RESEARCH

Some new identities of Frobenius-Euler numbers and polynomials

Dae San Kim¹ and Taekyun Kim^{2*}

*Correspondence: tkkim@kw.ac.kr ²Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we give some new and interesting identities which are derived from the basis of Frobenius-Euler. Recently, several authors have studied some identities of Frobenius-Euler polynomials. From the methods of our paper, we can also derive many interesting identities of Frobenius-Euler numbers and polynomials.

1 Introduction

Let $\lambda \neq 1 \in \mathbf{C}$. As is well known, the Frobienius-Euler polynomials are defined by the generating function to be

$$\frac{1-\lambda}{e^t-\lambda}e^{xt} = e^{H(x|\lambda)t} = \sum_{n=0}^{\infty} H_n(x|\lambda)\frac{t^n}{n!},\tag{1}$$

with the usual convention about replacing $H^n(x|\lambda)$ by $H_n(x|\lambda)$ (see [1–6]).

In the special case, x = 0, $H_n(0|\lambda) = H_n(\lambda)$ are called the *n*th Frobenius-Euler numbers. Thus, by (1), we get

$$(H(\lambda)+1)^n - \lambda H_n(\lambda) = H_n(1|\lambda) - \lambda H_n(\lambda) = (1-\lambda)\delta_{0,n},$$
(2)

where $\delta_{0,n}$ is the Kronecker symbol.

From (1), we can derive the following equation:

$$H_n(x|\lambda) = \left(H(\lambda) + x\right)^n = \sum_{0 \le l \le n} \binom{n}{l} H_{n-l}(\lambda) x^l \quad (\text{see } [6-16]). \tag{3}$$

Thus, by (3), we easily see that the leading coefficient of $H_n(x|\lambda)$ is $H_0(\lambda) = 1$. So, $H_n(x|\lambda)$ are monic polynomials of degree *n* with coefficients in $\mathbf{Q}(\lambda)$.

From (1), we have

$$\sum_{n=0}^{\infty} \left(H_n(x+1|\lambda) - \lambda H_n(x|\lambda) \right) \frac{t^n}{n!} = \frac{(1-\lambda)e^{(x+1)t}}{e^t - \lambda} - \lambda \frac{1-\lambda}{e^t - \lambda} e^{xt}.$$
 (4)

Thus, by (4), we get

$$H_n(x+1|\lambda) - \lambda H_n(x|\lambda) = (1-\lambda)x^n, \quad \text{for } n \in \mathbb{Z}_+.$$
(5)

© 2012 Kim and Kim; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

brought to you by

It is easy to show that

$$\frac{d}{dx}H_n(x|\lambda) = \frac{d}{dx}\left(H(\lambda) + x\right)^n = nH_{n-1}(x|\lambda) \quad (n \in \mathbf{N}).$$
(6)

From (6), we have

$$\int_0^1 H_n(x|\lambda) \, dx = \frac{1}{n+1} \Big(H_{n+1}(1|\lambda) - H_{n+1}(\lambda) \Big) = \frac{\lambda - 1}{n+1} H_{n+1}(\lambda). \tag{7}$$

Let $\mathbb{P}_n(\lambda) = \{p(x) \in \mathbf{Q}(\lambda)[x] \mid \deg p(x) \leq n\}$ be a vector space over $\mathbf{Q}(\lambda)$. Then we note that $\{H_0(x|\lambda), H_1(x|\lambda), \dots, H_n(x|\lambda)\}$ is a good basis for $\mathbb{P}_n(\lambda)$.

In this paper, we develop some new methods to obtain some new identities and properties of Frobenius-Euler polynomials which are derived from the basis of Frobenius-Euler polynomials. Those methods are useful in studying the identities of Frobenius-Euler polynomials.

