.

datanucleus.org/products/accessplatform_5_0/index.html. Accessed 28
May 2016.

20. Red Hat: Hibernate OGM Reference Guide. 2016. http://docs.jboss.org/
hibernate/ogm/5.0/reference/en-US/pdf/hibernate_ogm_reference.pdf.
Accessed 28-05-2016.

21. Rafique A, Landuyt DV, Lagaisse B, JoosenW. On the Performance Impact
of Data Access Middleware for NoSQL Data Stores. IEEE Transactions on
Cloud Computing. 2016;PP(99):1–1. doi:10.1109/TCC.2015.2511756.

http://dx.doi.org/10.1186/s13174-016-0052-x
https://github.com/vreniers/ONDM-Benchmarker
https://github.com/vreniers/ONDM-Benchmarker
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1721654.1721659
http://www.nosql-database.org
http://cabibbo.dia.uniroma3.it/pub/ondm-demo-draft.pdf
http://cabibbo.dia.uniroma3.it/pub/ondm-demo-draft.pdf
http://dx.doi.org/10.1109/bigdata.congress.2014.98
http://dx.doi.org/10.1109/bigdata.congress.2014.98
http://dx.doi.org/10.1109/bigdata.congress.2014.98
http://dx.doi.org/10.1109/BDC.2015.39
http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/PolyglotPersistence.html
https://github.com/impetus-opensource/Kundera/wiki
https://github.com/impetus-opensource/Kundera/wiki
https://www.eclipse.org/eclipselink/documentation/2.6/concepts/toc.htm
https://www.eclipse.org/eclipselink/documentation/2.6/concepts/toc.htm
http://gora.apache.org/
http://www.datanucleus.org/products/accessplatform_5_0/index.html
http://www.datanucleus.org/products/accessplatform_5_0/index.html
http://docs.jboss.org/hibernate/ogm/5.0/reference/en-US/pdf/hibernate_ogm_reference.pdf
http://docs.jboss.org/hibernate/ogm/5.0/reference/en-US/pdf/hibernate_ogm_reference.pdf
http://dx.doi.org/10.1109/TCC.2015.2511756

Reniers et al. Journal of Internet Services and Applications (2017) 8:1 Page 16 of 16

22. Barnes JM. Object-relational mapping as a persistence mechanism for
object-oriented applications: PhD thesis, Macalester College; 2007.

23. Störl U, Hauf T, Klettke M, Scherzinger S, Regensburg O. Schemaless
nosql data stores-object-nosql mappers to the rescue? In: BTW;
2015. p. 579–599. http://www.informatik.uni-rostock.de/~meike/
publications/stoerl_btw_2015.pdf.

24. Oracle Corporation: The Java EE6 Tutorial. 2016. http://docs.oracle.com/
javaee/6/tutorial/doc/. Accessed 22 Feb 2016.

25. Apache JDO: Apache JDO. https://db.apache.org/jdo/. Accessed 22 Feb
2016.

26. NET Persistence API. http://www.npersistence.org/. Accessed 22 Feb 2016.
27. Curtis N. KO3-NoSQL. 2007. https://github.com/nichcurtis/KO3-NoSQL.

Accessed 22 Feb 2016.
28. van Zyl P, Kourie DG, Coetzee L, Boake A. The influence of optimisations

on the performance of an object relational mapping tool. 2009150–159.
doi:10.1145/1632149.1632169.

29. Wu Q, Hu Y, Wang Y. Research on data persistence layer based on
hibernate framework. 20101–4. doi:10.1109/IWISA.2010.5473662.

30. MongoDB: MongoDB Documentation. 2016. https://docs.mongodb.com/
v2.6/. Accessed 22 Feb 2016.

31. Kundera bug regarding MongoDB’s WriteConcern. https://github.com/
impetus-opensource/Kundera/issues/830. Accessed 22 Feb 2016.

32. Ireland C, Bowers D, Newton M, Waugh K. A classification of
object-relational impedance mismatch. In: Advances in Databases,
Knowledge, and Data Applications, 2009. DBKDA ’09. First International
Conference On; 2009. p. 36–43. doi:10.1109/DBKDA.2009.11.

33. Higgins KR. An evaluation of the performance and database access
strategies of java object-relational mapping frameworks. ProQuest
Dissertations and Theses. 82. http://gradworks.umi.com/14/47/1447026.
html.

34. Kopteff M. The Usage and Performance of Object Databases compared
with ORM tools in a Java environment. Citeseer. 2008. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.205.8271&rank=1&q=kopteff&
osm=&ossid=.

35. Kalotra M, Kaur K. Performance analysis of reusable software systems.
2014773–778. doi:10.1109/CONFLUENCE.2014.6949308.

