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Abstract

Background: Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by
the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models
for predicting phenotypic values from all available molecular information that are capable of capturing complex
genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction
model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel.
Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite,
past research has mainly used a Gaussian kernel.

Results: We sought to investigate the performance of a diffusion kernel, which was specifically developed to model
discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the
Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive
genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the
difference in performance between the diffusion and Gaussian kernels was negligible.

Conclusions: It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better
than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may
have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a
non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box
Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance.

Background
Prediction of yet-to-be observed phenotypes for complex
quantitative traits in agricultural species [1,2] or for dis-
ease status in medicine [3] exploits connections between
phenotypes, genealogies, and DNA variations potentially
representing functional diversity of organisms. Systems
biology approaches have uncovered abundant epistasis
in model organisms, including the mouse and the rat
[4],Drosophila melanogaster [5], and Saccharomyces cere-
visiae [6]. In this context, Loewe [7] proposed an evo-
lutionary systems biology framework for arriving at a
better understanding of molecular interactions, given that
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epistatic interactions between mutations are commonly
observed. Therefore, it seems reasonable to argue that
genotypes and phenotypes may be connected in forms
that are not well addressed by the linear additive mod-
els that are standard in quantitative genetics. Bayesian
regularized parametric linear additive smoothers, e.g.,
[8,9] may not be fully adequate for capturing genetic
signals under epistatic scenarios [10,11]. Furthermore,
attempts to account for epistasis by including interac-
tions in a linear model produces a highly parameterized
model structure, possibly yielding a poor predictive abil-
ity in cross-validation, and which does not scale well if
high-order interactions are included in the model.
Genetic risk prediction in medicine relies on using

genomic information to predict the chance of contract-
ing a disease, for example, in personalized medicine for
preventive treatment and clinical health care. Prediction
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of genetic risk derived from pre-selected marker variants
is mainstream in this domain, as opposed to prediction
based on fitting whole-genome markers simultaneously,
as done with great success in animal and plant breed-
ing [8-11]. However, the variants detected in this way are
typically not useful for genetic risk prediction, because
they explain only a small fraction of the total genetic vari-
ance as estimated from covariances between relatives, for
example using twin and family studies. Moreover, it has
been shown that a large number of variants that do not
reach genome-wide statistical significance contribute to
the total additive genetic variance [12].
Development of statistical models to predict phe-

notypic outcomes from all available molecular infor-
mation that are capable of capturing complex genetic
network architectures is therefore important. Arguably,
a good predictive model should account for most of
the genetic variability, as well as reflect the underlying
genetic architecture properly. Also, a predictive model
should be flexible with respect to type of input data, e.g.,
high-throughput chip-based genotypes or whole-genome
sequences, and mode of gene action.
An appealing alternative is provided by a kernel-based

parametric method known as BLUP (Best Linear Unbi-
ased Prediction) of genetic effects, developed in the 1950’s
by C. R. Henderson, an animal breeder [13]. BLUP can
also be viewed as a regression of a phenotype on a
pedigree-based relationship matrix A (when the model
is additive), and it has been used for genetic improve-
ment of livestock species for decades. This method was
recently extended to incorporate SNP (single nucleotide
polymorphisms) by replacing A by a genomic relation-
ship matrix G [14], although there is no impediment to
usingA andG together [15]. BLUP is suited for handling a
massive amount of genetic information, because the com-
putational burden can be proportional to the number of
data points rather than the number of predictor variables
(e.g., markers), and this is particularly true if a common
weight is assigned to a each marker. Recently, kernel-
based non-parametric models e.g., [15-18] have been pro-
posed. A non-parametric treatment can accommodate
nonlinear dependencies of phenotypes on predictor vari-
ables without explicitly modeling them. This suggests that
these procedures can potentially pick up various forms of
gene action without posing richly parametrized structures
that require making strong distribution and genetic archi-
tecture assumptions a priori [10,15]. For example, Long
et al. [16] used a computer simulation and found that
the predictive ability of a non-parametric smoother was
superior to that of a parametric linear counterpart when
non-additive effects were strong. These authors also gave
evidence that non-parametric smoothing is competitive to
linear smoothing, even when additivity accounts for most
of the total genetic variability.

Kernel ridge regression [19], a kernel generaliza-
tion of standard ridge regression [20], is also a non-
parametric smoothing method. Ridge regression has
received some attention in quantitative genetics in the
context of mixed linear models [10,15,21-24], and the
non-parametric version is carried out by constructing
a spatial distance-based relationship matrix called ker-
nel, as opposed to using additive genomic relation-
ship kernels, A or G, which only embed correlations
due to additive genetic effects. The choice of a kernel
is equivalent to modeling covariance structure among
individuals, and phenotypes are regressed on this ker-
nel to obtain estimates of non-parametric regression
coefficients.
A simulation study [18] found that in the presence of

non-additive effects, a spatial distance-based kernel can
outperform an additive genomic relationship kernel in
predictive performance, but this has not been explored
thoroughly with real data. Furthermore, while the set of
all SNP genotype configurations on which a model is
built is finite, past research has employed spatial distance-
based kernels with infinite, unbounded domains, such as
the Gaussian kernel. Our first objective in this study is
to compare a spatial distance kernel with a non-spatial
distance kernel. Secondly, we assess the performance
of a non-Gaussian spatial distance kernel by deploying
kernels on graphs as the choice of a basis function, a
procedure that is suitable for discrete input data struc-
tures. Instead of encoding SNP data in a continuous
Euclidean space, as in the case of the Gaussian kernel,
we investigated kernels on a non-Euclidean space. We
examined a diffusion kernel proposed by Kondor and
Lafferty [25], Smola and Kondor [26] and Lafferty and
Lebanon [27], which is a kernel defined for functions on
discrete spaces, such as a graph. A brief review on ’ker-
nels on graphs’ is given by [28], and “graph kernels” are
discussed in [29]. As shown later, the diffusion kernel can
be viewed as a discretization of the Gaussian kernel. We
also tested the sensitivity of applying the same bandwidth
parameter to autosomes and allosomes in the spatial
distance kernels.
This paper investigates the use of several kinds of ker-