2 Some identities of Frobenius-Euler polynomials

Let us take $p(x) \in \mathbb{P}_n(\lambda)$. Then p(x) can be expressed as a $\mathbf{Q}(\lambda)$ -linear combination of $H_0(x|\lambda), \ldots, H_n(x|\lambda)$ as follows:

$$p(x) = b_0 H_0(x|\lambda) + b_1 H_1(x|\lambda) + \dots + b_n H_n(x|\lambda) = \sum_{0 \le k \le n} b_k H_k(x|\lambda).$$
(8)

Let us define the operator \triangle_{λ} by

$$g(x) = \Delta_{\lambda} p(x) = p(x+1) - \lambda p(x).$$
(9)

From (9), we can derive the following equation (10):

$$g(x) = \Delta_{\lambda} p(x) = \sum_{0 \le k \le n} b_k \left(H_k(x+1|\lambda) - \lambda H_k(x|\lambda) \right) = (1-\lambda) \sum_{0 \le k \le n} b_k x^k.$$
(10)

For $r \in \mathbb{Z}_+$, let us take the *r*th derivative of g(x) in (10) as follows:

$$g^{(r)}(x) = (1-\lambda) \sum_{r \le k \le n} k(k-1) \cdots (k-r+1) b_k x^{k-r}, \quad \text{where } g^{(r)}(x) = \frac{d^r g(x)}{dx^r}.$$
(11)

Thus, by (11), we get

$$g^{r}(0) = \frac{d^{r}g(x)}{dx^{r}}\Big|_{x=0} = (1-\lambda)r!b_{r}.$$
(12)

From (12), we have

$$b_r = \frac{g^{(r)}(0)}{(1-\lambda)r!} = \frac{1}{(1-\lambda)r!} \left(p^{(r)}(1) - \lambda p^{(r)}(0) \right), \tag{13}$$

where $r \in \mathbb{Z}_+$ and $p^{(r)}(0) = \frac{d^r p(x)}{dx^r}|_{x=0}$. Therefore, by (13), we obtain the following theorem.

Theorem 1 For $\lambda \neq 1 \in \mathbb{C}$, $n \in \mathbb{Z}_+$, let $p(x) \in \mathbb{P}_n(\lambda)$ with $p(x) = \sum_{0 \leq k \leq n} b_k H_k(x|\lambda)$. Then we have

$$b_k = \frac{1}{(1-\lambda)k!}g^{(k)}(0) = \frac{1}{(1-\lambda)k!}(p^{(k)}(1) - \lambda p^{(k)}(0)).$$

Let us take $p(x) = H_n(x|\lambda^{-1})$. Then, by Theorem 1, we get

$$H_n(\boldsymbol{x}|\lambda^{-1}) = \sum_{0 \le k \le n} b_k H_k(\boldsymbol{x}|\lambda), \tag{14}$$

where

$$b_{k} = \frac{1}{(1-\lambda)k!} \frac{n!}{(n-k)!} \left\{ H_{n-k}(1|\lambda^{-1}) - \lambda H_{n-k}(\lambda^{-1}) \right\}$$

$$= \frac{1}{1-\lambda} \binom{n}{k} \left\{ H_{n-k}(1|\lambda^{-1}) - \lambda H_{n-k}(\lambda^{-1}) \right\}$$

$$= \frac{1}{1-\lambda} \binom{n}{k} \left\{ (1-\lambda^{-1}) 0^{n-k} + \frac{1}{\lambda} H_{n-k}(\lambda^{-1}) - \lambda H_{n-k}(\lambda^{-1}) \right\}.$$
 (15)

By (14) and (15), we get

$$H_{n}(x|\lambda^{-1})$$

$$= -\frac{1}{\lambda}H_{n}(x|\lambda) + \sum_{k=0}^{n} \left\{ \frac{\binom{n}{k}}{\lambda(1-\lambda)} H_{n-k}(\lambda^{-1}) - \frac{\lambda\binom{n}{k}}{1-\lambda} H_{n-k}(\lambda^{-1}) \right\} H_{k}(x|\lambda)$$

$$= -\frac{1}{\lambda}H_{n}(x|\lambda) + \sum_{k=0}^{n} \binom{n}{k} \frac{1+\lambda}{\lambda} H_{n-k}(\lambda^{-1}) H_{k}(x|\lambda).$$
(16)

Therefore, by (16), we obtain the following theorem.

