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Abstract

In this paper, we proposed a detection-based orthogonal match pursuit (DOMP) algorithm for compressive sensing.
Unlike the conventional greedy algorithm, our proposed algorithm does not rely on the priori knowledge of the signal
sparsity, which may not be known for some application, e.g., sparse multipath channel estimation. The DOMP runs
binary hypothesis on the residual vector of OMP at each iteration, and it stops iteration when there is no signal
component in the residual vector. Numerical experiments show the effectiveness of the estimation of signal sparsity
as well as the signal recovery of our proposed algorithm.
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1 Introduction
Compressive sensing (CS) [1,2], a framework to solve
the under-determined system, has drawn great research
attention in recent years. The CS problem can bemodeled
as finding the sparse solution of h for equation

y = Xh + n, (1)

where the observation y ∈ Rm×1 is obtained by using the
sensing matrix X ∈ Rm×n to measure the k-sparse signal
h ∈ Rn×1. In CS framework, the sensing matrix X in (1), is
a ‘fat’ matrix, i.e.,m < n.
To find the sparse solution of h, i.e., recover the sparse

signal, one can adopt either the convex relaxation based
method, e.g., basis pursuit (BP) [3] or greedy algorithms,
e.g., orthogonal matching pursuit (OMP) [4], regularized
OMP (ROMP) [5], StOMP [6], etc. The greedy algorithm
is often used for its low computational complexity and
easy to implement. To implement the greedy algorithm,
one needs to know the priori information on the sig-
nal’s sparsity k. For example, in OMP and its variant, e.g.,
ROMP, the signal sparsity k must be specified so that the
computation stops after k iterations. Other greedy algo-
rithm such as subspace pursuit (SP) [7] also needs to know
the value of k so that exact k candidate atoms could be
selected at each iteration.
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The multipath channels, e.g., underwater acoustic
(UWA) channel in sonar system [8] and Rayleigh fading
channel in wireless communication [9], can be modeled
as FIR filter. Those channels can be viewed as sparse sig-
nals according to experimental data [10,11]. Thus, CS can
be applied for channel estimation. In [12], the authors
shown that the CS approach achieves better estimation
performance than the conventional methods.
In reality, the number of the channel taps, i.e., the sig-

nal sparsity, is usually unknown. Therefore, the greedy
algorithms cannot be applied directly. In [13], the authors
proposed the sparsity adaptive matching pursuit (SAMP)
which does not need the signal sparsity information. In
SAMP, the threshold is still needed to stop the iteration,
and the performance of SAMP is sensitive to the thresh-
old selection. In [14], stopping rules, i.e., the residual rt at
tth iteration meets ‖rt‖�2 < ‖n‖�2 , for OMP under noise
provides theoretical guarantee for sparse signal recovery.
In this paper, we proposed the detection-based orthog-

onal match pursuit (DOMP) algorithm which systemat-
ically provides the stop threshold based on the signal
detection criteria. This is a more general threshold find-
ing approach for stopping the OMP than the threshold
proposed in [14]. Since the proposed DOMP is able to
recover sparse signal without sparsity, it can be applied to
the sparse channel estimation.
The rest of this paper is organized as follows. The anal-

ysis of residual vector of OMP is shown in Section 2.
Section 3 discusses the hypothesis test on the residual
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vector. In Section 4, the threshold determined by given
false alarm probability (PFA ) is discussed. The efficiency
of the proposed stopping criteria is shown by numerical
experiments in Section 5.

2 Analysis of residual vector in OMP
In this section, we show the property of the residual vector
of OMPwhichmotivates us to apply signal detection tech-
nique to determine the stopping criteria of OMP. In this
study, we assume the sensing matrix X satisfies the RIP
condition, i.e., δk+1 < 1√

k+1
, which guarantees the perfect

recovery without noise perturbation [15].
The OMP can be viewed as the successive interference

cancellation method, i.e., at each iteration the strongest
signal component is subtracted from the residual vector.
We denote the residual vector at the tth iteration by rt , the
support of signal at the tth iteration by St , the sub-matrix
formed by the columns of X according to the support St
by XSt , and the rest of the matrix X by X S̄t .
At the tth iteration, the column index i of X S̄t which has

the highest correlation with the residual vector rt is added
to the support set, i.e., St = St−1

⋃
i. After updating the

signal support, the residual vector is updated by projecting
y onto the null-space of XSt , i.e.,

rt = P⊥
t y (2)

where P⊥
t = I−Pt is orthogonal projector onto null space

of XSt and Pt = Xt
(XT

t Xt
)−1 XT

t ∈ Rm×m. Thus, the
residual vector rt after t iterations can be expressed as

rt = P⊥
t Xh + P⊥

t n, (3)

