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Single channel speech separation in modulation
frequency domain based on a novel pitch range
estimation method
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Abstract

Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from
monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the
robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch
(frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first,
estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then,
uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based
on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask
extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the
majority of target speech signal with minimal interference and outperforms previous systems in both pitch
extraction and voiced speech separation.

Keywords: acoustic frequency, modulation frequency, onset and offset algorithm, pitch range estimation, speech
separation

1. Introduction
Speech separation, as a solution to the cocktail party
problem, is a well-known challenge with important
applications. To touch the point, consider the telecom-
munication systems or the Automatic Speech Recogni-
tion systems that lose performance in the presence of
interfering sounds [1,2]. An effective system that segre-
gates speech from interference in monaural (single-
microphone) situations can be rewarding in such pro-
blems. Many methods have been proposed for monaural
speech enhancement; for example, see [3-7]. These
methods usually assume certain statistical properties for
interference and tend to lack the capacity of dealing
with a variety of interferences. While the monaural
speech separation works awkwardly, the human auditory
system performs proficiently. The perceptual process is
considered as Auditory Scene Analysis (ASA) [5]. Psy-
choacoustic research in ASA has inspired considerable

work in developing Computational Auditory Scene Ana-
lysis (CASA) systems for speech separation (see [6,7] for
a comprehensive review).
According to Bregman [5], ASA procedure can be

separated into two theoretical stages: segmentation and
grouping. At the first stage, speech is transformed into a
higher-dimensional space (such as a time-frequency
two-dimensional representation) and then, similar time-
frequency (T-F) units are segmented in order to com-
pose different regions [6]. In the second stage, these
regions are combined into different streams based on
the relevant acoustic information. The major computa-
tional goal of CASA is to separate the target speech sig-
nal from the interference for different purposes, via
generating a binary or a soft T-F mask, see, e.g., [8-10].
Grouping, itself, consists of simultaneous and sequen-

tial organizations, which involves grouping of segments
across frequency and time. The task of sequential group-
ing is to group the T-F regions relative to the same
sound source across time. Figure 1 illustrates this issue in
which the upper panel shows T-F regions grouped into
one single stream, as they are close enough in both (time
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and frequency) directions; while, the lower panel illus-
trates the case of two streams of speech, grouped sepa-
rately as the T-F regions are sufficiently far from each
other in the frequency direction. Temporal continuity is
an effective cue for grouping T-F regions neighboring in
time. However, it cannot handle T-F regions that do not
overlap in time due to the silence or interference seg-
ments. Therefore, sequential grouping of such T-F
regions is a very challenging problem (see [11,12] for
more details).
Natural speech includes both voiced and unvoiced

portions. Voiced portions of speech are described by
periodicity (or harmonicity), which has been used as an
important feature in many CASA systems for segregat-
ing voiced speech (see, e.g. [13,14]). Despite considerable
advances in voiced speech separation, the performance
of current CASA systems is still limited by pitch fre-
quency (F0) estimation errors and residual noise. Var-
ious methods have been proposed for robust pitch
frequency estimation, see e.g., [15,16]; however, robust
pitch frequency estimation in low signal-to-noise ratio
(SNR) situations still poses a significant challenge.
While mixed speech may have a great deal of overlap in

the time domain, modulation frequency analysis provides
an additional dimension that can present a greater degree
of separation among sources. In other words, the original
T-F representation obtained from transformations like
Short-Time Fourier Transform (STFT) can be augmen-
ted to a third dimension that represents modulation fre-
quency. In [17], by assuming that the pitch frequency
range is known and this range is constant in each filter
channel, the modulation spectral analysis is used as a
tool for producing the mask for speech separation a
higher-dimensional spaces.
Based on the above observations, we propose a new

system for single channel separation of voiced speech
based on the modulation filtering. The idea is that, first,
the target pitch (frequency) range is estimated in the
modulation frequency domain, and then, this range is
used for producing the proper mask for speech separa-
tion. Because of the following reasons provided in [18],
modulation analysis and filtering are applied for the