nels in a kernel ridge regression framework for genome-
assisted prediction of quantitative traits. Two data sets
representing dairy cattle and wheat were employed for
this purpose. The paper is organized as follows. In the
Methods section, we describe the data and introduce
basic notions of kernel ridge regression. We then apply
the diffusion kernel to strings of dummy variable marker
sequences; the motivation of the non-Euclidean metric
space is followed by an introduction of the diffusion ker-
nel. In the next section, main results are presented. Finally,
in the Discussion section, we address the implication of
our results and make concluding remarks.
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Methods
Data
Dairy cattle and wheat data were used. The dairy data
was provided by the USDA-ARS Animal Improvement
Programs Laboratory (Beltsville, MD) and represented
7902 Holstein bulls, each with 43 134 SNPs (minor allele
frequency > 0.025) spanning across the whole genome.
The target response variable was progeny test predicted
transmitting ability (PTA) of productive life (PL). PL is a
measure of the observed length of time that a cow stays
in the herd, from first calving to culling, and PTA is an
estimate of half of the breeding value of a bull, which is
a smoothed average assuming additive inheritance. PL is
lowly heritable, with heritability estimated at 0.1 [30]. The
genotype for each of 42 438 SNP loci on autosomes was
coded as 0 (homozygous for allele “a”), 1 (heterozygous),
or 2 (homozygous for allele “A”), according to the number
of copies of the “A” allele. The remaining 696 loci on the
X chromosome were coded as either 0 or 2, representing
absence or presence of the “A” allele, respectively. Miss-
ing genotypes, due to either low call rates for some SNPs
or poor DNA quality, were imputed via random sampling
of genotypes with probabilities corresponding to observed
genotype frequencies at each locus. Note that other more
precise methods are available but were not used here.
The wheat data included 599 inbred lines collected by

the International Maize and Wheat improvement Cen-
ter in Mexico (CIMMYT). Each line was genotyped with
1279 Diversity Array Technology (DArt) markers gener-
ated by Triticarte Pty. Ltd. These binary markers take the
form of presence (1) or absence (-1). The phenotype here
was average grain yield of each line in the first out of
four environments represented in the data set, scaled to
have zero mean and variance one. Missing genotypes were
imputed as for the cattle data above. This data set has been
also analyzed with support vector regression and neural
network methods [17,31].

Kernel ridge regression
Our goal is to predict an unobserved response y, for exam-
ple PL inR from a vector of genotypes x at a large number
of SNP loci; when p SNP are considered, x is in Z

p
3. To this

end, we would like to establish a function g : Zp
3 → R

mapping sequences of SNP genotypes onto the real line. A
general setting is:

yi = g(xi) + εi,

where yi is a response variable on case i(i = 1, 2, . . . , n),
xi is a p × 1 vector of genotypes obtained on i, g(xi) is a
genetic effect interpretable as the conditional expectation
function g(xi) = E(yi|x = xi), and εi is a residual.
We use kernel ridge regression to infer the unknown

function g, and select an appropriate kernel K via a

reproducing kernel Hilbert space H (RKHS) of functions
on Z

p
3, and optimize:

‖y − g‖2 + λ‖g‖2H (1)

with respect to g, where the first term is the residual sum
of squares, ‖g‖2H is the squared norm of g under a Hilbert
space, and λ is a regularization parameter. The representer
theorem [32] is used to find the optimal g.
In non-parametric regression, the search space is infi-

nite, but the representer theorem allows confining the
search to a specific set of functions. It has been shown
[10,15,24,32] that the optimizer will be in the span of the
functions indexed by the observed covariates, and that the
problem simplifies to optimization of:

�(α|λ) = ‖y − Kα‖2 + λ‖Kα‖2H,

where K = {K(i, j) = K(xi, xj)} is a n × n symmetric pos-
itive (semi) definite matrix; α is an unknown n × 1 vector
of non-parametric regression coefficients; and g = Kα, is
the function that minimizes (1). By properties of a repro-
ducing kernel, ‖Kα‖2H = α′Kα, so that the function to be
minimized with respect to α is:

�(α|λ) = (y − Kα)′(y − Kα) + λα′Kα. (2)

This is equivalent to writing:

y = Kα + ε

and then maximizing a penalized likelihood. This penal-
ized likelihood is obtained by assuming that p(y|α, σ 2

e ) and
that α followsN(0,K−1σ 2

α ), where σ 2
e is the variance of the

residuals, and σ 2
α is a variance component.

Next, we review additive genomic relationship kernels
and the Gaussian kernel, and then present how one can
build a kernel on a graph with discrete inputs. Hereafter,
we denote K as the kernel matrix indexed by the observed
covariate; and K(i, j) indicates particular elements of K;K
is the infinite dimensional Gaussian kernel, or the 3p × 3p
dimensional kernel for the diffusion kernel.

Additive genomic relationship kernels
Two types of additive genomic relationship kernels were
tested in this study. First, an additive genomic relationship
matrix (G1) was constructed following VanRaden [14] as:

G1 = ZZ′

2
∑

pj(1 − pj)
,

where Z = {Zij} is a n × pmatrix of centered SNP marker
codes, with the entry for ith individual and the jth marker
taking the form

Zij =
⎧⎨
⎩
0 − 2pj if homozygous for “a”
1 − 2pj if heterozygous
2 − 2pj if homozygous for “A”.
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Here pj is the frequency of allele “A” computed from a base
population. The denominator of G1 is a scaling parame-
ter. In practice, the allele frequencies are estimated from
the data at hand, but this yields semi-positive definite
matrices as discussed by Strandén and Christensen [33].
A second additive genomic relationshipmatrix (G2)was

also as in VanRaden [14]

G2 = WW′

p
,

where W is a matrix of standardized genotypes [34] with
its jth column being

w.j = z.j√
2pj(1 − pj)

,

where z.j is the jth column of Z and p represents the
number of SNPs.
Since the Holstein data set led to non-positive G1 and

G2matrices because of numerical issues, Gi(i = 1, 2) was
modified to G∗

i = 0.95Gi + 0.05I, yielding G∗ matrices
that provided valid kernels. This may also avoid numerical
instability in the eigenvalue decomposition of the kernel
as explained later. The wheat data produced semi-positive
definite genomic relationship kernel matrices. The kernel
G1 has been applied to several inbred line populations in
the past, e.g., Ober et al. [35].

Gaussian kernel
In a Gaussian kernel, the distance between a pair (i, j) of
genotypes is represented as a squared Euclidean norm.
Given a positive bandwidth parameter θ , the kernel takes
the form

K(xi, xj) = exp(−θd2ij)

=
p∏

k=1
exp(−θ(xik − xjk)2),

where dij =
√

(xi1− xj1)2+· · ·+(xik − xjk)2+· · ·+(xip − xjp)2,
and xik (i, j = 1, . . . , n, k = 1, . . . , p) is the SNP genotype
for individual i at SNP k. A small Euclidean distance
between two individuals reflects a strong similarity in
state between their genotypes. On the one hand, as θ

increases, the kernel evaluation approaches K(xi, xj) = 0,
producing a “sharp” or “local” kernel. On the other hand,
as θ → 0, the kernel approaches 1, that is, a situation
where the two individuals “match” perfectly, providing a
“global” kernel.