We denote the support of the k-sparse signal h by
supp(h), i.e., supp(h) := {i ∈ {1, 2, . . . , n}|h(i) �= 0}, where
h(i) is the ith element of vector h. When the support
obtained via the iteration is the supper-set of the actual
support of the signal, i.e., supp(h) ⊂ St , there is no signal
component in the residual vector rt .
Thus, we can adopt the signal detection method to test

whether the signal component exists in the residual vec-
tor after each iteration. Since one entry of h, indexed by
largest column correlation with X S̄t , is set to zero at the
tth iteration, we can define the signal component after t
iteration in the residual rt as

ht :=
{ ht(i) = 0, i ∈ St ,
ht(i) = h(i), others,

Then, (3) is equivalent to

rt = P⊥
t Xht + P⊥

t n.
According to the definition of RIP [16], for real signal h,

X obeys

(1 − δk)‖h‖2�2 ≤ ‖XSth‖2�2 ≤ (1 + δk)‖h‖2�2 , (4)

for all subsets St with ‖St‖l0 < k. Since we assumed
that δk+1 < 1√

k+1
, the sensing matrix X meets the RIP

condition with δk < 1√
k−1+1

≤ 1, i.e., δk < 1. There-
fore, ‖XSth‖2�2 ≥ (1 − δk)‖h‖2�2 > 0, for any h �= 0. In
other words, equation XSth = 0 has no nonzero solu-
tion, or any t columns of X are linearly independent. We
have rank(Pt) = t. Since rank (Pt) + rank

(P⊥
t
) = m,

P⊥
t is not a row full rank matrix, and vector P⊥

t y is of
degenerated multivariate normal distribution. To derive
the distribution of the residual vector rt , the residual is
further projected onto a subspace formed by taking any
m − t rows from P⊥

t . Since any m − t rows of P⊥
t are lin-

early independent, i.e., rank(Pt) = m − t, the sub-matrix
formed by these rows is of full row rank.
We denote the projection matrix by Pm−t = Mm−tP⊥

t ,
whereMm−t is a matrix that takesm − t rows from other
matrix. For example,M3 can be

M3 =
⎡
⎣ 1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎤
⎦ , (5)

wherem is the number of measurements, and t is the iter-
ation times.Pm−t = Mm−tP⊥

t is the sub-matrix formed by
them − t rows of P⊥

m−t . Pm−t projects rt onto a subspace
of rankm−t, that is zt = Pm−t ·rt . Since anym−t rows of
P⊥
t are linearly independent, and other t rows can be lin-

early represented by thesem− t rows, anyMm−t with full
row rank projects the residual vector rt onto the identical
subspace. Thus, we take any m − t rows from P⊥

t for the
further projection.
Define Cm−t := Pm−tPT

m−t . If there is only noise in the
residual vector, that is, zt = Pm−tn, then the projected
residual zt follows

zt ∼ N (
0, σ 2Cm−t

)
. (6)

If the residual vector consists the signal component and
noise, i.e., rt = Pm−t (Xht + n), the distribution of zt is

zt ∼ N (
0,
(
θt + σ 2)Cm−t

)
. (7)

where θt = ‖ht‖�2 is an unknown parameter.

3 Hypothesis test on residual vector
With the PDF of the residual vector known, we can form
the binary hypothesis test on whether there are signal
components in the residual vector after t iterations,

H0 : zt = Pm−t · n
H1 : zt = Pm−t · (Xht + n) . (8)

If H0 is decided, the iteration stops. Since one entry of
signal ht is set to zero at each iteration, ‖ht‖�2 decreases
after each iteration, and it needs to be estimated.
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According to (6) and (7), the PDF of the residual vector
under H0 and H1 are respectively given by

p(zt ;H0) = 1
(2π)

m−t
2 det1/2

(CH0

)
· exp

[
−1
2
zTt C−1

H0
zt
]
, (9)

p(zt ; θt ,H1) = 1
(2π)

m−t
2 det1/2

(CH1

)
· exp

[
−1
2
zTt C−1

H1
zt
]
, (10)

where CH0 = σ 2Cm−t , CH1 = (
θt + σ 2)Cm−t . Then, the

binary hypothesis test can be conducted using the gener-
alized likelihood ratio test (GLRT) [17]. H1 is decided if
the following inequality holds

ln L(zt) = ln
p
(
zt ; θ̂t ,H1

)
p (zt ;H0)

= 1
2

(
1
σ 2 − 1

θ̂t + σ 2

)
zTt C−1

m−tzt .

