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Abstract

Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In
this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through
radio frequency (RF) sputtering at room temperature. The influence of the film’s composition and the annealing
temperature on the film’s optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si
films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C
under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer
crystallizes into NiSi2 phase, whereas Al atoms diffuse through the whole film during the annealing process.
Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while
that of AlSi/Si films obviously degrades.
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Background
So far, a great deal of research has been done on the de-
velopment of alternative energies, such as solar energy,
since fossil fuels are non-renewable [1–3]. Among the
device types of photovoltaic cells, much effort has been
put into the thin film solar cells due to their flexible
feature, low cost, light weights, etc. [4–6]. As for the film
material, amorphous silicon (a-Si) is one of the most
popular candidates [7–13]. Their abundance, non-toxicity,
low manufacturing cost, uniformity over large areas, and
adaptability to various substrates have attracted consider-
able interest [14, 15]. However, the significant recombin-
ation of photo-generate carriers, and the light-induced
degradation derived from the Staebler-Wronski effect
limit the widespread use of a-Si in photovoltaic applica-
tions [16–18]. Decreasing the film’s thickness is an effect-
ive solution to solve these problems [19, 20]. But
unfortunately, the thinner film will possess a low optical

absorption and the photoelectric conversion efficiency is
also suppressed.
In order to enhance the optical absorption of a-Si thin

film, many approaches have been explored, for instance,
the introduction of metallic nanoparticles [21–23], dielec-
tric nanopillars [24], and addition antireflection coatings
[25, 26]. Sachan et al. demonstrated a strategy of embed-
ding metal silicide nanoparticles into an ultrathin a-Si film
[27]. The optical absorption was found to be greatly im-
proved in the visible range (350–750 nm). Brahmi et al.
also reported that silicide films exhibit high absorption co-
efficient in the range of 5 × 105–10 × 105 cm−1 in the vis-
ible light region, even though their thickness is ultrathin
(~10 nm) [28].
In this work, we have introduced Ni and Al into an a-

Si thin film so as to embed Ni silicide or Al silicide in
the Si film. The influence of metal (Ni or Al) content on
the film’s optical behavior is investigated. The effect of
annealing temperature on the film’s microstructure and
optical properties is also discussed.

Methods
a-Si thin films with Ni silicide or Al silicide were depos-
ited by radio frequency sputtering on glass and silicon
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substrates at room temperature. Firstly, NiSi layers or
AlSi layers were co-sputtered from the Ni target or Al
target and Si target. The layer’s thickness was main-
tained at 20 nm. The target power on Si was varied in
order to adjust the film’s composition (shown in Table 1).
Then, a top Si layer (40 nm) was deposited over the NiSi
and AlSi layers. A pure Si film with a total thickness of
60 nm was also prepared for the purpose of comparison.
Finally, all the films were annealed under vacuum at
400, 500, and 600 °C for 1 h, respectively.
The film’s composition was measured by JEOL JXA-

8200 electron probe X-ray microanalyzer (EPMA).
The phase formation was identified by Raman spec-
troscopy (iHR 550) with a 532-nm laser. The depth-
profiling analysis was obtained by Auger electron
spectroscopy (AES, ULVAC-PHI, PHI 700). The mi-
crostructures of the specimens were observed on the
film’s cross-section by high-resolution transmission elec-
tron microscopy (HR-TEM, JEOL JEM-2100). The film’s
absorption coefficient was estimated by the following
equation (Eq. 1) from the film’s transmittance and reflect-
ance data, which were measured by UV-VIS spectropho-
tometer (JASCO-V670).

α ¼ 1
d
ln

1−R
T

� �
ð1Þ

where d is the film thickness, R and T are the optical re-
flectance and transmittance, respectively.

Results and Discussion
The absorption coefficient of NiSi/Si films and AlSi/Si
films is shown in Fig. 1. With increasing Ni content or Al
content in the films, their absorption ability is significantly
enhanced in the whole visible region (400–800 nm). Espe-
cially, compared with the pure Si film, the films with Ni
silicide or Al silicide possess a much higher absorption co-
efficient (104~105 cm−1) at the wavelength above 500 nm,
where the absorption of the visible light by the pure Si
film is negligible. The absorption enhancement of NiSi/Si
and AlSi/Si films is believed to be attributable to the plas-
monic absorption by Ni silicide or Al silicide nanoparticles
in an a-Si matrix [27]. These results confirm that an obvi-
ous improvement in absorption can be achieved within
amorphous Si films. Additionally, with respect to the
NiSi/Si film, this improvement for the AlSi/Si film is much
more evident. It may be caused by the coarse-grained
interface between the NiSi layer and Si layer introducing
more scattering of visible light (shown in Fig. 2). In con-
trast, the smooth interface between the AlSi layer and Si
layer is beneficial for improving the film’s absorption abil-
ity. Since the band gap of amorphous silicon is about
1.7 eV, a significant light absorption of the a-Si film can be
found below 730 nm, which lies within the visible light
region. Thus, the absorption enhancement of NiSi/Si and
AlSi/Si films can significantly improve the efficiency of PV
devices based on amorphous silicon.
Figure 2 shows the cross-sectional images of NiSi/Si

