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Abstract

The availability of very large number of markers by modern technology makes genome-wide
association studies very popular. The usual approach is to test single-nucleotide polymorphisms
(SNPs) one at a time for association with disease status. However, it may not be possible to detect
marginally significant effects by single-SNP analysis. Simultaneous analysis of SNPs enables detection
of even those SNPs with small effect by evaluating the collective impact of several neighboring
SNPs. Also, false-positive signals may be weakened by the presence of other neighboring SNPs
included in the analysis. We analyzed the North American Rheumatoid Arthritis Consortium data
of Genetic Analysis Workshop 16 using HLasso, a new method for simultaneous analysis of SNPs.
The simultaneous analysis approach has excellent control of type I error, and many of the
previously reported results of single-SNP analyses were confirmed by this approach.

Background
The increase in genome-wide experiments and sequen-
cing of multiple genomes has resulted in the availability
of large data sets for genome-wide association studies
(GWAS) of complex diseases. The usual procedure is to
test these single-nucleotide polymorphisms (SNPs) one
by one for association with the disease status. This
means one will be testing the marginal effect of a SNP on
a disease without consideration of any other interacting
SNPs in the model. This approach will inherently
increase the overall probability of false positives [1].
Because complex diseases arise from many, possibly
interacting, genes from the genome, it would be more

appropriate to study the effect of several genes jointly
rather than testing each of them separately [2]. The
single-SNP analysis may ignore information provided by
a joint distribution [3].

The North American Rheumatoid Arthritis Consortium
(NARAC) data of Genetic Analysis Workshop (GAW) 16
provides an excellent opportunity to analyze simulta-
neously a very large collection of SNPs for GWAS. We
adopt a recently developed method [4] for the simulta-
neous analysis of SNPs from the NARAC data. This
method is useful when the number of SNPs is much
greater than the number of individuals in a case-control
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study. The procedure is formulated as a problem of
variable selection in a logistic regression framework by
treating each SNP as a covariate. It attempts to find a
collection of SNPs to obtain the “best” model to explain
the disease status for a specified error rate.

Methods
The NARAC data consists of 868 cases of rheumatoid
arthritis (RA) and 1194 controls. The software program
HLasso [4] was employed for the simultaneous analysis
of SNPs. The program adopts a Bayesian approach for
logistic regression and makes use of the normal-
exponential-gamma (NEG) probability density function
as the penalty function (see Hoggart et al. [4] for details).
The NEG probability density function has two para-
meters, a scale parameter g and a shape parameter h. As
both g and h increase such that 2η /g remains a
constant, say l, the NEG converges to the double
exponential distribution with rate parameter l. The
predictors in the logistic regression model are the SNP
genotypes, coded as 0, 1, and 2, corresponding to an
additive model. These coded values are standardized to
have mean zero and unit variance. The procedure
searches for a collection of SNPs for which the posterior
mode is positive. A positive posterior mode indicates a
signal of association that is strong enough to overcome
the prior preference of zero effect, and the corresponding
set of SNPs are declared as significantly associated with
the disease.

Further analysis was done to identify whether the SNPs
declared significant by this method confirms the earlier
findings by single-marker analyses. We examined
whether the markers identified as significant by the
simultaneous approach are in high linkage disequili-
brium (LD) with SNPs that are already identified to be
associated with the disease. Particular attempt was made
to test SNPs identified by single-marker analysis on
chromosomes 1, 6, and 9 from other data sets. The
software package Haploview [5] was used to compute
the pair-wise LD for SNPs on the chromosomes.

Results
Chromosomes 1 through 22 were analyzed. Table 1
provides the number of SNPs found to be significant on
each chromosome. From a total of 531,689 SNPs, 2627
SNPs were found to be significantly associated with the
disease by this procedure, yielding an upper bound of
0.4941% for the empirical type I error rate.

The logistic regression model, logit(P(affected)) =
β β0 1

+ =∑ ii

n
iSNP( ) , was employed for the analyses.

When a marker is declared significant, the estimate β̂ i
of b provides an estimate of the effect of that marker on

the affection status of the disease. An estimate of the
odds ratio (OR) for the disease is exp( β̂ i ). This means
that OR > 1 if β̂ i > 0, and OR < 1 if the β̂ i < 0. Therefore,
when β̂ i > 0, the allele coded as “1” increases the disease
risk; and when β̂ i < 0, the allele coded as “1” has a
protective effect and decreases the disease risk. Table 1
also provides the marker with the largest risk effect value
and the marker with the largest protective effect value on
each chromosome.

It is well known that HLA-DRB1 region on chromosome
6 is associated with RA. In the HLA-DRB1 region the
marker rs602875 at position 32.68 Mb was identified to
be significant in our study. By single-SNP analysis of a
different data set, Chang et al. identified the marker
rs1953126 near the TRAF1-C5 region on chromosome 9
to be associated with RA [6]. Also, Plenge et al., through
single SNP analysis, identified the markers rs3761847
and rs2900180 in the same region to be of risk for RA
[7]. In our simultaneous analysis, the marker rs3933326
near the TRAF1-C5 region was identified to be signifi-
cant, which is in high LD with the markers rs1953126,
rs3761847, and rs2900180. Begovich et al. [8] identified
the marker rs2476601 in the PTPN22 region of
chromosome 1 to be associated with risk for RA. The
simultaneous analysis also identified this marker to be
associated with RA, confirming the earlier findings.

