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Abstract
In this paper, we give some new and interesting identities which are derived from the
basis of Frobenius-Euler. Recently, several authors have studied some identities of
Frobenius-Euler polynomials. From the methods of our paper, we can also derive
many interesting identities of Frobenius-Euler numbers and polynomials.

1 Introduction
Let λ(�= ) ∈ C. As is well known, the Frobienius-Euler polynomials are defined by the
generating function to be

 – λ

et – λ
ext = eH(x|λ)t =

∞∑
n=

Hn(x|λ) t
n

n!
, ()

with the usual convention about replacing Hn(x|λ) by Hn(x|λ) (see [–]).
In the special case, x = , Hn(|λ) =Hn(λ) are called the nth Frobenius-Euler numbers.
Thus, by (), we get

(
H(λ) + 

)n – λHn(λ) =Hn(|λ) – λHn(λ) = ( – λ)δ,n, ()

where δ,n is the Kronecker symbol.
From (), we can derive the following equation:

Hn(x|λ) =
(
H(λ) + x

)n = ∑
≤l≤n

(
n
l

)
Hn–l(λ)xl (see [–]). ()

Thus, by (), we easily see that the leading coefficient of Hn(x|λ) is H(λ) = . So, Hn(x|λ)
are monic polynomials of degree n with coefficients in Q(λ).
From (), we have

∞∑
n=

(
Hn(x + |λ) – λHn(x|λ)

) tn
n!

=
( – λ)e(x+)t

et – λ
– λ

 – λ

et – λ
ext . ()

Thus, by (), we get

Hn(x + |λ) – λHn(x|λ) = ( – λ)xn, for n ∈ Z+. ()
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It is easy to show that

d
dx

Hn(x|λ) = d
dx

(
H(λ) + x

)n = nHn–(x|λ) (n ∈N). ()

From (), we have

∫ 


Hn(x|λ)dx = 

n + 
(
Hn+(|λ) –Hn+(λ)

)
=

λ – 
n + 

Hn+(λ). ()

Let Pn(λ) = {p(x) ∈ Q(λ)[x] | degp(x) ≤ n} be a vector space over Q(λ). Then we note that
{H(x|λ),H(x|λ), . . . ,Hn(x|λ)} is a good basis for Pn(λ).
In this paper, we develop some newmethods to obtain some new identities and proper-

ties of Frobenius-Euler polynomials which are derived from the basis of Frobenius-Euler
polynomials. Those methods are useful in studying the identities of Frobenius-Euler poly-
nomials.

2 Some identities of Frobenius-Euler polynomials
Let us take p(x) ∈ Pn(λ). Then p(x) can be expressed as a Q(λ)-linear combination of
H(x|λ), . . . ,Hn(x|λ) as follows:

p(x) = bH(x|λ) + bH(x|λ) + · · · + bnHn(x|λ) =
∑

≤k≤n

bkHk(x|λ). ()

Let us define the operator �λ by

g(x) = �λp(x) = p(x + ) – λp(x). ()

From (), we can derive the following equation ():

g(x) = �λp(x) =
∑

≤k≤n

bk
(
Hk(x + |λ) – λHk(x|λ)

)
= ( – λ)

∑
≤k≤n

bkxk . ()

For r ∈ Z+, let us take the rth derivative of g(x) in () as follows:

g(r)(x) = ( – λ)
∑
r≤k≤n

k(k – ) · · · (k – r + )bkxk–r, where g(r)(x) =
drg(x)
dxr

. ()

Thus, by (), we get

gr() =
drg(x)
dxr

∣∣∣
x=

= ( – λ)r!br . ()

From (), we have

br =
g(r)()
( – λ)r!

=


( – λ)r!
(
p(r)() – λp(r)()

)
, ()

where r ∈ Z+ and p(r)() = drp(x)
dxr |x=. Therefore, by (), we obtain the following theorem.
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Theorem  For λ(�= ) ∈ C, n ∈ Z+, let p(x) ∈ Pn(λ) with p(x) =
∑

≤k≤n bkHk(x|λ). Then
we have

bk =


( – λ)k!
g(k)() =


( – λ)k!