Theorem 2 For $n \in \mathbb{Z}_+$, we have

$$\lambda H_n(x|\lambda^{-1}) + H_n(x|\lambda) = (1+\lambda) \sum_{0 \le k \le n} \binom{n}{k} H_{n-k}(\lambda^{-1}) H_k(x|\lambda).$$

Let

$$p(x) = \sum_{0 \le k \le n} H_k(x|\lambda) H_{n-k}(x|\lambda) \in \mathbb{P}_n(\lambda).$$
(17)

From Theorem 2, we note that p(x) can be generated by $\{H_0(x|\lambda), H_1(x|\lambda), \dots, H_n(x|\lambda)\}$ as follows:

$$p(x) = \sum_{0 \le k \le n} H_k(x|\lambda) H_{n-k}(x|\lambda) = \sum_{0 \le k \le n} b_k H_k(x|\lambda).$$
(18)

By (17), we get

$$p^{(k)}(x) = \frac{(n+1)!}{(n-k+1)!} \sum_{k \le l \le n} H_{l-k}(x|\lambda) H_{n-k}(x|\lambda), \tag{19}$$

and

$$b_{k} = \frac{1}{(1-\lambda)k!} \left\{ p^{(k)}(1) - \lambda p^{(k)}(0) \right\}$$

$$= \frac{(n+1)!}{(1-\lambda)k!(n-k+1)!} \sum_{l=k}^{n} \left\{ H_{l-k}(1|\lambda)H_{n-l}(1|\lambda) - \lambda H_{l-k}(\lambda)H_{n-l}(\lambda) \right\}$$

$$= \frac{n+1}{(1-\lambda)(n-k+1)} \binom{n}{k} \sum_{l=k}^{n} \left\{ (\lambda H_{l-k}(\lambda) + (1-\lambda)\delta_{0,l-k}) (\lambda H_{n-l} + (1-\lambda)\delta_{0,n-l}) - \lambda H_{l-k}(\lambda)H_{n-l}(\lambda) \right\}$$

$$= \frac{n+1}{(1-\lambda)(n-k+1)} \binom{n}{k} \sum_{l=k}^{n} \left\{ \lambda (1-\lambda)\delta_{0,l-k}H_{n-l}(\lambda) + \lambda (1-\lambda) \times H_{l-k}(\lambda)\delta_{0,n-l} + (1-\lambda)^{2}\delta_{0,l-k}\delta_{0,n-l} + \lambda(\lambda-1)H_{l-k}(\lambda)H_{n-l}(\lambda) \right\}$$

$$= \frac{n+1}{(1-\lambda)(n-k+1)} \binom{n}{k} \sum_{l=k}^{n} \left\{ \lambda (\lambda-1)H_{l-k}(\lambda)H_{n-l}(\lambda) + \lambda(1-\lambda) \times H_{n-k}(\lambda) + \lambda(1-\lambda)H_{n-k}(\lambda) + (1-\lambda)^{2}\delta_{n,k} \right\}$$

$$= \frac{n+1}{n-k+1} \binom{n}{k} \sum_{l=k}^{n} \left\{ -\lambda H_{l-k}(\lambda)H_{n-l}(\lambda) + 2\lambda H_{n-k}(\lambda) + (1-\lambda)\delta_{n,k} \right\}.$$
(20)

From (18) and (20), we have

$$\sum_{0 \le k \le n} H_k(x|\lambda) H_{n-k}(x|\lambda) = (n+1) \sum_{0 \le k \le n-1} \frac{\binom{n}{k}}{n-k+1} \sum_{k \le l \le n} \left\{ (-\lambda) H_{l-k}(\lambda) H_{n-l}(\lambda) + 2\lambda H_{n-k}(\lambda) \right\} H_k(x|\lambda) + (n+1) H_n(x|\lambda).$$
(21)

Therefore, by (21), we obtain the following theorem.

Theorem 3 For $n \in \mathbb{Z}_+$, we have

$$\frac{1}{n+1} \sum_{0 \le k \le n} H_k(x|\lambda) H_{n-k}(x|\lambda)$$
$$= \sum_{0 \le k \le n-1} \frac{\binom{n}{k}}{n-k+1} \sum_{k \le l \le n} \left\{ (-\lambda) H_{l-k}(\lambda) H_{n-l}(\lambda) + 2\lambda H_{n-k}(\lambda) \right\} H_k(x|\lambda) + H_n(x|\lambda).$$

Let us consider

$$p(x) = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} H_k(x|\lambda) H_{n-k}(x|\lambda) \in \mathbb{P}_n(\lambda).$$

$$(22)$$

By Theorem 1, p(x) can be expressed by

$$p(x) = \sum_{k=0}^{n} b_k H_k(x|\lambda).$$
(23)

From (22), we have

$$p^{(r)}(x) = 2^r \sum_{k=r}^n \frac{H_{k-r}(x|\lambda)H_{n-k}(x|\lambda)}{(k-r)!(n-k)!} \quad (r \in \mathbf{Z}_+).$$
(24)