Non-Euclideanmetric space
The SNP data on p loci on some individual often come as
x = (x1, x2, . . . , xp) ∈ Z

p
3, which is clearly a discrete space,

as there are 3p possible configurations of genotypes (not
all of which are observable). Before defining the diffusion

kernel, consider the meaning of ’diffusion on a graph’. Sup-
pose p = 1, and consider a function kx that measures
the spread of ’influence’ of the genotype at this locus over
the other possible genotypes by assuming that the ’influ-
ence’ diffuses like heat dissipates. Let kx̃(0, x) = 1x=x̃(x),
be the indicator function for genotype x̃ on Z3. We call
this the time 0 diffusion, since in this case x̃ has absolutely
no influence on other genotypes; that is, the influence of x̃
does not diffuse out to its neighbors. Now, define the time
t diffusion of the ’influence’ of genotype x̃ on genotype x
to be:

kx̃(t, x) = kx̃(t − 1, x) +
∑

|x−x′|=1
α[ kx̃(t − 1, x′) − kx̃(t − 1, x)] ,

(3)
where α is a constant rate of diffusion and each summand
is the differential gradient of the ’influence’ between geno-
types x and x′. This is illustrated in Table 1. As stated
above, there is no diffusion at t = 0. Subsequently, the
time 1 diffusion with α = 0.1 when x̃ = 1 is computed as:

k1(1, x = 0) = k1(0, x = 0) + α[ k1(0, x
′ = 1) − k1(0, x = 0)]

= 0 + 0.1[ 1 − 0]
= 0.1

k1(1, x = 1) = k1(0, x = 1) + α[ k1(0, x
′ = 0) − k1(0, x = 1)]

+ α[ k1(0, x
′ = 2) − k1(0, x = 1)]

= 1 + 0.1[ 0 − 1]+ 0.1[ 0 − 1]
= 0.8

k1(1, x = 2) = k1(0, x = 2) + α[ k1(0, x
′ = 1) − k1(0, x = 2)]

= 0 + 0.1[ 1 − 0]
= 0.1

As shown in Table 1, as t increases the ’influence’
spreads over all genotypes more evenly; also, the larger α

is, the faster the diffusion is with respect to time t.
Writing (3) in vector form, with kx̃(t, x) = kx̃(t), we get:

kx̃(t) = kx̃(t − 1) + αHkx̃(t − 1)
= (I + αH)kx̃(t − 1)
= (I + αH)tkx̃(0), (4)

where I is a 3× 3 identity matrix; kx̃(0) is a constant 3× 1
matrix of initial values, and

H =
⎡
⎣ −1 1 0

1 −2 1
0 1 −1

⎤
⎦ (5)

with the first, second, and third rows of theHmatrix cor-
responding to k0, k1, and k2 respectively. The negative of
this matrix is called the Laplacian of a graph �, given by:

0 − 1 − 2. (6)
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Table 1 Example of diffusion on a graph

α= 0.1 α = 0.2 α = 0.2

x = 0 1 2 x= 0 1 2 x= 0 1 2

k1(0, x) 0 1 0 k1(0, x) 0 1 0 k2(0, x) 0 0 1

k1(1, x) 0.1 0.8 0.1 k1(1, x) 0.2 0.6 0.2 k2(1, x) 0 0.2 0.8

k1(2, x) 0.17 0.66 0.17 k1(2, x) 0.28 0.44 0.28 k2(2, x) 0.04 0.28 0.68

k1(3, x) 0.219 0.562 0.219 k1(3, x) 0.312 0.376 0.312 k2(3, x) 0.171 0.330 0.498

k1(15, x) 0.331 0.336 0.331 k1(15, x) 0.333 0.333 0.333 k2(15, x) 0.324 0.333 0.342

x = (0, 1, 2) are genotype codes; α = (0.1, 0.2) is the diffusion rate; kx̃(t, x) is the time t diffusion of the influence of genotype x̃ on genotype x.

Let � be an undirected graph with vertex set V (�).
In general, the Laplacian of a graph �, L(�), is a V (�)

dimensional square matrix given by

L(�) = −H(�)

= −A(�) + �,

whereA is an adjacency matrix and � is a diagonal matrix
with 	ii = ∑n

j=1 Aij. We can therefore generalize this ’dif-
fusion’ for any graph � by using H(�) = −L(�) . Under
this definition, given any V (�) dimensional vector w,

wtH(�)w = −
∑
i∼j

(wi − wj)
2 ≤ 0,

which shows thatH(�) is a negative semi-definite matrix.
The most naive way of constructing a graph on Z

p
3 is a

Hamming graph. For the case p = 1, a Hamming graph is
simply a complete graph of size 3, and has the form

0 − 1
\ /

2
(7)

On this graph, the distance from genotype 0 (’aa’) to geno-
type 2 (’AA’) is the same as that from 0 (’aa’) to 1 (’Aa’).
Since genotype ’aa’ has no copies of the ’A’ allele, it may
be more reasonable to assume that genotype ’Aa’ is closer
to ’AA’, which has two copies of the ’A’ allele. This can be
viewed from a mutational perspective as well. Genotype 0
(’aa’) requires twomutations to become genotype 2 (’AA’),
while genotype 1 (’Aa’) requires only one mutation. Thus,
the graph of interest would be given by (6). The latter is a
path graph for SNP data, which will be taken as a minimal
basis for our graph. In a path graph, all vertices are on a
straight line, as in (6).
A SNP grid of p loci is a p dimensional grid with ver-

tices in Z
p
3, with two vertices x and x′ being adjacent if and

only if

p∑
i=1

|xi − x′
i| = 1.

For example, the graph below is the grid for 2 loci derived
from the Cartesian graph product of two path graphs as
in (6):

02 − 12 − 22
| | |
01 − 11 − 21
| | |
00 − 10 − 20

(8)

The graph Laplacian for graph (8) is a square matrix of
dimension 32 × 32:

L(�) = −H(�)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

200 −1 0 −1 0 0 0 0 0
−1 301 −1 0 −1 0 0 0 0
0 −1 202 0 0 −1 0 0 0

−1 0 0 310 −1 0 −1 0 0
0 −1 0 −1 411 −1 0 −1 0
0 0 −1 0 −1 312 0 0 −1
0 0 0 −1 0 0 220 −1 0
0 0 0 0 −1 0 −1 321 −1
0 0 0 0 0 −1 0 −1 222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the subscripts denote the vertices of graph (8).
When there are p loci, the p-dimensional grid graph has
3p vertices corresponding to sequences of genotypes, such
that two vertices are adjacent if and only if just one SNP
locus differs by 1. Now, suppose p = 3. The Cartesian
graph product of (6) and (8) yields a 3 dimensional grid
graph with 33 vertices, as shown in Figure 1. The diffu-
sion kernel computes a similarity between two vertices
on this graph, and projects this information into a more
interpretable space.