target speech separation problem. First, there is a gen-
eral belief stating that the human ASA system processes
the sounds in the modulation frequency domain. Sec-
ond, the energy from two co-channel talkers is largely
non-overlapping in the modulation frequency domain.
The method of modulation analysis and filtering has
extensively been studied by many researchers in the
field of single channel speech separation; Reference [19]
provides a general discussion on this subject.
At first, the proposed system performs a multipitch

range estimation of target and interference speech based
on the segmentation of modulation spectrogram
domain. The segmentation is done using an onset and
offset algorithm similar to that proposed by Hu and
Wang [20]. In the proposed method, the noisy signal is
divided into 200 ms time frames and then, the proposed
speech separation algorithm is applied to each individual
frame. Pitch range estimation method works in three
stages: the first stage computes the modulation spectro-
gram; the second stage decomposes the modulation
spectrogram into segments using an onset and offset
algorithm. In this stage, at first, the peaks and valleys of
derivative smoothed intensity of modulation spectro-
gram are detected and marked as onset and offset candi-
dates. Any onset bigger than a certain threshold is
accepted for which the smallest offset between two
onsets is selected. Then, onset and offset fronts are pro-
duced by connecting the common onsets and offsets.
Finally, the segments are formed by matching the onset
and offset fronts. The third stage determines the range
of pitch frequency by selecting and grouping the desired
segments.
The separation part of the proposed system aims at

obtaining a soft mask in the modulation spectrogram
domain. By extending the soft mask suggested in [17], a
soft mask is proposed whose value depends on the esti-
mated pitch range in each filter channel. To determine
the soft mask in each filter channel, first, we find and
mutually compare the modulation spectrogram energy of
target and interference in their pitch ranges estimated
from the previous stage. Then, we transform the soft
mask to the time domain and filter the mixture signal in
order to obtain the separated target signal. Thus, a strat-
egy is suggested which estimates the target pitch range,
and subsequently, segregates the target signal from the
interference. Finally, the separated target signal is
obtained from arranging the separated signal from each
frame, in a time order sequence.
This article is organized as follows. Section 2 describes

the modulation frequency analysis. In Section 3, first, a
brief description of the present system is given and then
the details of each stage are presented. In Section 4, a
quantitative measure is proposed for evaluating the perfor-
mance of speech separation and it is used for systematic
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Figure 1 Segmentation and grouping of speech projected into
T-F cells in a 2D representation [6].
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evaluation of pitch range estimation and speech separa-
tion. This article concludes with a discussion in Section 5.

2. Modulation frequency analysis
Decomposing a narrowband signal into a carrier and a
modulator signals is an important problem in modula-
tion analysis and filtering [18]. The modulator is a low-
frequency signal that describes the amplitude modula-
tion of the original signal; and the carrier is a narrow-
band signal describing the frequency modulation of the
signal. Consider a wideband discrete-time signal x(n),
for which n represents a discrete-time independent vari-
able. The T-F transform of a signal x(n), denoted by X
(m, k), is obtained using the Discrete STFT (DSTFT).
X(m, k) is a T-F transformed narrowband signal (with
the time index m) coming out of the kth channel:

DSTFT {x (n)} = X (m, k) =
K−1∑
n=0

x (n)w (mM − n) e−j2πnk/K k = 0, . . . ,K − 1, (1)

where K is the DSTFT length (equal to the number of
the filter bank channels), w(·)is the acoustic frequency
analysis window with length L and M is the decimated
factor. The product model of the modulator signal M(m,
k) and the carrier signal C(m, k) of the signal X(m, k) in
the T-F domain is defined as

X (m, k) = M (m, k) C (m, k) , (2)

The modulator of the signal X(m, k) is found by
applying an envelope detector to this signal, as

M (m, k) � D {X (m, k)} , (3)

where D is the operator of the envelope detector.
With respect to Equation (2), the signal’s carrier is
described as