By Theorem 1, we get

$$b_{k} = \frac{1}{2k!} \{ p^{(k)}(1) - p^{(k)}(0) \}$$

$$= \frac{2^{k-1}}{k!} \sum_{l=k}^{n} \frac{1}{(l-k)!(n-l)!} \{ H_{l-k}(1|\lambda)H_{n-l}(1|\lambda) - \lambda H_{l-k}(\lambda)H_{n-l}(\lambda) \}$$

$$= \frac{2^{k-1}}{k!} \sum_{l=k}^{n} \frac{1}{(l-k)!(n-l)!} \{ (\lambda H_{l-k}(\lambda) + (1-\lambda)\delta_{0,l-k}) (\lambda H_{n-l}(\lambda) + (1-\lambda)\delta_{0,n-l}) - \lambda H_{l-k}(\lambda)H_{n-l}(\lambda) \}$$

$$= \frac{2^{k-1}}{k!} \left\{ \sum_{l=k}^{n} \frac{\lambda(\lambda-1)H_{l-k}(\lambda)H_{n-l}(\lambda)}{(l-k)!(n-l)!} + \frac{2\lambda(1-\lambda)H_{n-k}(\lambda)}{(n-k)!} + (1-\lambda)^{2}\delta_{n,k} \right\}$$

$$= \begin{cases} \frac{2^{k-1}}{k!} \sum_{l=k}^{n} \frac{\lambda(\lambda-1)H_{l-k}(\lambda)H_{n-l}(\lambda)}{(l-k)!(n-l)!} + \frac{2\lambda(1-\lambda)H_{n-k}(\lambda)}{(n-k)!} \}, & \text{if } k \neq n, \\ \frac{2^{n-1}(1-\lambda)}{n!}, & \text{if } k = n. \end{cases}$$
(25)

Therefore, by (25), we obtain the following theorem.

Theorem 4 For $n \in \mathbb{Z}_+$, we have

$$\begin{split} &\sum_{0 \le k \le n} \frac{1}{k!(n-k)!} H_k(x|\lambda) H_{n-k}(x|\lambda) \\ &= \sum_{0 \le k \le n-1} \frac{2^{k-1}}{k!} \sum_{k \le l \le n} \left\{ \frac{\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)}{(l-k)!(n-l)!} + \frac{2\lambda(1-\lambda) H_{n-k}(\lambda)}{(n-k)!} \right\} H_k(x|\lambda) \\ &+ \frac{2^{n-1}(1-\lambda)}{n!} H_n(x|\lambda). \end{split}$$

3 Higher-order Frobenius-Euler polynomials

For $n \in \mathbb{Z}_+$, the Frobenius-Euler polynomials of order r are defined by the generating function to be

$$\left(\frac{1-\lambda}{e^t-\lambda}\right)^r e^{xt} = e^{H^{(r)}(x|\lambda)t}$$
$$= \sum_{n=0}^{\infty} H_n^{(r)}(x|\lambda) \frac{t^n}{n!},$$
(26)

with the usual convention about replacing $(H^{(r)}(x|\lambda))^n$ by $H_n^{(r)}(x|\lambda)$ (see [1–10]). In the special case, x = 0, $H_n^{(r)}(0|\lambda) = H_n^{(r)}(\lambda)$ are called the *n*th Frobenius-Euler numbers of order *r* (see [8, 9]).

From (26), we have

$$H_{n}^{(r)}(x|\lambda) = \left(H^{(r)}(\lambda) + x\right)^{n} = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}^{(r)}(\lambda) x^{l},$$
(27)

with the usual convention about replacing $(H^{(r)}(\lambda))^n$ by $H_n^{(r)}(\lambda)$.

By (26), we get

$$H_n^{(r)}(\lambda) = \sum_{n_1+\dots+n_r=n} \binom{n}{n_1, n_2, \dots, n_r} H_{n_1}(\lambda) \cdots H_{n_r}(\lambda),$$
(28)

where $\binom{n}{n_1,n_2,\dots,n_r} = \frac{n!}{n_1!n_2!\cdots n_r!}$. From (27) and (28), we note that the leading coefficient of $H_n^{(r)}(x|\lambda)$ is given by

$$H_0^{(r)}(\lambda) = \sum_{n_1+\dots+n_r=0} \binom{n}{n_1, n_2, \dots, n_r} H_{n_1}(\lambda) \cdots H_{n_r}(\lambda)$$
$$= H_0(\lambda) \cdots H_0(\lambda) = 1.$$
(29)