Diffusion kernel on a non-Euclideanmetric space
Consider now the continuous analog of the diffusion
scheme above. This can be done bymaking ‘time’ or ‘space’
continuous, and ‘time’ will be made continuous first. Let
α = θh (θ > 0) and t = 1/h. By using a small h, we can
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Figure 1 A SNP grid graph. A SNP grid graph with 3 genotypes (p = 3). It has 33 = 27 vertices.

achieve a discretization of the ‘diffusion time’ on a much
finer scale, and the coefficient matrix is:

(I + θhH(�))1/h . (9)

If an infinitesimal scale is considered by taking h → 0, (9)
converges to:

lim
h→0

(I + θhH(�))1/h = exp(θH)

=
∞∑
k=0

θk

k!
Hk = I + θH + θ2

2
H2

+ θ3

3!
H3 + · · · + θn

n!
Hn + · · ·

(10)

If a graph � with a Laplacian L(�) is considered, then
exp(−θL(�)) is called the diffusion kernel or heat ker-
nel for graph �, where θ is a rate of diffusion [25]. Here,
putting K = exp(θH) and taking the derivative with
respect to θ gives:

d
dθ

K = HK, (11)

which is a discrete diffusion equation (heat equation) on a
graph withH = −L(�). Note that diffusion kernels always
need to be associated with a graph.
A Gaussian kernel is obtained by making this diffusion

kernel “space” continuous. The connection between the
two kernels is provided in Appendix A.

Diffusion kernel indexed by observed covariates
When a graph � is large and asymmetric, the computation
of the diffusion kernel K(�) can be extremely difficult.
For instance, for a SNP grid with 43 134 loci, the dimen-
sion of K is 343134 by 343134. However, symmetry helps.
If a closed form of K can be arrived at, there is no need
to compute K(x, x′) for all pairs of genotype sequences
x, x′. This is indeed the case for the Gaussian kernel, where
the dimension ofK is infinite. With Kondor and Lafferty’s
result given in [25], we may obtain the closed form of the
diffusion kernel from the sample for our SNP grid.
First, one needs to consider the Cartesian graph product

for the diffusion kernel of a graph. Let K1(θ) and K2(θ)

be the kernels for graphs �1 and �2, respectively. The
diffusion kernel for � = �1��2 is given by [25]:

K1(θ) ⊗ K2(θ), (12)

where� denotes the Cartesian graph product and⊗ is the
tensor product (infinite dimensional Kronecker product).
Consider a graph with one locus, �0, with form 0 − 1 − 2.
Then, we see that the diffusion kernel of the SNP grid on
p loci with bandwidth parameter θ is given by:

K⊗p
θ =

p⊗
i=1

Kθ (�0).

To this end, we just need to compute Kθ (�0) = exp(θH)

withH in (5).
With this result, one can create the H matrix for a SNP

grid as follows. Let x and x′ be SNP data for p loci; ns be
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the number of loci for which |xi − x′
i| = s, andm11 be the

number of loci for which xi = x′
i = 1. In other words,

n1 is the number of loci at which two individuals differ by
1, and m11 is the number of loci at which two individuals
share heterozygous states. Then:

Ksnpgrid
θ (x, x

′
) ∝

( −2e−3θ + 2
e−3θ + 3e−θ + 2

)n1

×
(
e−3θ − 3e−θ + 2
e−3θ + 3e−θ + 2

)n2

×
(

4e−3θ + 2
e−3θ + 3e−θ + 2

)m11

, (13)

with proportionality constant (e−3θ + 3e−θ + 2)q, where
q = n1 + n2 + m11. The last term is a contribution from
heterozygosity. We refer to this as SNP grid kernel, specif-
ically developed to model SNP data in this study. A proof
of this result is given in Appendix B.

Diffusion kernel for binary genotypes
Another diffusion kernel tailored for binary genotypes is
required for the chromosome X of sires or for the wheat
inbred lines. In this setting, instead of (6), the path graph
for one locus (p = 1) is:

0 − 2

and the corresponding graph Laplacian is given by:

L(�) = −H(�) (14)

=
[

1 −1
−1 1

]
,

as opposed to (5). For two loci (p = 2), the Cartesian
product of graphs �1(0−2) and �2(0−2) yields the graph:

00 − 01
| |
10 − 11

(15)

where the first digits ∈ V (�1) and the second digits ∈
V (�2). Then, the associated graph Laplacian is:

L(�) = −H(�)

=

⎡
⎢⎢⎣
200 −1 −1 0
−1 201 −1 0
−1 0 210 −1
0 −1 −1 211

⎤
⎥⎥⎦ ,

where the subscripts denote the rows and columns of
vertices of graph (15). Specifically, we compute Kθ =
exp(θH) with H defined in (14) and perform the tensor
product p times. With this, the kernel is given by:

Khypercube
θ (x, x′) ∝

(
1 − exp(−2θ)

1 + exp(−2θ)

)d(x,x′)
, (16)

where d(x, x′) is the Hamming distance, that is, number
of coordinates at which x and x′ differ [25]. Following

Kondor and Lafferty [25], this diffusion kernel for binary
markers will be referred to as the hypercube kernel.

Combining SNP grid kernels and hypercube kernels
In addition in the Holstein data, we combined the two ker-
nels derived from autosomes and from chromosome X to
see the influence of applying the same value of the band-
width parameter to different types of chromosomes. This
is given by:

Kall = Ksnpgrid#Khypercube, (17)

where # is a Hadamard product of matrices. In general,
given a set of n individuals, we may partition SNP into
several subsets, say x = (x1, x2, ...., xr). If Kq is the diffu-
sion kernel corresponding to subset xq, then the diffusion
kernel for all sets can be computed as:

Kall = K1#K2# · · · #Kr .

This result also holds for the Gaussian kernel, but not
necessarily for every kernel, e.g., the exponential kernel
defined with the Euclidean distance (||xi − xj||) does not
hold this property.

Bayesian treatment of kernel ridge regression
Once the choice of the kernel is determined, (2) can be
maximized by taking the derivative of �(α) with respect to
α to obtain:

α̂ = (K + λI)−1y,

where λ is a regularization parameter. Here, implemen-
tation of kernel ridge regression was cast in a Bayesian
framework with λ = σ 2

ε

σ 2
α
, where σ 2

ε and σ 2
α are the resid-

ual variance and the variance attached to α respectively.
Then, note that [36,37]:

exp(−1
2
�(α)) = exp

{
−1
2

[
(y − Kα)′(y − Kα) + λα′Kα

]}

∝ exp
(

− 1
2σ 2

ε

(y − Kα)′(y − Kα)

)

× exp
(

− 1
2σ 2

α

α′Kα

)
.