C (m, k) =
X (m, k)
M (m, k)

, (4)

A good choice for the envelope detector is the inco-
herent detector, since it is able to create a modulation
spectrum that has a large area covered in the modula-
tion frequency domain. For the speech signal in hand,
this property may be used to find the pitch frequency in
the modulation frequency domain. Incoherent envelope
detector is based on the Hilbert envelope (for real-
valued subbands) or the magnitude operator (for com-
plex-valued subbands) [21]. Therefore, the modulator of
the complex signal X(m, k) is defined as

M (m, k) = |X (m, k)| , (5)

The theory of modulation frequency analysis and fil-
tering is best explained through the definition of modu-
lation transforms, which are signal transformations

defined based on the Fourier transform (FT) and the
STFT. The discrete short-time modulation transform of
the signal x(n) is defined as

X (k, i) = DFT {D {DSTFT {x (n)}}}

=
I−1∑
m=0

M (m, k) e−j2πmi/I i = 0, . . . , I − 1,
(6)

where I is the DFT length and i is the modulation fre-
quency index. The modulation transform consists of a
filter-bank that uses the DSTFT followed by a subband
envelope detector and, then, a frequency analyzer of the
subband envelopes (the DFT) [18].
The modulation spectrogram intensity, defined as

X (k, i) =
∣∣X(k, i)∣∣ , is generally sketched in a diagram, in

which the vertical axis displays the regular acoustic fre-
quency index k and the horizontal axis is the modulation
frequency index i. The modulation analysis framework is
described in Figure 2. A typical example of modulation
transform is illustrated in Figure 3, in which, Figure 3a
shows the mixture of a target and interfering male speak-
ers and Figure 3b, c, respectively, depict the correspond-
ing T-F representation and modulation spectrogram,
with the overall SNR of 0 dB.

3. System description
The main target of the current system is to produce a soft
mask for single channel speech separation in the modula-
tion spectrogram domain. In the proposed system, deter-
mining the pitch range of target and interference speech is
necessary for producing the mask for speech separation.
The value of this mask in each subband depends on the
obtained pitch range of target and interference in that
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Figure 2 The modulation analysis framework and the
modulation spectrogram [19].
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subband. When the modulation spectrogram of the speech
signal is computed, the pitch ranges of target and interfer-
ence speakers are determined and, then, a proper mask is
calculated for the speech separation. The overall stages of
our system are shown in Figure 4.
To determine the mentioned pitch ranges, our pro-

posed method uses an onset and offset detection algo-
rithm [20] to find the distribution of modulation
spectrogram energy in the modulation frequency
domain, which is an important feature for determining
the pitch range. When modulation spectrogram energy
is found, the modulation spectrogram is segmented, as
described in Section 3.2.2. Then, the resulting segments
are grouped in order to estimate the pitch range of each
speaker. A detailed description of stages is as follows.

3.1. T-F decomposition and modulation transform
At the T-F stage, the STFT (as a uniform filter-bank) is
used for decomposing a broadband signal into narrow-
band subband signals. The output of the T-F stage

enters into the modulation transform stage in order to
calculate the modulation spectrogram.

3.2. Pitch range estimation in modulation frequency
domain
The pitch frequencies of target and interference speak-
ers are both time-varying. Occasionally, pitch frequen-
cies of the target and interference speakers are too close
to each other, in which this fact causes undesired errors
in multipitch tracking algorithms and decreases the
accuracy of speech separation methods. The algorithm
of this article estimates the pitch range of target and
interference speakers of noisy speech in the modulation
frequency domain. Estimating the pitch range in small
time-intervals (for example 200 ms) decreases the error
in the pitch range estimation method.
In the pitch range estimation approach, at first, the

intensity of the modulation spectrogram is smoothed
over the modulation frequency, using a low-pass filter.
Then, the partial derivative of the smoothed intensity
over the modulation frequency is computed. By marking
the peaks and valleys of the resulting signal, the onset
and offset candidates are detected and the onset and off-
set fronts are formed. By matching the onset and offset
fronts, the modulation spectrogram of speech signal is
segmented. The detailed description of the stages for
the pitch range estimation is as follows.
3.2.1. Smoothing
Smoothing corresponds to low-pass filtering. The pro-
posed system uses a low-pass filter to smooth the mod-
ulation spectrogram intensity over the modulation
frequency. Considering the frequency channel k, the
smoothed intensity for X (k, i) is found as follows:

Xs (k, i) = X (k, i) ∗ gs (i) , (7)

where gs(i) is a low-pass FIR filter with a small num-
ber of coefficients with pass-band [0, s] in Hz. Here,
“*” denotes the convolution operator (over the modula-
tion frequency). The parameter s determines the
degree of smoothing: the smaller s, the smoother
Xs(k, i) would be.
As an example, Figure 5 shows the original (Figure 5a)

and the smoothed (Figure 5b-d) intensities of the modu-
lation spectrum for the mixture input signal shown in
Figure 3a, at three typical scales. To display more
details, Figure 5e-h describes the original and the
smoothed intensities at these three scales, in a single
frequency channel centered at 560 Hz. The intensity
fluctuation reduces by smoothing, as certified by Figure
5. Although the local details of onsets and offsets
become blurred, the major intensity changes of the
onsets and offsets are still preserved.
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Figure 3 Sound mixture and its modulation spectrogram. (a)
Mixture of speech signals. (b) T-F energy plot for a mixture of two
utterances of a male speaker. The utterances are “eight” and “dos.”
For better display, energy is plotted as the square of the FT. (c)
Modulation spectrogram of the mixture signal.
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Mahmoodzadeh et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:67
http://asp.eurasipjournals.com/content/2012/1/67

Page 4 of 10



3.2.2. Onset/offset detection and matching
Onsets and offsets correspond to sudden intensity
changes. The partial derivative of smoothed modulation
spectrogram intensity over the modulation frequency is
obtained as

∂

∂i
Xs (k, i) =

∂

∂i

[X (k, i) ∗ gs (i)
]
, (8)

Peaks and valleys of the resulting signal of Equation
(8) are, respectively, marked as onset and offset candi-
dates. Figure 6 illustrates this procedure, in which the
onset candidates with peaks bigger than a threshold θon
are accepted. The peaks corresponding to the true
onsets are usually significantly higher than other peaks.
For this reason, θon = μ+ s is selected as the threshold,
in which μ and s are the mean and standard deviation
of all the onset candidates (peaks of Equation 8), respec-
tively [20]. Hu and Wang [20] claim that the perfor-
mance of the method using such a threshold choice is
satisfactory.
In every filter channel k, to determine the offset corre-

sponding to each onset candidate, let fon[k, l] represent
the modulation frequency of the lth onset candidate in
the filter channel k. The corresponding offset, denoted
by foff[k, l], is located between fon[k, l] and fon[k, l+1]. If
there are multiple offset candidates in this interval, the
one with the largest intensity decrease (i.e., the smallest
∂

∂i
Xs(k, i)) is chosen.

After finding the onsets and offsets, those with close
modulation frequencies are connected to the onset and
offset fronts, because the frequency components of
onsets and offsets with close modulation frequencies
probably correspond to the same source. Onset and off-
set fronts are vertical contours across acoustic frequency
in the modulation spectrogram domain. The proposed
system connects an onset candidate from a filter chan-
nel to an onset candidate in the above adjacent filter
channel, provided that their distance in the modulation
frequency is less than a certain threshold relative to the
latter filter channel. In each filter channel, this threshold
is defined as the mean of the distances in the modula-
tion frequency direction between two-by-two adjacent
onsets. This definition for the threshold is provided
from experiments and is validated as a good choice in
the data. The same applies to the offset candidates.
Notice that a threshold with a too small value may pre-
vent onsets or offsets from the same event to joint;
while a threshold with a too large value may cause some
onsets from different events to connect together [20].
The next step is to form segments by matching indivi-