Thus, by (29), we see that $H_n^{(r)}$ is a monic polynomial of degree *n* with coefficients in $\mathbf{Q}(\lambda)$. From (26), we have

$$H_n^{(0)}(x|\lambda) = x^n, \quad \text{for } n \in \mathbb{Z}_+, \tag{30}$$

and

$$\frac{\partial}{\partial x}H_n^{(r)}(x|\lambda) = \frac{\partial}{\partial x}\left(H^{(r)}(\lambda) + x\right)^n = nH_{n-1}^{(r)}(x|\lambda) \quad (r \ge 0).$$
(31)

It is not difficult to show that

$$H_n^{(r)}(x+1|\lambda) - \lambda H_n^{(r)}(x|\lambda) = (1-\lambda)H_n^{(r-1)}(x|\lambda).$$
(32)

Now, we note that $\{H_0^{(r)}(x|\lambda), H_1^{(r)}(x|\lambda), \dots, H_n^{(r)}(x|\lambda)\}$ is also a good basis for $\mathbb{P}_n(\lambda)$. Let us define the operator *D* as $Df(x) = \frac{df(x)}{dx}$ and let $p(x) \in \mathbb{P}_n(\lambda)$. Then p(x) can be written as

$$p(x) = \sum_{k=0}^{n} C_k H_k^{(r)}(x|\lambda).$$
(33)

From (9) and (32), we have

$$\Delta_{\lambda} H_{n}^{(r)}(x|\lambda) = H_{n}^{(r)}(x+1|\lambda) - \lambda H_{n}^{(r)}(x|\lambda) = (1-\lambda) H_{n}^{(r-1)}(x|\lambda).$$
(34)

Thus, by (33) and (34), we get

$$\Delta_{\lambda}^{r} p(x) = (1 - \lambda)^{r} \sum_{k=0}^{n} C_{k} H_{k}^{(0)}(x|\lambda) = (1 - \lambda)^{r} \sum_{k=0}^{n} C_{k} x^{k}.$$
(35)

Let us take the *k*th derivative of $\triangle_{\lambda}^{r} p(x)$ in (35).

Then we have

$$D^{k}(\Delta_{\lambda}^{r}p(x)) = (1-\lambda)^{r} \sum_{l=k}^{n} \frac{l!}{(l-k)!} C_{l} x^{l-k}.$$
(36)

Thus, from (36), we have

$$D^{k}(\Delta_{\lambda}^{r}p(0)) = (1-\lambda)^{r} \sum_{l=k}^{n} \frac{l!C_{l}}{(l-k)!} 0^{l-k} = (1-\lambda)^{r} k!C_{k}.$$
(37)

Thus, by (37), we get

$$C_{k} = \frac{D^{k}(\Delta_{\lambda}^{r}p(0))}{(1-\lambda)^{r}k!}$$
$$= \frac{\Delta_{\lambda}^{r}(D^{k}p(0))}{(1-\lambda)^{r}k!} = \frac{1}{(1-\lambda)^{r}k!} \sum_{j=0}^{r} {r \choose j} (-\lambda)^{(r-j)} D^{k}p(j).$$
(38)

Therefore, by (33) and (38), we obtain the following theorem.

Theorem 5 For $r \in \mathbb{Z}_+$, let $p(x) \in \mathbb{P}_n(\lambda)$ with

$$p(x) = rac{1}{(1-\lambda)^r} \sum_{0 \le k \le n} C_k H_k^{(r)}(x|\lambda) \quad ig(C_k \in \mathbf{Q}(\lambda)ig).$$

Then we have

$$C_k = \frac{1}{(1-\lambda)^r k!} \sum_{0 \le j \le r} \binom{r}{j} (-\lambda)^{r-j} D^k p(j).$$

That is,

$$p(x) = \frac{1}{(1-\lambda)^r} \sum_{0 \le k \le n} \left(\sum_{0 \le j \le r} \frac{1}{k!} \binom{r}{j} (-\lambda)^{r-j} D^k p(j) \right) H_k^{(r)}(x|\lambda).$$