+m − t
2

ln
σ 2

θ̂t + σ 2

> γ ′, (11)

where θ̂t is the maximum likelihood estimation (MLE) of
θt at each iteration,

θ̂t =
⎧⎨
⎩

zTt C−1
m−tzt

m−t − σ 2, zTt C−1
m−tzt

m−t − σ 2 > 0

0, zTt C−1
m−tzt

m−t − σ 2 ≤ 0
(12)

When θ̂t = 0, i.e., no signal component exists, the
iteration stops; otherwise, the θ̂t is plugged into (11) for
further test. After plugging the θ̂t and simplification, the
test statistics is given by

m − t
2

[
zTt C−1

m−tzt
σ 2(m − t)

− ln

(
zTt C−1

m−tzt
σ 2(m − t)

)
− 1

]
> γ ′.

(13)

Since the function g(x) = x− ln x− 1 in (13) is a mono-
tonically increasing function of x for x > 1, and its inverse
function g−1 exists for x > 1, (13) can be rewritten as

m − t
2

g

(
zTt C−1

m−tzt
σ 2(m − t)

)
> γ ′, (14)

In (14), zTt C−1
m−tzt

(m−t) − σ 2 > 0, we have zTt C−1
m−tzt

σ 2(m−t) > 1.
Therefore, (14) is simplified as

zTt C−1
m−tzt

σ 2(m − t)
> g−1

(
2γ ′

m − t

)
= γ ′′. (15)

Finally, we obtain the detector T(zt) = zTt C−1
m−tzt , and

chooseH1 if

T(zt) = zTt C−1
m−tzt > σ 2(m − t)γ ′′ = γt . (16)

In other words, when T(zt) is greater than the thresh-
old γt , signal component remains in residual vector, and
iteration should be continued.

4 Threshold selection
The threshold selection is crucial in the binary hypothe-
sis test. We use the constant false alarm (CFA) criteria to
determine the value of threshold γt . Recall that the detec-
tor is in the quadratic form of T = vTBv, where B is a
symmetric n× nmatrix and v is an n× 1 vector following
N (0, C). With B = C−1, we know that T follows the chi-
square distribution with n degrees of freedom. Thus, we
have

T(zt)
σ 2 = zTt

σ
C−1
m−t

zt
σ

∼ χ2
m−t , H0,

T(zt)
θt + σ 2 = zTt√

θt + σ 2
C−1
m−t

zt√
θt + σ 2

∼ χ2
m−t , H1.

Therefore, false alarm probability and detect probability
are given as

PFA = P {T(zt) > γt ;H0} = Qχ2
m−t

( γt
σ 2

)
, (17)

PD = P{T(zt) > γt ;H1} = Qχ2
m−t

(
γt

θt + σ 2

)
, (18)

whereQχ2
v
(a) is the right-tail probability of Chi-Square χ2

v
function given by

Qχ2
v
(a) =

⎧⎪⎨
⎪⎩
2Q
(√

a
)
, v = 1

2Q
(√

a
)+ f (a), v > 1, v is odd

exp
(− 1

2a
)∑ v

2−1
k=0

( a
2 )

k

k! , v is even
(19)

where f (a) = exp
(− 1

2a
)

√
π

∑ v−1
2

k=1
(k−1)!(2a)k−

1
2

(2k−1)! and Q
(√

a
) =∫∞√

a
1√
2π

exp
(− 1

2 t
2) dt.

The stopping threshold γt shown in (17) can be calcu-
lated using numerical method [17]. Our proposed DOMP
is shown in Algorithm 1.
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Algorithm 1 DOMP
Input: X, y, σ 2, PFA
r0 ← y
S0 ← ∅
t ← 1
repeat
ut ← XTrt−1
St ← St−1 ∪ argmaxi∈{1,2,...,n} |ut(i)|
rt ← P⊥

Styzt ← Mm−trt {Mm−t is a matrix selecting m − t
entries from rt}
t ← t + 1

until T(zt) ≤ γt {T(zt) and γt need to be calculated for
each iteration}

Output: ĥ =
{
ĥSt = argminz ‖y − XSt z‖�2

ĥs̄t = 0
, k̂ = t − 1,

Ŝ = St {output the recovered signal, estimated sparsity
and recovered support of the signal}

5 Numerical results
In this section, we present the numerical results of pro-
posed DOMP algorithm. To evaluate the performance of
DOMP, we define the mean square error of the estimated
vector by