dual onset and offset fronts. Consider (fon[k, lk], fon[k, lk
+1],..., fon[k+r-1, lk+r-1]) as an onset front with r consecu-
tive filter channels, in which lk denotes the number of
the selected onset as an onset front member, in the filter
channel k; and consider (foff[k, lk], foff[k+1, lk+1],..., foff[k
+r-1, lk+r-1]) as the corresponding offset modulation fre-
quencies. For each offset modulation frequency, first, we
find all those offset fronts that cross this offset; then,
the offset front with the most crosses (with the offset
modulation frequencies) is chosen as the matching offset
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front. Now, the entire filter channels from k to k +r -1
occupied by the matching offset front (and their corre-
sponding offset modulation frequencies on this match-
ing offset front) are labeled as “matched.” If all the
channels from k to k+r-1 are labeled as matched, the
matching procedure finishes; otherwise, the matched
channels should be put aside and the procedure should
be repeated for the remaining unmatched channels.
At last, in order to form the offset front relative to

each onset front, we replace the offset modulation fre-
quencies corresponding to the onset front with those of
the matched offset fronts. The region between the onset
front and its offset front yields a 2D segment in the
acoustic-modulation frequency space; see Figure 7 for
the schematic representation of the matching procedure.
3.2.3. Segment selection and decision-making
By detecting the onsets and offsets and forming the
onset and offset fronts, the modulation spectrogram
domain of speech signal is segmented. Since the speak-
er’s pitch range is [60, 350] Hz (for men, women, and
children), only the segments with modulation frequen-
cies in this range are accepted. Now, we describe the
grouping procedure for the segments.
First, the modulation spectrogram energy of each

selected segment is computed. Two almost disjoint seg-
ments with most energies, i.e., those with the most
modulation spectrogram energies and the least horizon-
tal overlap in the modulation spectrogram, for simplicity
called segments A and B, are selected (the case “speech
interfered by a non-speaker-noise” has only one such
segment). For any other segment (call segment C), if the
modulation frequency range at least 80% overlaps with
that of segment A or segment B, the segment C is
grouped with that overlapping segment; otherwise, the
segment C is omitted for the grouping procedure. Figure
8 presents a typical example of the grouping procedure.
As shown, in each filter channel, the onset and offset
fronts of the resulting group determines the correspond-
ing range of pitch frequency in that filter channel.

3.3. Speech separation
In [17], a mask is presented for speech separation in the
modulation spectrogram domain, assuming that the
pitch ranges of the target and interference are known
and that these ranges are the same in each subband.
Our system extends this idea by allowing the value of
the mask in each filter channel to depend on the esti-
mated pitch range of that filter channel.
Consider a given signal x(n) that is the sum of a target

signal xts(n) and an interference signal xis(n), sampled at
fs Hz, i.e., x(n) = xts(n)+xis(n). A proper mask should be
estimated for segregating the target signal from the
interference signal. In each filter channel k, the pitch
ranges of the target and interfering speakers (obtained
from the previous stage) are denoted by

PFkts := [pf kts,low, pf
k
ts,high] and PFkis := [pf kis,low, pf

k
is,high] ,

respectively. Also,

Qk :=
{
i ∈ {0, . . . , I − 1} such that

(
i.fs

)/
(I.M) ∈ PFk

}
is

defined as the set of modulation frequency indices of
PFk, i.e., a pitch range in the filter channel k.
To produce a frequency mask in each filter channel k,

define the mean of the modulation spectral energy rela-
tive to a pitch range as the energy normalized by the
wideness of that pitch range:

Ek =

⎛
⎝∑

i∈Qk

∣∣X(k, i)∣∣2
⎞
⎠/

(pf khigh − pf klow) (9)

The frequency mask is calculated, when the means of
the modulation spectral energy of the target and inter-
ference speakers are compared in the following sense.