This is proportional to p(α|y, σ 2
e , σ 2

α ) ∝ p(y|α, σ 2
e )p(α|σ 2

α ),
that is, the posterior density of α (given σ 2

e and σ 2
α ) for the

linear model:

y = Kα + ε,

with ε ∼ N(0, Iσ 2
e ) and with prior α ∼ N(0,K−1σ 2

α ).
Minimizing �(α) will maximize exp(− 1

2�(α)), so α̂ is the
conditional posterior mode of α. One may change the
basis K using the eigenvalue decomposition K = ���′,
where � is the matrix of eigenvectors of K and � is a
diagonal matrix in which diagonals are the eigenvalues, as
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shown in de los Campos et al. [36], such that, for δ = ��′
one gets, in a fully Bayesian model,

{
y = �δ + ε,
p(ε, δ, σ 2

ε , σ 2
α ) ∝ N(ε|0, Iσ 2

ε )N(δ|0,�σ 2
α )p(σ 2

ε , σ 2
α )

Once a prior is assigned to σ 2
e and σ 2

α , a Monte Carlo
Markov Chain (MCMC) scheme can be used to infer
all unknown parameters, including λ. Scaled inverse chi-
square prior distributions were assigned to σ 2

e and σ 2
α ,

each with 3 degrees of freedom and a scale parameter
equal to 1. Samples from posterior distributions were
obtained by the Gibbs sampler in [36], and each of the
analyses was based on 100 000 MCMC samples with the
first 60 000 samples discarded as burn-in. After burn-in,
samples were thinned at a rate of 10, resulting in 4000
mildly correlated samples for posterior inference. Con-
vergence was monitored by inspecting trace plots of the
variance parameters. A bandwidth parameter θ yielding
high predictive ability is needed as well. However, sam-
pling of the bandwidth parameter in MCMC sampling
requires computation of kernels at each iteration, which
is very demanding given the number of individuals and
SNP considered in our study. For this reason, evalua-
tion of the diffusion kernel was performed over a fixed
grid of values of θ . The range of θ considered provided
average values ofK(x, x′

) that were evenly spaced, approx-
imately, between 0.13 to 0.99. Computation of kernels
and Gibbs sampling was carried out in Fortran and in R,
respectively.

Assessment of predictive ability
The predictive ability of RKHS models with either a dif-
fusion kernel or a Gaussian kernel was assessed by cross-
validation. A subset of 5403 bulls born from 1952 through
2003 was used as the training set for the Holstein data.
A testing set of 2499 bulls born from 2004 through 2006
was used to evaluate predictive ability. For the wheat data,
a 10 fold cross-validation scheme was applied by assign-
ing 599 lines randomly to one of 10 disjoint subsets. Each
set was used for validation in turn, while the other 9
subsets were used to train the model. To illustrate, we esti-
mated α in the Holstein data using the training set y =
(y1, · · · , y5403)′ and their corresponding SNP genotypes
x1, · · · , x5403, and then predicted responses in the testing
set as:

ŷtest = 1μ̂train + Ktest↔trainα̂train,

where ŷtest is the 2499× 1 vector of predicted responses of
bulls in the testing set; 1 is a 2499×1 vector of ones; μ̂train

is the posterior mean of the intercept estimated from
the training set; Ktest↔train is a 2499 × 5403 matrix with
elements k(j, i)test↔train representing the allelic similarity

between bulls in the testing (j = 1, . . . , 2499) and training
(i = 1, . . . , 5403) sets, with the same bandwidth parame-
ter employed in the training set, and α̂

train is the vector of
posterior means of 5403 non-parametric regression coef-
ficients obtained from the training set. In the equation
above, Ktest↔train was either the diffusion or the Gaussian
kernel.
In a Bayesian setting, however, one can embed all the

above steps in a convenient way. Prior to Gibbs sam-
pling, first we construct a full kernel matrix containing
both training and testing data sets. We treat the responses
of testing set individuals as unobserved, and these val-
ues are predicted via a predictive distribution. This is
easy to incorporate in the Gibbs sampling scheme. Pear-
son’s correlation between the predicted values (mean
of the predictive distribution) and the observed PTA,
Cor(ŷtest , yPTA), and predictivemean-squared error (MSE)
defined as

∑2499
i=1 (ŷtesti − yPTAi )2/n were computed to eval-

uate the predictive ability of the two kernels. Here, ŷtesti
is the mean of the predictive distribution of response i
in the testing data set, which is the ith element of the
Ktest↔trainα̂train.

Results
To illustrate the effect of the bandwidth parameter (θ ) on
the SNP grid kernel, Figure 2 contains histograms show-
ing how θ controls similarities among individuals based
on evaluating the kernel on the SNP data. The larger θ

is, the stronger the prior inter-correlation structure. It
is important to note that the diagonal elements in our
SNP grid kernel matrices are not necessarily equal to one,
as opposed to what happens in a Gaussian kernel; here,
K is a correlation matrix. Table 2 shows the average of
diagonal, K(xi, xi), and off-diagonal, K(xi, xj), elements
for diffusion, Gaussian and two additive genomic rela-
tionship kernels at varying bandwidth values. The mean
values of the diagonal elements of the four diffusion ker-
nels shown in Figure 2 (see Table 2) were 0.369, 0.693,
0.874, and 0.952 for θ = 10, 11, 12, and 13, respec-
tively. This is because in equation (13), even when x =
x′, so that n1 = n2 = 0, m11 (the number of ‘Aa’
genotypes shared by x and x′) may not be zero. This
implies that our diffusion kernel accounts for the degree
of heterozygosity in a sample. From the perspective of
the kernel as a smoothing function, the diffusion kernel
performs smoothing for all elements based on heterozy-
gosity as well as allelic similarity. As explained below,
the larger the heterozygosity, the weaker the smooth-
ing, leading to a smaller penalty; this is not the case,
however, in the Gaussian kernel. In the kernel com-
putation, each factor in (13) is < 1, and in particular,
the factor corresponding to m11 is the largest. Hence-
forth, if the sample contains few heterozygotes, our K
will be large. Consequently, the penalty from the opti-
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Figure 2 Histograms of lower triangular elements of four diffusion kernels. Histograms of lower triangular elements of four diffusion kernels
based on four different bandwidth parameters (θ ).

mizer function f, ||fH|| = αTKα, will tend to be large.
This is interpretable as imposing stronger smoothing
for samples with low heterozygosity. As for the “cor-
relation” with itself, an individual with low heterozy-
gosity will have diagonal elements close to one, as in
the case of a Gaussian kernel. Therefore, in addition to
the ‘distance’ between genotypes of two individuals, the
diffusion kernel takes into account the extent of het-
erozygosity, while the Gaussian kernel incorporates only
the former. Also, the two kernels differ in their defini-
tion of distance. The diffusion kernel on the SNP grid
is based on the Manhattan distance, while the Gaussian
kernel is defined on the Euclidean distance. The Man-
hattan distance is the distance between two points mea-
sured by the the sum of the absolute differences of their
coordinates.
As shown in Table 2, the average of off-diagonal ele-

ments of the diffusion kernel was smaller than that
of diagonal elements. This is because the first two
terms of (13) will be different from zero (n1, n2 > 0)
for a pair of individuals. Diffusion kernel evalua-
tions between an individual and itself were always
larger than kernels evaluated between pairs, that is,
diagonal elements had the largest values for each
row of K. In the Gaussian kernel, diagonal elements
are always equal to 1 and a smaller θ value pro-
duces a stronger prior correlation. The first type