Discussion

The type I error is given by α = − ′⎛
⎝⎜

⎞
⎠⎟

+2 2 0 1
0 1

Φ f n n
n n ,

where f’ is the derivative of -log(NEG) at the origin
(which is the derivative of the double exponential
distribution with parameter g = 2η /g at the origin),
n0 is the number of cases, n1 is the number of controls,
and F is the cumulative distribution function of the
standard normal distribution [4]. For our computations,
we set l to be 50 and the shape parameter h to be 0.1, so
that the calculated value of a = 0.025. The simultaneous
analysis identified only 0.4941% of SNPs to be
significantly associated with RA. Because the vast
majority of the SNPs are not associated with RA, this is
a conservative estimate of the empirical type I error.
Comparing this with the nominal level of 0.025, it is
evident that the simultaneous analysis procedure has
excellent control of type I error.

In modeling all SNPs simultaneously, the HLasso
program includes a SNP in the model if it significantly
improves prediction of case-control status beyond that
obtained from SNPs already included in the model [4].
Problems could arise when there are two or more tightly
linked causal markers. In this case, if HLasso chooses
only one marker, its effect could be inflated. For
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example, the marker rs7616866 on chromosome 3 at
position 64317576 had the largest effect size 202.447,
and was found to be significant. The LD values, D’, of
this marker with the markers rs9812599 at 64315677,
rs7615058 at 64321040, rs6445398 at 64309797, and
rs1860819 at 64323994 are 0.857, 0.769, 1.0, and 0.977,
respectively. When there is high pair-wise LD between
markers, multicollinearity is present, and in such cases it
is not possible to make meaningful statements about
individual effect sizes. However, the overall model is
valid in predicting the disease status of the disease.

The simultaneous analysis of SNPs confirmed several
previous findings of causal variants for RA: the HLA-
DRB1 region of chromosome 6, the TRF1-C5 region on
chromosome 9, and the PTPN22 region on chromosome 1.
However, it did not confirm the findings on the PADI4
region on chromosome 1, known to be a causal variant
for RA [10].

We did not check for population stratification because
the samples were from Caucasian population, which is
expected to be relatively homogeneous. However, Sarasu
et al. [9] suggests that population stratification is present
in the data. The method we use seems to be reasonably
robust to population stratification because type I error is
well controlled. The SNP data had already been checked
for errors [11], and hence, no further checking for errors

was done. There were many significant markers on each
chromosome. We checked whether these markers were
themselves in high LD with each other. Five pairs among
them on chromosome 6 were found to be in high LD, and
none were found on any other chromosomes. It could be
due to the fact that HLasso program includes a SNP in the
model if it significantly improves prediction of case-
control status beyond that obtained from the SNP already
included. If there are two strongly correlated predictors,
and if the marginal increase is minimal, then the program
is inclined to choose only one of the two predictors.

Conclusion
The simultaneous analysis of all SNPs using HLasso
reduced considerably the overall probability for false
positives. The method confirmed many of the previous
findings by the single-SNP analysis.

List of abbreviations used
GWAS: Genome-wide association studies; LD: Linkage
disequilibrium; NARAC: North American Rheumatoid
Arthritis Consortium; NEG: Normal-exponential-
gamma; OR: odds ratio; RA: Rheumatoid arthritis; SNP:
Single-nucleotide polymorphism.
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Table 1: Number of significant markers identified by the simultaneous analysis and markers with extreme effect sizes

Chromosome number Number of SNPs Number of significant SNPs Markers with largest risk and protective effects

Largest risk effect Largest protective effect

Marker Effect size Marker Effect size

1 40929 142 rs7519615 1.73638 rs2275864 -1.41482
2 44090 140 rs655783 0.91779 rs938869 -2.3145
3 36690 138 rs7616866 202.447 rs9288967 -4.23478
4 32628 133 rs768063 155.04 rs6816684 -2.31044
5 33612 90 rs344156 1.46745 rs6899062 -1.68164
6 35574 82 rs6935937 3.06767 rs1856363 -2.18496
7 29244 130 rs9632680 96.105 rs4732523 -2.41344
8 30990 130 rs7006628 0.577914 rs2853259 -1.50527
9 26128 125 rs6478815 154.845 rs1387292 -3.12822
10 28331 131 rs2388121 0.777184 rs1909668 -1.36459
11 26477 119 rs1879445 123.081 rs7932437 -6.04313
12 26365 129 rs1146114 1.43868 rs7300982 -1.59685
13 20242 129 rs2323883 4.76091 rs9740397 -3.53682
14 17951 124 rs4296166 1.53678 rs4983565 -2.02512
15 16166 121 rs7183817 0.814795 rs3743372 -2.60765
16 16460 111 rs4238802 0.66247 rs4783187 -1.98159
17 14027 123 rs2880328 92.8919 rs9747823 -1.31507
18 16450 123 rs2303508 78.2526 rs1982040 -2.32656
19 9236 101 rs3810256 1.11899 rs10404348 -3.04764
20 13843 114 rs6513195 3.13637 rs6138601 -4.63256
21 8051 102 rs2823819 0.971309 rs1539902 -1.08918
22 8205 90 rs761917 1.46745 rs17406434 -1.68164

Total 531689 2627
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