Fk =
Ekt s

Ekt s + Eki s
, (10)

Since there are artifacts associated with applying
masks in the modulation frequency domain (see [22]),
this domain is not preferable for modulation filtering in
order to mask out the interference and reconstruct a
time-domain signal. Instead, the frequency mask is
transformed to the time domain. To this end, a filter
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with linear phase is constructed whose magnitude is Fk

and the assigned linear phase is jk(i) = i. Then, the
inverse DFT is taken

f k(m) =
1
I

I−1∑
i=0

Fkejφ
k(i)ej2πmi/I. (11)

The separated target signal is estimated by the convo-
lution (over the variable m) of the obtained filter fk(m)
with the modulator signal of the mixture signal x(n) and
then, multiplying by the carrier signal of the mixture
signal

X̃ (m, k) =
[
M (m, k) ∗ f k (m)

]
C (m, k) , (12)

Finally, the separated target signal in the time domain
is obtained by taking the inverse STFT of X̃ (m, k) .

4. Evaluation
As mentioned earlier, our system estimates the pitch
range and uses this range for the speech separation. In
this section, we evaluate the proposed system in the
processes of pitch range estimation and speech
separation.

4.1. Pitch range estimation
First, the proposed system is evaluated in the pitch
range estimation process with utterances chosen from
the Lee’s database [23] and a corpus of 100 mixtures of
speech and interference [24], commonly used for CASA
research, see, e.g., [13,25,26]. The corpus contains utter-
ances from both male and female speakers. These utter-
ances are mixed with a set of intrusions at different
SNR levels. These intrusions are N0: 1 kHz pure tone;
N1: white noise; N2: noise bursts; N3: cocktail party
noise; N4: rock music; N5: siren, N6: trill telephone; N7:
female speech; N8: male speech; and N9: female speech.
These intrusions have a considerable variety; for exam-
ple, N3 is noise-like, while N5 contains strong harmonic
sounds. They form a realistic corpus for evaluating the
capacity of a CASA system when it deals with various
types of interference.
The signal X(k, i) is the modulation spectrogram of an

input signal that is digitized at a 16-kHz sampling rate.
The parameters of the proposed system are set to M =
16 and K = 128. w(n) is a Hanning window with length
L = 64 (refer to Section 2). The STFT filter-bank has
128 filter channels, for which the center frequency of
the kth filter channel is ωk = 2πk/K, k = 0,..., K-1.
Figure 9 shows the modulation spectrogram and the

obtained segments for a typical speech frame, when the
proposed system is applied. The speech signal is a mix-
ture of target and interference with the overall SNR of 0
dB. We select a male speech, a white noise and a trill

telephone as the interference. The results show that
although the powers of the speech and interference sig-
nals are equal, the proposed method is still able to esti-
mate the pitch range of the target speaker with a
reasonable accuracy.
Figure 10 shows the average error percentage of the

pitch range estimation by the proposed system on the
above mixtures at different SNR levels. To determine
the error percentage, we assign a two-element vector to
the margins of each pitch range and find the root mean
square error distance between the vectors corresponding
to the true and estimated pitch ranges. As shown in Fig-
ure 10, the proposed system is able to estimate 79.9% of
the target pitch range, even at -5 dB SNR. The estima-
tion rate increases to about 96.1%, as the SNR increases
to 15 dB.
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Figure 9 Modulation spectrogram and segments obtained for
a mixture of (a) male speaker, (b) white noise, and (c) trill
telephone. The input is shown in Figure 3a.
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A reliable evaluation of the proposed system requires
a reference range of the true pitch. However, such a
reference is probably impossible to obtain from a noisy
speech. We find the reference pitch range by framing
the clean speech signal and calculating the pitch fre-
quency in each frame.
The performance of the proposed method is compared