Let us take $p(x) = H_n(x|\lambda) \in \mathbf{P}_n(\lambda)$. Then, by Theorem 5, $p(x) = H_n(x|\lambda)$ can be generated by $\{H_0^{(r)}(x|\lambda), H_1^{(r)}(\lambda), \dots, H_n^{(r)}(x|\lambda)\}$ as follows:

$$H_n(\boldsymbol{x}|\boldsymbol{\lambda}) = \sum_{0 \le k \le n} C_k H_k^{(r)}(\boldsymbol{x}|\boldsymbol{\lambda}),\tag{39}$$

where

$$C_{k} = \frac{1}{(1-\lambda)^{r}} \frac{1}{k!} \sum_{0 \le j \le r} \binom{r}{j} (-\lambda)^{r-j} D^{k} p(j),$$
(40)

and

$$p^{(k)}(x) = D^{k} p(x) = n(n-1)\cdots(n-k+1)H_{n-k}(x|\lambda) = \frac{n!}{(n-k)!}H_{n-k}(x|\lambda).$$
(41)

By (40) and (41), we get

$$C_k = \frac{1}{(1-\lambda)^r} \binom{n}{k} \sum_{0 \le j \le r} \binom{r}{j} (-\lambda)^{r-j} H_{n-k}(j|\lambda).$$

$$\tag{42}$$

Therefore, by (39) and (42), we obtain the following theorem.

Theorem 6 For $n \in \mathbb{Z}_+$, we have

$$H_n(x|\lambda) = \frac{1}{(1-\lambda)^r} \sum_{0 \le k \le n} \binom{n}{k} \left(\sum_{0 \le j \le r} \binom{r}{j} (-\lambda)^{r-j} H_{n-k}(j|\lambda) \right) H_k^{(r)}(x|\lambda).$$

Let us assume that $p(x) = H_n^{(r)}(x|\lambda)$.

Then we have

$$p^{k}(x) = n(n-1)\cdots(n-k+1)H_{n-k}^{(r)}(x|\lambda)$$
$$= \frac{n!}{(n-k)!}H_{n-k}^{(r)}(x|\lambda).$$
(43)

From Theorem 1, we note that $p(x) = H_n^{(r)}(x|\lambda)$ can be expressed as a linear combination of $H_0(x|\lambda), H_1(x|\lambda), \dots, H_n(x|\lambda)$

$$H_n^{(r)}(x|\lambda) = \sum_{0 \le k \le n} b_k H_k(x|\lambda), \tag{44}$$

where

$$b_{k} = \frac{1}{(1-\lambda)k!} \left\{ p^{k}(1) - \lambda p^{(k)}(0) \right\}$$
$$= \frac{n!}{(1-\lambda)k!(n-k)!} \left\{ H_{n-k}^{(r)}(1|\lambda) - \lambda H_{n-k}^{(r)}(\lambda) \right\}.$$
(45)

By (34) and (45), we get

$$b_k = \binom{n}{k} H_{n-k}^{(r-1)}(\lambda).$$

$$\tag{46}$$

Therefore, by (44) and (46), we obtain the following theorem.

Theorem 7 *For* $n \in \mathbb{Z}_+$ *, we have*

$$H_n^{(r)}(x|\lambda) = \sum_{0 \le k \le n} \binom{n}{k} H_{n-k}^{(r-1)}(\lambda) H_k(x|\lambda).$$

Remark From (2) and (37), we note that

$$\begin{aligned} \frac{d}{d\lambda} \left(\frac{1-\lambda}{e^t - \lambda} \right) &= \frac{1-e^t}{(e^t - \lambda)^2} = \frac{1}{(1-\lambda)^2} \left(\frac{(1-\lambda)^2}{(e^t - \lambda)^2} - \frac{(1-\lambda)^2}{(e^t - \lambda)^2} e^t \right) \\ &= \frac{1}{(1-\lambda)^2} \left(\frac{(1-\lambda)^2}{(e^t - \lambda)^2} - \frac{(1-\lambda)^2}{(e^t - \lambda)^2} (e^t - \lambda + \lambda) \right) \end{aligned}$$