of additive genomic relationship kernel (G1∗) had
the average diagonal and off-diagonal elements
close to 1 and 0, respectively, as expected. Simi-
larly, G2∗ had an average off-diagonal close to 0 but
it had smaller average diagonal elements than those
of G1∗.
The right-most columns of Table 2 give the evalu-

ation of predictive ability of the kernels measured as
the correlation between predicted values and observed
PTA, and MSE of prediction, for several different band-
width parameters (G1∗ and G2∗ do not involve this
parameter). The predictive correlation of the diffusion
(SNP grid) kernel was best at θ = 11, while with
the Gaussian kernel this was achieved at θ = 10−5.
Although the averages of diagonal and off-diagonal
elements varied substantially with different bandwidth
parameters in the diffusion and Gaussian kernels, the
influence of this variability on predictive correlations was
small. Importantly, no major difference was observed
between the diffusion and the Gaussian kernels in
terms of predictive performance. Differences among
kernels were very minor, probably due to the fact
that the response (PTA) is already a smoothed mean
based on a large number of daughters of each bull.
There was consistency between the correlation and
the MSE, in the sense that the value of θ with the
highest predictive correlation had the smallest MSE.
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Table 2 Averages of kernel elements and their predictive correlations for the Holstein data

Kernel θ k(xi , xi) k(xi , xj) Cor(ŷtest , yPTA) MSE

Diffusion 10 0.369 (0.369) 0.138 (0.134) 0.727 (0.726) 215.93 (216.61)

11 0.693 (0.693) 0.483 (0.477) 0.745 (0.741) 204.36 (208.68)

11.5 0.801 (0.801) 0.644 (0.639) 0.739 (0.732) 207.93 (212.97)

12 0.874 (0.874) 0.765 (0.762) 0.739 (0.728) 210.54 (215.08)

13 0.952 (0.952) 0.907 (0.906) 0.734 (0.725) 211.50 (217.61)

14 0.982 (0.982) 0.966 (0.965) 0.729 (0.723) 214.29 (218.70)

Gaussian 5 × 10−5 1 (1) 0.237 (0.225) 0.721 (0.702) 220.675 (233.21)

2 × 10−5 1 (1) 0.551 (0.542) 0.736 (0.733) 213.41 (213.95)

1 × 10−5 1 (1) 0.749 (0.742) 0.742 (0.736) 210.14 (211.24)

5 × 10−6 1 (1) 0.866 (0.861) 0.736 (0.729) 210.24 (214.47)

3 × 10−6 1 (1) 0.917 (0.914) 0.734 (0.726) 211.51 (216.42)

1 × 10−6 1 (1) 0.971 (0.971) 0.729 (0.724) 214.37 (217.93)

G1∗ NA 0.992 (1.009) -0.000126 (-0.000128) 0.729 (0.722) 214.36 (219.27)

G2∗ NA 0.894 (0.909) -0.000113 (-0.00012) 0.730 (0.723) 213.64 (218.31)

Averages of diagonal k(xi, xi) and off-diagonal k(xi, xj) kernel elements, predictive correlation, and mean-squared error of prediction (MSE) for the diffusion,
Gaussian, and two additive genomic relationship kernels (G1∗ and G2∗) with different values of the bandwidth parameter θ for the Holstein data. Values in
parentheses were obtained by combining the SNP grid and the hypercube kernels by applying a same bandwidth parameter. G1∗ and G2∗ do not involve bandwidth
parameters. The best prediction within the same kernel is underlined.

Predictive performance of G1∗ was only slightly worse
than that of the spatial distance kernels with the best
bandwidth parameters.
Values in parentheses in Table 2 were obtained by

combining the SNP grid kernel from autosomes and the
hypercube kernel from allosomes by applying the same
bandwidth parameter. Incorporation of X-chromosome
information reduced the average off-diagonal elements
slightly and deteriorated predictive performance to some
extent. The average diagonal and off-diagonal elements
remained the same inG1∗ andG2∗, but a minor reduction
in their predictive abilities was observed.
In the wheat data, the superiority of the spatial

distance-based kernels over the additive genomic rela-
tionship kernels was clear. Table 3 indicates that the
diffusion and Gaussian kernels had the best predictive
correlations (MSE) at 0.586 (0.685) and 0.582 (0.686),
respectively, whereas those of G1 and G2 were 0.518
(0.709) and 0.521 (0.708). This is likely due to pick-
ing up non-additive genetic variation that this wheat
data harbors. With binary markers, the diagonal ele-
ments of the diffusion kernel are always 1, since in
equation (16) the Hamming distance d(x, x′) is always
zero. As with the Holstein data, no apparent difference
was observed between the diffusion and the Gaussian
kernels.

Discussion
Arguably, relationships between phenotypes and geno-
types may be non-linear and complex [10,15,31]. For this

reason, ignoring non-additive effects such as dominance
and epistasis in a model may lead to inferior predictive
ability of individual phenotypes.
A spatial distance-based kernel non-parametric regres-

sion is capable of mapping genotypes to phenotypes

Table 3 Averages of kernel elements and their predictive
correlations for the wheat data

Kernel θ k(xi , xi) k(xi , xj) Cor(ŷtest , ytrain) MSE

Diffusion 3 1 0.136 0.586 0.685

3.25 1 0.289 0.580 0.673

3.5 1 0.466 0.577 0.681

4 1 0.752 0.547 0.704

5 1 0.962 0.522 0.721

Gaussian 0.005 1 0.134 0.582 0.686

0.003 1 0.290 0.579 0.697

0.002 1 0.434 0.562 0.697

0.001 1 0.655 0.558 0.703

0.0005 1 0.809 0.556 0.673

G1 NA 2 -0.003 0.518 0.709

G2 NA 2 -0.003 0.521 0.708

Average of diagonal k(xi, xi) and off-diagonal k(xi, xj) kernel elements,
predictive correlation, and mean-squared error of prediction (MSE) for the
diffusion, Gaussian, and two additive genomic relationship kernels at different
values of the bandwidth parameter θ for the wheat data. The predictive
correlation and the MSE were obtained from a 10-fold cross-validation. Additive
genomic relationship kernels (G1 and G2) do not involve bandwidth
parameters. The best prediction within the same kernel is underlined.
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in a way that accurately reflects underlying, albeit
unknown, relationships. These kernel methods incorpo-
rate non-linearity of a predictor set x through a nonlinear
transformation of x, subsequently allowing analysis of
the response in terms of features φ(x) in a linear way.
This is particularly useful when the response has a linear
relationship with respect to the parameters, but is non-
linear on covariates, such as in the case of polynomial
regression.
The predictive ability of kernel-based genetic mod-