with that of the Least Square Harmonic (LSH) techni-
que [27], Robust Algorithm for Pitch Tracking (RAPT)
[28], and the Maximum A Posterior (MAP) estimator
[29]. RAPT and MAP are two standard pitch estimation
algorithms. The LSH algorithm, derived in [27] for har-
monic decomposition of a time-varying signal, estimates
the harmonic amplitudes and phases, by solving a set of
linear equations that minimizes the mean square error.
The RAPT algorithm estimates the pitch frequency, by
searching for local maxima in the autocorrelation func-
tion of the windowed speech signal and then, using a
dynamic programming technique (see [28] for more
details). The MAP approach [29] considers a harmonic
model for the voiced speech so that each windowed sig-
nal is expressed with a generalized linear model whose
basic functions depend on the fundamental frequency
and number of harmonic partials.
Figure 10 also provides a comparison between the

results of the pitch estimation using the mentioned four
methods, in which the proposed system performs con-
sistently better than the three standard methods, at all
SNR levels. Although the performance of the LSH
model (as the best performing one among the men-
tioned standard algorithms) is good at SNR levels above
10 dB, it drops quickly as SNR decreases, which shows
that the proposed system is more robust to interference
compared with the LSH model.
As mentioned in [29], MAP performs slightly better in

low SNR’s rather than high SNR’s. In addition, RAPT
fails to estimate the desired pitch period in low SNR’s,
because it mistakenly chooses sub-harmonic and harmo-
nic partials instead of the true pitch period. The current
scheme performs almost consistently in both high and
low SNR’s.

4.2. Voiced speech separation
A corpus of 100 mixtures composed of 10 target utter-
ances mixed with 10 intrusions is recruited for assessing
the performance of the system on voiced speech separa-
tion; these data are described in Section 4. 1. For com-
parison, the Hu and Wang system [14] and the spectral
subtraction method [30] are employed. Performance of
the voiced speech separation is evaluated using two
measures commonly used for this propose [14]:
• The percentage of energy loss, PEL, which measures

the amount of the target speech excluded from the seg-
regated speech.

• The percentage of residual noise, PNR, which mea-
sures the amount of the intrusion included in the segre-
gated speech.
PEL and PNR are error measures of a separation sys-

tem, which are complementary indices for assessing the
system performance. In addition, the SNR of the segre-
gated voiced target (in dB) provides a good comparison
between waveforms [14]:

SNR = 10log10

∑
n s

2 (n)∑
n

[
s (n) − x̃ (n)

]2 , (13)

where x̃ (n) is the estimated signal and s(n) is the tar-
get signal before being mixed with the intrusion.
The results of our system are shown in Figure 11.

Each point in the figures represents the average value of
100 mixtures in the complete test corpus at a particular
SNR level. Figure 11a, b shows the percentage of energy
loss and noise residue. Since the goal here is to segre-
gate the voiced target, the PEL values are only defined
for the target energy at the voiced frames of the target.
As shown in Figure 11, the proposed system segre-

gates 78.9% of the voiced target energy at -5 dB SNR
and 99% at 15 dB SNR. At the same time, at -5 dB,
15.9% of the segregated energy belongs to intrusion.
This number drops to 0.7% at 15 dB SNR. Figure 11c
shows the SNR of the segregated target. This system
obtains an average 7.5 dB gain in SNR when the mixture
SNR is -5 dB. This gain increases to 14.3 dB, when the
mixture SNR is 15 dB. As shown in the figure, the seg-
regated target loses more target energy (Figure 11a), but
contains less interference as well (Figure 11b).
Figure 11 also shows the performance of the system

proposed by Hu and Wang for voiced speech separation
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[14], which is a representative of CASA systems. As
shown in the figure, the Hu and Wang’s system yields a
lower percentage of noise residues (Figure 11b), but has
a much higher percentage of target energy loss (Figure
11a, c). Nevertheless, it should be noted that our system
significantly improved the PEL (in Figure 11a, see, e.g.,
by around 11 and 10% improvement at 0 and 15 dB,
respectively), which leads to much less signal distortion.
The price paid for this is a slightly increase in PNR, as
depicted in Figure 11b (e.g., by around 6 and 0.5%
increase at 0 and 15 dB, respectively).
The average SNR for each intrusion is shown for the