and

$$\frac{d^{2}}{d\lambda^{2}}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) = 2! \frac{1-e^{t}}{(e^{t}-\lambda)^{3}} = \frac{2!}{(1-\lambda)^{3}}\left(\frac{(1-\lambda)^{3}}{(e^{t}-\lambda)^{3}} - \frac{(1-\lambda)^{3}}{(e^{t}-\lambda)^{3}}e^{t}\right) \\
= \frac{2!}{(1-\lambda)^{3}}\left(\frac{(1-\lambda)^{3}}{(e^{t}-\lambda)^{3}} - \frac{(1-\lambda)^{3}}{(e^{t}-\lambda)^{3}}(e^{t}-\lambda+\lambda)\right) \\
= \frac{2!}{(1-\lambda)^{2}}\left(\frac{(1-\lambda)^{3}}{(e^{t}-\lambda)^{3}} - \frac{(1-\lambda)^{2}}{(e^{t}-\lambda)^{2}}\right) \\
= \frac{2!}{(1-\lambda)^{2}}\sum_{n=0}^{\infty} \left(H_{n}^{(3)}(\lambda) - H_{n}^{(2)}(\lambda)\right)\frac{t^{n}}{n!}.$$
(48)

Continuing this process, we obtain the following equation:

$$\frac{d^{k}}{d\lambda^{k}} \left(\frac{1-\lambda}{e^{t}-\lambda}\right) = \frac{k!}{(1-\lambda)^{k}} \left(\frac{(1-\lambda)^{k+1}}{(e^{t}-\lambda)^{k+1}} - \frac{(1-\lambda)^{k}}{(e^{t}-\lambda)^{k}}\right)$$
$$= \frac{k!}{(1-\lambda)^{k}} \sum_{n=0}^{\infty} \left(H_{n}^{(k+1)}(\lambda) - H_{n}^{(k)}(\lambda)\right) \frac{t^{n}}{n!} \quad (\text{see } [8]).$$
(49)

By (1), (2) and (49), we get

$$\frac{d^k}{d\lambda^k}H_n(\lambda) = \frac{k!}{(1-\lambda)^k} \big(H_n^{(k+1)}(\lambda) - H_n^{(k)}(\lambda)\big),$$

where k is a positive integer (see [7, 8]).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

¹Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ²Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.

Received: 27 November 2012 Accepted: 7 December 2012 Published: 27 December 2012

References

- 1. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
- 2. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler *L*-functions. Adv. Stud. Contemp. Math. **18**(2), 135-160 (2009)
- 3. Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order *w-q*-Genocchi numbers. Adv. Stud. Contemp. Math. **19**(1), 39-57 (2009)

- 4. Carlitz, L: A note on *q*-Eulerian numbers. J. Comb. Theory, Ser. A **25**(1), 90-94 (1978)
- 5. Kim, DS, Dolgy, DV, Kim, T, Rim, S-H: Some formulae for the product of two Bernoulli and Euler polynomials. Abstr. Appl. Anal. **2012**, Article ID 784307 (2012)
- Kim, T, Choi, J: A note on the product of Frobenius-Euler polynomials arising from the *p*-adic integral on Z_p. Adv. Stud. Contemp. Math. 22(2), 215-223 (2012)
- Kim, T: An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic *p*-adic invariant *q*-integrals on Z_n. Rocky Mt. J. Math. 41(1), 239-247 (2011)
- Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
- Kim, T: Symmetry of power sum polynomials and multivariate fermionic *p*-adic invariant integral on Z_p. Russ. J. Math. Phys. 16(1), 93-96 (2009)
- Rim, S-H, Jeong, J: On the modified *q*-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 22(1), 93-98 (2012)
- 11. Rim, S-H, Lee, J: Some identities on the twisted (*h*, *q*)-Genocchi numbers and polynomials associated with *q*-Bernstein polynomials. Int. J. Math. Math. Sci. **2011**, Article ID 482840 (2011)
- 12. Ryoo, CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14(4), 495-501 (2011)
- 13. Simsek, Y, Bayad, A, Lokesha, V: *q*-Bernstein polynomials related to *q*-Frobenius-Euler polynomials, *l*-functions, and *q*-Stirling numbers. Math. Methods Appl. Sci. **35**(8), 877-884 (2012)
- Simsek, Y, Yurekli, O, Kurt, V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math - Jang'jun Math. Soc. 15(2), 187-194 (2007)
- 15. Shiratani, K: On the Euler numbers. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 27, 1-5 (1973)
- Shiratani, K, Yamamoto, S: On a *p*-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. **39**(1), 113-125 (1985)

doi:10.1186/1029-242X-2012-307

Cite this article as: Kim and Kim: Some new identities of Frobenius-Euler numbers and polynomials. *Journal of Inequalities and Applications* 2012 2012:307.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com