els depends on the choice of a kernel and associated
bandwidth parameter(s). If the two data points lie in
the real line, x, x′ ∈ R, it seems reasonable to com-
pute their distance in terms of Euclidean distance. How-
ever, SNP genotypes, coded as dummy variables, take a
discrete form. Therefore, it may be worthwhile to con-
sider a kernel designed to capture the discrete struc-
ture of the input variables. The best predictive kernel
and its performance may vary depending on the under-
lying genetic architecture, quantitative trait loci (QTL)
numbers and distribution of effects, data set used, and
kernel method applied. Here, we investigated the use
of ridge regression with a diffusion kernel to assess if
this would enhance predictive ability over that of the
Gaussian kernel and two additive genomic relationship
counterparts. Kondor and Lafferty [25] obtained promis-
ing results when the diffusion kernel was compared with
several kernels in classification problems with a set of
discrete predictors, and this kernel has been used in a
microarray-based gene function prediction problem [38].
Ober et al. [18] used the Matérn covariance function,
which contains the Gaussian and the exponential ker-
nel as particular cases. Therein, the smoothing parameter
controls the actual form of a kernel, and this is directly
driven by sample data. Although they obtained a Gaus-
sian form as a choice of the covariance function, the
Matérn function is bounded by the Euclidean norm by
definition, which may not be suited for discrete genomic
data.
A strength of kernels for structured data is their ability

to address similarities between two data points x, x′ /∈ R

[39]. The diffusion kernel defines the distance between
two data points on graphs, namely vertices, and projects
this information into a more interpretable space. As
shown in the context of modeling linkage disequilibrium
[40], various graph structures can be used to represent
sets of discrete random variables, such as genotypes. Cou-
pled with the representer theorem, the diffusion kernel
allows casting underlying graph structures into a regres-
sion on the real line under a Hilbert space. The main
idea behind this kernel is the matrix exponentiation of
the graph Laplacian. The p-dimensional grid graph with
vertices representing a vector of genotypes was chosen
for the graph structure. Each grid conveys information on

similarity in terms of the Manhattan distance. Two ver-
tices x and x′ are connected if xi = x′

i for all i, except
at one coordinate. In the Holstein data, with n = 7902
and p = 42 438, it is unlikely that any of two vertices
present in our data are connected. However, what grid
graphs embrace is how many “steps” separate a vector
of genotypes observed in individual i from an observed
vector of genotypes in individual j. The diffusion kernel
and its associated graph structure are free of parametric
structures. They are constructed without posing genetic
architecture assumptions a priori. For illustration pur-
poses, we used 0, 1, and 2 for allele coding, but these
should be interpreted as mere strings. Kernel computa-
tion still remains the same no matter what allele coding
method is adopted here. The parametric component in
our study is the construction of the path graph in equation
(6), but it is not relevant to gene action modes. This allows
us to build a flexible non-parametric model without mak-
ing strong assumptions a priori. This is appealing, because
we seldom know the underlying genetic architectures of
complex traits. As shown in past studies including animals
[31] and plants [41], a non-parametric method stands out
when prediction of phenotypes is the primal focus.
Our motivation for applying the diffusion kernel

stemmed from the assumption that a non-Euclidean dis-
tance may be able to more clearly represent genomic
similarities. We carried out a matrix exponentiation of
two graph Laplacians created from two path graphs (one
for SNP and one for binary markers) for this purpose. This
yields a kernel based on the Manhattan distance account-
ing for the heterozygosity that two individuals share. The
two spatial distance kernels resulted in better predictive
performance than the two additive genomic relationship
kernels in the wheat data. This agrees with the previous
simulation study of Ober et al. [18], in which the Gaussian
kernel outperformed G1 in the presence of non-additive
effects. Superiority of the spatial distance kernels was less
obvious in the Holstein data. This may be due to the phe-
notype we chose for this study, since the PTA response
variable is a smoothed average using linear mixed models.
Although the differences were small in cattle, two non-
parametric kernels applied in this study outperformed the
additive relationship kernels in two of the datasets used.
This suggests that unknown cryptic genetic architectures
are likely to be intrinsic to complex traits and, hence, ker-
nels that can accommodate such structure yielded better
predictions.
As for the difference between the diffusion and the

Gaussian kernels in terms of predictive ability, the dif-
fusion kernel had the highest predictive correlation and
the lowest MSE with θ = 11 in the Holstein data, but
the difference with the Gaussian kernel was negligible.
The same result was seen in the wheat data. This implies
that the Gaussian kernel is robust, even if it incorporates
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genotypes on the real line such as 1.25 or -12.3. Our objec-
tive to properly incorporate genotypes into a kernel had
a small impact on predictive ability of yet-to-be observed
phenotypes. Although the distance between genotypes is
certainly not continuous, additional efforts to discretize
the Euclidean distance may not be needed. Another pos-
sible reason might be that genotypes do not reside in the
Euclidean or non-Euclidean spaces explored here, but in a
manifold [27].
Incorporation of X chromosome genotypes for building

a kernel led to a smaller average diagonal and off-diagonal
elements (to some extent) in spatial distance kernels, but
no change was observed in the additive genomic rela-
tionship kernels. In both types of spatial distance ker-
nels, however, the predictive correlations were worse than
when kernels were constructed purely from autosomes.
This suggests that applying specific bandwidth parame-
ters to autosomes and allosomes in the spatial distance
kernelsmight be important. A similar decline in predictive
performance was observed in the two additive genomic
relationship kernels, which do not involve any bandwidth
parameter. Further research is needed to investigate what
produces this drop in predictive performance, although
if no markers contribute to PL on chromosome X, this
would add extra noise.
To our knowledge, this study involves one of the largest

data sets employed for spatial kernel-based genome-
enabled selection of agricultural species. The challenge
here was computation of the diffusion kernel, rather than
the Gibbs sampler. Approximately, it took four days to
compute one diffusion kernel on a Linux workstation
equipped with the Intel(R) Xeon(R) CPU E5450 3.00GHz
and 16GB of RAM. The Gaussian kernel required slightly
less time for building, but with several candidates over
a grid of values of the bandwidth parameter θ , this was
an expensive task for both kernels. One useful approach
might be that of multiple kernel learning (MKL) [36,42],
which uses a few kernels with different covariance struc-
ture in a single RKHS model. Finally, the SNP grid graph
and the hypercube graph used in this study are naive graph
structures for modeling discrete inputs. Perhaps develop-
ing a graph structure that is more suitable for SNP data
might increase predictive correlations.

Conclusions
We investigated the performance of a diffusion ker-
nel, which was specifically developed to model discrete
marker inputs, using Holstein cattle and wheat data. On
the one hand, the predictive ability of the diffusion kernel
was similar to that of non-spatial distance-based addi-
tive genomic relationship kernels in the Holstein data,
due to the fact that the response (PTA) is already a
smoothed mean based on a large number of daugh-
ters of each bull, but outperformed the latter in the

wheat data. On the other hand, only minor difference
was observed between the diffusion and the Gaussian
kernels in terms of predictive performance. Although
the diffusion kernel as a choice of basis function may
have potential for use in whole-genome prediction, the
results of this study suggest that the simple Gaus-
sian kernel is robust enough, and that the scope for
enhancing predictive ability via kernel refinement may
be limited.