proposed system in Figure 12 in comparison with that
of the original mixtures, Hu and Wang’s system, and a
Spectral Subtraction Method, which is a standard
method for speech enhancement [30] (see also [14]).
The proposed system performs consistently better than
Hu and Wang’s system and spectral subtraction. In
average, the proposed system obtains a 16.85 dB SNR
gain, which is about 1.92 dB better than Hu and Wang’s
system and 8.4 dB better than the Spectral Subtraction.
To help the reader recognize the real difference in the

performance, a file is prepared including sample audio
mixture signals (target speech signal + interference sig-
nal) and the results of the separation using the Spectral
Subtraction, Hu and Wang, and the proposed systems.
The file is available at http://ee.yazduni.ac.ir/sprl/ASP-
AM-SampleWaves.ppt.

5. Discussions and conclusions
One of the major challenges in speech enhancement is
the separation of a target speech from an interference
signal of the same type. The accuracy of the CASA
methods in single channel speech separation depends
on the correctness of the pitch frequency estimation of

two simultaneous speakers because the proper mask in
the T-F domain for the speech separation is produced
in association with the estimated pitch frequency.
In this article, a single channel speech separation sys-

tem is proposed that estimates the pitch range of one or
two speakers and segregates the target speech from the
interference. The pitch range is estimated using the onset
and offset algorithm considering the distribution of
speaker energy in the modulation spectrogram domain.
When the target and interference speakers are either
male or female, the methods for pitch frequency estima-
tion encounter large errors because of close pitch fre-
quency values. Therefore, CASA methods that employ
the pitch frequency as their main feature for speech
separation face difficulties. In contrast, a main novelty of
the present algorithm is the estimation of pitch range
based on short time-frames of the mixture signal. The
constructed mask for speech separation depends on the
pitch range estimated independently in each subband. As
shown by the evaluation results, major portions of the
voiced target speech are separated from the interfering
speech using this mask. In addition, the proposed system
can separate the unvoiced portions that are quasi-peri-
odic because of the proximity of voiced portions.
The proposed algorithm is robust to interference and

produces good estimates of both pitch range and voiced
speech, even in the presence of strong interference. Sys-
tematic evaluation shows that the proposed algorithm
performs significantly better than the mentioned CASA
and speech enhancement systems.
Silent gaps and other interference-masked intervals are

usually included in natural speech utterances. In prac-
tice, the utterance across such time-intervals should be
grouped. This is a sequential grouping problem [5,6]
whose segments or masks can be obtained using the
speech recognition in a top-down manner (also, limited
to non-speech interference) [11] or the speaker recogni-
tion trained by speaker models [31]. However, the pro-
posed algorithm does not encounter this problem of
sequential grouping because it operates in the modula-
tion spectrogram domain.
In terms of computational complexity, the main cost

of the proposed algorithm arises from determining seg-
ments in modulation spectrogram for pitch range esti-
mation. The estimation of the mask and convolution for
speech separation consumes a small fraction of the over-
all cost. Both tasks (pitch range estimation and speech
separation) are implemented in the frequency domain,
so the computational complexity is O(NlogN), where N
is the number of samples in the input signal. These
operations should separately be performed for each sub-
band. On the other hand, since feature extraction takes
place independently in different subbands, substantial
speedup can be achieved through parallel computing.
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For future work, the proposed algorithm can be
improved by iterative estimation of pitch range and
speech separation. The algorithm can include a specific
method to jump-start the iterative process, which gives
an initial estimate of both pitch range and mask with
reasonable quality. In general, the performance of the
algorithm depends on the initial estimate of pitch range;
better initial estimates would lead to better performance.
Even with a poor estimate of pitch range, which is una-
voidable in very low SNR conditions, the proposed algo-
rithm improves the initial estimate during the iterative
process.
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