36. Ghandeharizadeh S, Mutha A. An evaluation of the hibernate
object-relational mapping for processing interactive social networking
actions. 201464–70. doi:10.1145/2684200.2684285.

37. Yousaf H. Performance evaluation of java object-relational mapping tools.
Georgia: University of Georgia; 2012.

38. Gruca A, Podsiadło P. Beyond databases, architectures, and structures:
10th international conference, bdas 2014, ustron, poland, may 27–30,
2014. proceedings. 201440–49. Chap. Performance Analysis of .NET Based
Object–Relational Mapping Frameworks.
doi:10.1007/978-3-319-06932-6_5.

39. Cvetković S, Janković D. Objects and databases: Third international
conference, icoodb 2010, frankfurt/main, germany, september 28–30,
2010. proceedings. 2010147–158. Chap. A Comparative Study of the
Features and Performance of ORM Tools in a .NET Environment.
doi:10.1007/978-3-642-16092-9_14.

40. Šembera L. Comparison of jpa providers and issues with migration.
Masarykova univerzita, Fakulta informatiky. 2012. http://is.muni.cz/th/
365414/fi_m/.

41. JPA Performance Benchmark (JPAB). http://www.jpab.org/. Accessed 22
Feb 2016.

42. Van Zyl P, Kourie DG, Boake A. Comparing the performance of object
databases and ORM tools. In: Proceedings of the 2006 annual research
conference of the South African institute of computer scientists and
information technologists on IT research in developing couuntries -
SAICSIT ’06; 2006. p. 1–11. doi:10.1145/1216262.1216263.

43. Dharmasiri HML, Goonetillake MDJS. A federated approach on
heterogeneous nosql data stores. 2013234–23.
doi:10.1109/ICTer.2013.6761184.

44. Wolf F, Betz H, Gropengießer F, Sattler KU. Hibernating in the
cloud-implementation and evaluation of object-nosql-mapping. Citeseer.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.informatik.uni-rostock.de/~meike/publications/stoerl_btw_2015.pdf
http://www.informatik.uni-rostock.de/~meike/publications/stoerl_btw_2015.pdf
http://docs.oracle.com/javaee/6/tutorial/doc/
http://docs.oracle.com/javaee/6/tutorial/doc/
https://db.apache.org/jdo/
http://www.npersistence.org/
https://github.com/nichcurtis/KO3-NoSQL
http://dx.doi.org/10.1145/1632149.1632169
http://dx.doi.org/10.1109/IWISA.2010.5473662
https://docs.mongodb.com/v2.6/
https://docs.mongodb.com/v2.6/
https://github.com/impetus-opensource/Kundera/issues/830
https://github.com/impetus-opensource/Kundera/issues/830
http://dx.doi.org/10.1109/DBKDA.2009.11
http://gradworks.umi.com/14/47/1447026.html
http://gradworks.umi.com/14/47/1447026.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.8271&rank=1&q=kopteff&osm=&ossid=
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.8271&rank=1&q=kopteff&osm=&ossid=
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.8271&rank=1&q=kopteff&osm=&ossid=
http://dx.doi.org/10.1109/CONFLUENCE.2014.6949308
http://dx.doi.org/10.1145/2684200.2684285
http://dx.doi.org/10.1007/978-3-319-06932-6_5
http://dx.doi.org/10.1007/978-3-642-16092-9_14
http://is.muni.cz/th/365414/fi_m/
http://is.muni.cz/th/365414/fi_m/
http://www.jpab.org/
http://dx.doi.org/10.1145/1216262.1216263
http://dx.doi.org/10.1109/ICTer.2013.6761184

	Abstract
	Keywords

	Introduction
	Object-NoSQL Database Mappers
	Object-mapping frameworks for NoSQL
	Current state of ONDMs

	Research questions
	Expectations and initial hypotheses.

	Benchmark setup
	ONDM Framework architecture
	Measurement methodology
	ODNM selection
	Benchmark design
	Read, write, update.
	Search.

	Deployment setup
	Setup: research questions

	Write, read and update performance results
	Database behaviour
	RQ1 Impact on write, read and update performance on a single node
	RQ2: Impact of the database topology
	RQ3: Impact of the interface on performance
	Conclusions

	JPQL search performance
	RQ4: Single object search in JPA and JPQL
	RQ5: Relation between the nature and complexity of the query and its overhead
	JPQL search using the AND operator
	JPQL search on a secondary index
	JPQL search on a range of values
	JPQL search using the OR operator

	Search performance conclusion

	Discussion
	Threats to validity
	Internal validity
	External validity.

	Kundera's update performance
	JPA-NoSQL interface mismatch
	JPQL search performance

	Related work
	Performance studies on ORM frameworks
	Academic prototypes
	Studies on ONDMs

	Conclusions and future work
	Additional file
	Additional file 1

	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	References