Appendix A
Connection between a diffusion kernel and a Gaussian
kernel
Intuitively, consider again (4) with a one locus case. In
order to make the space continuous, an infinite number
of ‘fake’ genotypes between and outside of 0 and 2 are
needed. That is, instead of the discrete graph 0 − 1 − 2,
the interval between 0 and 2, and also outside of it, will
be viewed as a ‘continuous’ graph containing genotypes
such as 1.23 or −10.5, for example. While the funda-
mental structure of the graph remains the same, each
genotype is connected only to its immediate neighbors,
that is, each genotype x is connected to only two geno-
types, x + dx and x − dx for some infinitesimal dx. Then,
H in (5) becomes an infinite-dimensional matrix, and
H(x, x′) is −2 for x′ = x and 1 for x + dx, x − dx, because
each genotype is connected to its neighboring geno-
types on both sides. With the vector of genotypes being
now infinite-dimensional, x = (−∞, · · · , x − dx, x, x +
dx, · · · ,∞), define a function f that returns an “influ-
ence” of genotypes, f = (f (−∞), · · · , f (x−dx), f (x), f (x+
dx), · · · , f (∞)). Approximating dx by h, it can be seen
that:

1
h2

[H(x, ·) · f] = f (x + h) − 2f (x) + f (x − h)
h2

=
f (x+h)−f (x)

h − f (x)−f (x−h)
h

h
∼= f

′′
(x),

where f ′′
(x = x0) is the second derivative of f evaluated

at x0. Thus, with space continuity, H acts like a second
derivative [25]. Using this analogy back in (11), we get:

d
dθ

Kθ (x) = d2

dx2
Kθ (x).

This equation is called the continuous diffusion equation:
the first derivative in “time” is equal to the second derivate
in “space”. The solution to this partial differential equation
(PDE) with a Dirac delta [43] initial condition of concen-
tration on x = 0, k0(x) = 1x=0, is given by:

Gθ (x) = 1√
4πθ

exp
(

− x2

4θ

)
.

This is a Gaussian density in a one-dimensional space
where σ 2

e = 2θ is the variance of the distribution.With the
initial condition K0(x) = f (x), the solution to this PDE is:
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Kθ (x) =
∫
R

f (x′)Gθ (x − x′)dx′,

where gθ (x, x′) = G(x−x′) is called a Gaussian kernel with
bandwidth θ . Thus, the Gaussian kernel is the ‘space’ con-
tinuous analogue of the diffusion kernel as described on
the graph. This analogy works exactly the same in higher
dimensions.

Appendix B
Proof of equation (13)
Consider a graph with one locus, �0; this graph has form
0 − 1 − 2. We compute exp(θH) where exponentiation
is defined as the Taylor expansion (10), differing from
componentwise exponentiation. For �0,H is given by:

H =
⎡
⎣ −1 1 0

1 −2 1
0 1 −1

⎤
⎦ .

We make use of the eigendecomposition of matrix
H = PDP−1 and take note of the fact that Hn =
PDnP−1. Plugging this Hn in (10), we obtain exp(θH) =
P exp(θD)P−1. Here exp(θD) becomes simple componen-
twise exponentiation because D is a diagonal matrix of
eigenvalues. For this specific matrix,

P =
⎡
⎣ 1 1 1

−2 0 1
1 −1 1

⎤
⎦ , D =

⎡
⎣ −3 0 0
0 −1 0
0 0 0

⎤
⎦
.

Thus, the kernel for a one-dimensional grid graph is:
Kθ = exp(θH)

= P exp(θD)P−1

=
⎡
⎣ 1 1 1

−2 0 1
1 −1 1

⎤
⎦

⎡
⎣ e−3θ 0 0
0 e−θ 0
0 0 1

⎤
⎦

⎡
⎣ 1 1 1

−2 0 1
1 −1 1

⎤
⎦

−1

= 1
6

⎡
⎣ e−3θ + 3e−θ + 2 −2e−3θ + 2 e−3θ − 3e−θ + 2

−2e−3θ + 2 4e−3θ + 2 −2e−3θ + 2
e−3θ − 3e−θ + 2 −2e−3θ + 2 e−3θ + 3e−θ + 2

⎤
⎦ .

(18)

Taking the exponential of eigenvalues always yields a
positive real value, so if H is symmetric, exp(θH) is posi-
tive definite, suggesting that the diffusion kernel is a valid
kernel. Expression (18) is symmetric and in particular,

Kθ (x, x
′
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2e−3θ + 2 if |xi − x′
i| = 1

e−3θ − 3e−θ + 2 if |xi − x′
i| = 2

e−3θ + 3e−θ + 2 if xi = x′
i, x

′ �= 1

4e−3θ + 2 if xi = x′
i = 1

(19)

Computing every entry of K is computationally unfea-
sible and unnecessary. We only need to compute entries
corresponding to the pair of genotypes appearing in the
sample. In particular, if ki(xi, yi) is the contribution of the
ith locus, then:

Kθ (x, x
′
) =

p∏
i=1

ki(xi, x
′
i),

where ki(xi, x
′
i) is determined by the relationship between

xi and x
′
i, and can take only one of the four values specified

above. Thus we can write ki(xi, x
′
i) as:

(e−3θ − 3e−θ + 2)δ|xi−yi|=2 + (−2e−3θ + 2)δ|xi−yi|=1

+ (e−3θ + 3e−θ + 2)δxi=yi �=1 + (4e−3θ + 2)δxi=yi=1

where δ is the indicator function. Therefore,

K⊗p
θ (x, x′) ∝

p∏
i=1

{
(e−3θ − 3e−θ + 2)δ|xi−x′

i|=2

+ (−2e−3θ + 2)δ|xi−x′
i|=1

+ (e−3θ + 3e−θ + 2)δxi=x′
i �=1

+ (4e−3θ + 2)δxi=x′
i=1

}

This can be simplified by using the fact that:

n1 + n0 + n2 = p,

so that:

K⊗p
θ (x, x′) = (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(e−3θ + 3e−θ + 2)n0−m11(4e−3θ + 2)m11

= (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(e−3θ + 3e−θ + 2)n0−m11(4e−3θ + 2)m11

· (e−3θ + 3e−θ + 2)p

(e−3θ + 3e−θ + 2)p

∝ (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(e−3θ + 3e−θ + 2)n0−m11(4e−3θ + 2)m11

(e−3θ + 3e−θ + 2)p

= (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(e−3θ + 3e−θ + 2)n0−m11(4e−3θ + 2)m11

(e−3θ + 3e−θ + 2)n0+n1+n2

= (−2e−3θ + 2)n1(e−3θ − 3e−θ + 2)n2(4e−3θ + 2)m11

(e−3θ + 3e−θ + 2)n1+n2+m11
(20)

Note that one does not need to count n0.
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