MSE(ĥ) = 1
N

N∑
i=1

‖ĥi − h‖2�2 . (20)

where ĥi is the recovered h of the ith experiment, andN is
the number of experiments. N is set to be 5,000 in all our
numerical experiments.
The detector T(zt) of DOMP checks whether there is

signal in residual for each iteration. First, we show that the
detection performance of the T(zt) on residuals for each
iteration. In this test, the sensing matrix is a 128 × 256
Gaussianmatrix whose elements follow i.i.d. Gaussian dis-
tribution of N (0, 1). A 3-sparse signal, whose nonzero
elements are all ones, is sensed. For each PFA, we perform
1,000 trials. The residual at the ith iteration is denoted as
ri, and the curves of logarithmic scaled (dB) PFA versus PD
at each iteration for different SNRs are shown in Figure 1.
The detection probabilities of signal components are high
for the first two iterations (when there exists signal com-
ponents in the residual), and the detection probabilities
are low after three iterations (when the residual has no
signal component) for PFA between −30 and −10dB. In
other words, PFA about 0.001−0.1 provides good tradeoff
between PFA and PD.
We then compare the performance of the support recov-

ery rate and the MSE of the recovered signal using 1)
OMP with sparsity k known; 2) OMP with unknown spar-
sity with stopping rule of ‖rt‖�2 < ‖n‖�2 as proposed in

Figure 1 Pfa versus Pd of the signal component detection in the
residual, SNR = 3 dB and SNR = 5 dB.

[14]; 3) DOMPwith different false alarm probabilities, i.e.,
PFA = 0.05, PFA = 0.01, and PFA = 0.001. The sens-
ing matrix is Gaussian matrix whose elements follow i.i.d.
Gaussian distribution N (0, 1). The nonzero elements of
the 256-dimensional signal are set to one. In Figures 2 and
3, the performance of these methods are shown as num-
ber of measurements (dimension of y) increases, while the
sparsity of the signal is set to be 4 for SNR = 5 dB. The
results shown that the OMP with sparsity k known has
the best performance followed by DOMP, and OMP with
stopping rule, ‖rt‖�2 < ‖n‖�2 . For DOMP with differ-
ent PFA, the successful support recovery rate increases for
lower PFA as the number of measurements increases, e.g.,
DOMP with PFA = 0.01 outperforms DOMP with
PFA = 0.05 when the number of measurements is greater
than 60. Note in Figure 3, we can observe the crossovers of
DOMPwith different PFA as the dimension of y increases.
This is due to the fact that detection probability is a

Figure 2 The MSE of the recovered signal using DOMP and OMP
with/without sparsity information as number of measurements
(dimension of y) increases, SNR = 5 dB.
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Figure 3 The percentage of successfully recovered support of
signal using DOMP and OMPwith/without sparsity information
as number of measurements (dimension of y) increases,
SNR = 5 dB.

increasing function both of the number of measurements
and PFA. With small number of measurements, the effect
of lower less number of measurement is more dominant
than the effect of lower PFA. Thus, higher PFA results
better support recovery performance for DOMP when
the number of measurements is small. As the number of
measurement increases, the effect of the more measure-
ment dominates, and the DOMPwith lower PFA performs
better.
In Figures 4 and 5, we show the performance as

sparsity of signal increase, while keep the number of
measurements fixed to be 128. The figures show again
that the OMP with known sparsity outperforms other

Figure 4 The percentage of successfully recovered support of
signal using DOMP and OMPwith/without sparsity information
as the sparsity increases, SNR = 5 dB.

Figure 5 The MSE of recovered signal using DOMP and OMP
with/without sparsity information as the sparsity increases,
SNR = 5 dB.

methods. Our proposed DOMP outperforms the OMP
with stopping rule, ‖rt‖�2 < ‖n‖�2 . TheDOMPwith lower
PFA has higher support recovery rate and lower MSE.
It is worth noting that in reality, the sparsity information

may not be known in prior. Thus, one may not be able to
directly apply OMP. Minimum description length (MDL)
criterion is often used, in this scenario, to estimate the
sparsity of the signal [18], i.e., the eigenvalues of the sam-
ple covariance matrix R of the received signal y, denoted
by λi is used to estimate the signal sparsity as

k̂ = argmin
k∈{1,2,...,n}

MDL(k), (21)

Table 1 The estimated sparsityof signal by DOMPandMDL

Sparsity k DOMP MDL

Mean Std Mean Std

1 1.00 0 1.06 0.34

2 2.00 0 1.91 0.64

3 3.06 0.32 2.15 0.85

4 4.48 1.03 3.22 1.43

5 6.53 1.87 2.71 1.61

6 8.77 2.54 4.78 3.18

7 10.98 2.81 7.82 3.07

8 13.33 3.09 9.51 1.15

9 15.67 3.47 9.82 0.45

10 17.56 3.39 9.99 0.10

Sensing matrix is 128× 256 random matrix whose entries are i.i.d Gaussian
variables with mean 0 and variance 1. SNR = 5 dB, PFA = 0.05. Trials = 1,000.
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Figure 6 Block diagram for comparing DOMP and other greedy
algorithms with MDL.