(NS-1) and AlSi/Si (AS-1) films. The NiSi layer or AlSi
layer and the top Si layer can be clearly observed. In the
high-resolution image of Fig. 2a1, some nanoparticles as-
sumed to be Ni silicide are noted. They lead the micro-
structure of the first layer to be much coarser. However, in
the AlSi/Si film, Al silicide nanoparticles are imperceptible.
The Raman spectra of the NiSi/Si film and AlSi/Si film

before and after annealing under vacuum at 400, 500,
and 600 °C is shown in Fig. 3a, b, respectively. Whatever
the annealing temperature, the NiSi/Si film and AlSi/Si
film display a pure amorphous Si structure peaked at
480 cm−1. No peak near 520 cm−1 assigned to the

Table 1 Nomenclature for Ni silicide or Al silicide nanoparticle-
embedded Si thin films

Composition NS-1 NS-2 NS-3 AS-1 AS-2 AS-3

Si (at.%) 45 56 71 42 52 69

Ni (at.%) 55 44 29 – – –

Al (at.%) – – – 58 48 31

300 400 500 600 700 800
0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

tneiciffeoc
noitprosb

A
(c

m
-1

)

Wavelength (nm)

NS-1
NS-2
 NS-3
Si-60 nm

300 400 500 600 700 800
0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

tneiciffeoc
noitprosb

A
(c

m
-1

)

Wavelength (nm)

AS-1
 AS-2
 AS-3      
Si-60 nm

a b

Fig. 1 The absorption coefficient of a NiSi/Si and b AlSi/Si films with various compositions
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crystalline Si structure is detected. The absorption coef-
ficient of NiSi/Si and AlSi/Si films annealed at different
temperatures is shown in Fig. 3c, d, respectively. The ab-
sorption ability of the NiSi/Si film greatly enhances with
increasing the annealing temperature, while that of AlSi/
Si films gradually decreases. Since the dopants in Si are
generally activated through an essential thermal anneal-
ing treatment between 400 and 1000 °C [29, 30], the

degradation of the absorption ability of AlSi/Si films
proves that the NiSi/Si film is more suitable for the fab-
rication of the absorbing layer in amorphous silicon
solar cells.
The depth profiles of the atomic composition analysis

of as-deposited NiSi/Si and AlSi/Si films and those films
annealed at 500 °C are given in Fig. 4. After 1 h anneal-
ing under vacuum, the composition of the Si layer and

a

b

a1

b1

Fig. 2 The cross-sectional TEM images of a NiSi/Si (NS-1) and b AlSi/Si (AS-1) films and high-resolution images of a1 NiSi/Si (NS-1) and b1 AlSi/Si
(AS-1) films derived from the areas marked with red rectangles in Fig. 2a, b
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Fig. 3 Raman spectra of a NiSi/Si film and b AlSi/Si film before and after annealing in vacuum at 400, 500, and 600 °C, and the absorption
coefficient of c NiSi/Si films and d AlSi/Si films annealed at different temperatures
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NiSi layer remains nearly unchanged (Fig. 4a, a1). Few
nickel atoms diffuse from the NiSi layer into the adja-
cent Si layer. In contrast, as for the AlSi/Si film, almost
all the aluminum atoms in the AlSi layer are diffused.
The Al content in the AlSi layer and that in the top Si
layer are close. This perhaps explains why the absorption

ability of the AlSi layer is suppressed after annealing.
The uniformly distributed Al clusters in the whole film
reinforce the scattering and reflection of the visible light.
The cross-sectional images of NiSi/Si (NS-1) and AlSi/

Si (AS-1) films annealed at 500 °C are shown in Fig. 5.
Some nickel silicide nanoparticles are crystallized to
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Fig. 4 The depth profile of atomic composition analysis of a, b as-deposited NiSi/Si (NS-1) and AlSi/Si (AS-1) films and a1, b1 those films annealed
at 500 °C
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Fig. 5 The cross-sectional TEM images of a NiSi/Si (NS-1) and b AlSi/Si (AS-1) films annealed at 500 °C and high-resolution images of a1 NiSi/Si
(NS-1) and b1 AlSi/Si (AS-1) films derived from the areas marked with red rectangles in Fig. 5a, b
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form NiSi2 compounds after annealing. NiSi2 (220)
planes with interplanar lattice spacing of 0.191 nm are
identified (Fig. 5a1). The strengthening of absorption
ability of NiSi/Si films with annealing temperature in-
creasing can be due to the amelioration of the film’s
crystallinity. Besides, the interface between the AlSi layer
and top a-Si layer becomes illegible after annealing
(Fig. 5b). No crystallized phase can be detected (Fig. 5b1).
This is attributed to the diffusion of aluminum atoms
during the annealing process.

Conclusions
In this work, nickel silicide and aluminum silicide nano-
particles are introduced into amorphous Si thin films in
order to enhance the film’s absorption ability. Radio fre-
quency sputtering was used to deposit NiSi/Si and AlSi/
Si bilayer thin films. The results show that all the NiSi/Si
and AlSi/Si films present an absorption improvement, es-
pecially in the long wavelength region (>500 nm), com-
pared to the pure amorphous Si film. The as-deposited
AlSi/Si films possess higher absorption compared with the
NiSi/Si films. However, the AlSi/Si film’s absorption ability
significantly degrades after 1 h annealing under vacuum
condition, which is owing to the diffusion of aluminum
atoms during the annealing process, whereas the optical
absorption of NiSi/Si films gradually improves after an-
nealing. This is resulting from the enhanced crystallinity
of NiSi/Si films. Our results confirm that the amorphous
Si film with suitable metal silicides can expand the re-
sponse to the visible light of the photovoltaic devices and
improve the utilization of the solar spectrum.
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