where MDL(k) is given by

MDL(k) = − log

⎛
⎝ ∏m

i=k+1 λ
1

(m−k)
i

1
(m−k)

∑m
i=k+1 λi

⎞
⎠

(m−k)n

+1
2
k(2m − k) log n. (22)

We now compare the accuracy of estimation of the sig-
nal sparsity by DOMP and MDL. In this experiment, the
signal dimension is set to be n = 256, and the sensing
matrix X is a 128 × 256 Gaussian matrix whose entries
are i.i.d Gaussian with mean zero and variance of one.
The k-sparse signal h is generated by randomly setting k
entries in h to be one and other entries of h to be zero. The
experiment is conducted for SNR = 5 dB.

Figure 7 Performance of estimated error between DOMP and
other greedy pursuits with MDL for different number of
measurements (dimension of y) SNR = 0 dB.

Table 2 The parameters of cost207 channel

BUx6 RAx4

Sample Frequency (MHz) 18.4 18.4

Path delays (μs) 0.0 0.4 1.0 1.6 5.0 6.6 0.0 0.2 0.4 0.6

Average path gain (dB) -3 0 -3 -5 -2 -4 0 -2 -10 -20

Support of h [1, 8, 19, 30, 93, 123] [1, 5, 8, 12]

Dimension of h 128 128

The estimated signal sparsity is shown in Table 1 for
DOMP and MDL. We can observe that our proposed
detection method gives accurate sparsity estimation for
low sparsity signal. Actually, the estimated sparsity is the
number of iteration for DOMP. Therefore, the average
number of iterations for DOMP can be found in the
Table 1, which actually matches the signal’s sparsity for
low sparsity case.
Adopting the scheme shown in Figure 6, we compare

the performance of DOMP and other greedy pursuit algo-
rithms, OMP, CoSaMP, ROMP, and SP with the signal
sparsity estimated using MDL criterion. Similar with the
previous experiment, we choose the sensing matrix to
be the Gaussian matrix whose entries follow i.i.d Gaus-
sian distributed of N (0, 1). The support S of the signal
is randomly selected, and the amplitude of the nonzero
elements of the sparse signals h are drawn from stan-
dard Gaussian distribution. The noise n is a zero mean
Gaussian noise. In Figure 7, the signal recovery MSE for
different number of measurements (dimension of y) is
shown. In this figure, we can observe that the estimated
error of DOMP is less than other greedy pursuit algo-
rithms with MDL when the number of measurements is
less than 40.

Figure 8MSE of BUx6 channel estimation with DOMP and OMP
with MDL.
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Figure 9MSE of RAx4 channel estimation with DOMP and OMP with MDL.

One of the applications for DOMP is the channel esti-
mation [12] since the number of channel taps are usually
unknown. We compare the performances of estimat-
ing Rayleigh fading channel by MDL based OMP and
DOMP following the same scheme shown in Figure 6. The
Rayleigh fading channel h is given by cost207 model [19]
with the parameters shown in Table 2. Since the sens-
ing matrix X in wireless channel model y = Xh + n is a
Toeplitz matrix constructed by the transmitted sequence
x [20], we construct the sensing matrix by circular shift
of the Gaussian vector whose elements are drawn from
N (0, 1), which models the correlator output of spread
spectrum signal. Figures 8 and 9 show the MSE of esti-
mated BUx6 and RAx4 channel using DOMP and MDL
based OMP, respectively. These two figures show that the
error of estimation by DOMP is less than MDL-based
OMPwhen the number of measurementm is less than 80.

6 Conclusions
In this paper, we proposed a detection-based OMP algo-
rithm called DOMP. This method forms GLRT for each
iteration to test if signal component exists in the residual
vector. When no signal component exists, the algorithm
stops the iteration. In this paper, we use OMP, a classical
greedy algorithm, to apply this detection-based method.
We envision that the detection-based method can be
apply to other greedy algorithms for iteration stopping
rules.
The numerical results show that the proposed DOMP

outperforms the classical OMP algorithm without prior
sparsity information at lower SNR or number of

measurements. We use cost207 wireless channel estima-
tion as an example to show the effectiveness of DOMP.
The DOMP can be readily applied to other sparse recov-
ery problems, e.g., underwater channel in sonar system
and radar system, where the signal sparsity is unknown.
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