(
p(k)() – λp(k)()

)
.

Let us take p(x) =Hn(x|λ–). Then, by Theorem , we get

Hn
(
x|λ–) = ∑

≤k≤n

bkHk(x|λ), ()

where

bk =


( – λ)k!
n!

(n – k)!
{
Hn–k

(
|λ–) – λHn–k

(
λ–)}

=


 – λ

(
n
k

){
Hn–k

(
|λ–) – λHn–k

(
λ–)}

=


 – λ

(
n
k

){(
 – λ–)n–k + 

λ
Hn–k

(
λ–) – λHn–k

(
λ–)}. ()

By () and (), we get

Hn
(
x|λ–)

= –

λ
Hn(x|λ) +

n∑
k=

{ (n
k
)

λ( – λ)
Hn–k

(
λ–) – λ

(n
k
)

 – λ
Hn–k

(
λ–)}Hk(x|λ)

= –

λ
Hn(x|λ) +

n∑
k=

(
n
k

)
 + λ

λ
Hn–k

(
λ–)Hk(x|λ). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have

λHn
(
x|λ–) +Hn(x|λ) = ( + λ)

∑
≤k≤n

(
n
k

)
Hn–k

(
λ–)Hk(x|λ).

Let

p(x) =
∑

≤k≤n

Hk(x|λ)Hn–k(x|λ) ∈ Pn(λ). ()

From Theorem , we note that p(x) can be generated by {H(x|λ),H(x|λ), . . . ,Hn(x|λ)} as
follows:

p(x) =
∑

≤k≤n

Hk(x|λ)Hn–k(x|λ) =
∑

≤k≤n

bkHk(x|λ). ()

By (), we get

p(k)(x) =
(n + )!

(n – k + )!
∑
k≤l≤n

Hl–k(x|λ)Hn–k(x|λ), ()
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and

bk =


( – λ)k!
{
p(k)() – λp(k)()

}

=
(n + )!

( – λ)k!(n – k + )!

n∑
l=k

{
Hl–k(|λ)Hn–l(|λ) – λHl–k(λ)Hn–l(λ)

}

=
n + 

( – λ)(n – k + )

(
n
k

) n∑
l=k

{(
λHl–k(λ) + ( – λ)δ,l–k

)(
λHn–l + ( – λ)δ,n–l

)
– λHl–k(λ)Hn–l(λ)

}
=

n + 
( – λ)(n – k + )

(
n
k

) n∑
l=k

{
λ( – λ)δ,l–kHn–l(λ) + λ( – λ)

×Hl–k(λ)δ,n–l + ( – λ)δ,l–kδ,n–l + λ(λ – )Hl–k(λ)Hn–l(λ)
}

=
n + 

( – λ)(n – k + )

(
n
k

) n∑
l=k

{
λ(λ – )Hl–k(λ)Hn–l(λ) + λ( – λ)

×Hn–k(λ) + λ( – λ)Hn–k(λ) + ( – λ)δn,k
}

=
n + 

n – k + 

(
n
k

) n∑
l=k

{
–λHl–k(λ)Hn–l(λ) + λHn–k(λ) + ( – λ)δn,k

}
. ()

From () and (), we have

∑
≤k≤n

Hk(x|λ)Hn–k(x|λ) = (n + )
∑

≤k≤n–

(n
k
)

n – k + 
∑
k≤l≤n

{
(–λ)Hl–k(λ)Hn–l(λ)

+ λHn–k(λ)
}
Hk(x|λ) + (n + )Hn(x|λ). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have


n + 

∑
≤k≤n

Hk(x|λ)Hn–k(x|λ)

=
∑

≤k≤n–

(n
k
)

n – k + 
∑
k≤l≤n

{
(–λ)Hl–k(λ)Hn–l(λ) + λHn–k(λ)

}
Hk(x|λ) +Hn(x|λ).

Let us consider

p(x) =
n∑

k=


k!(n – k)!

Hk(x|λ)Hn–k(x|λ) ∈ Pn(λ). ()

By Theorem , p(x) can be expressed by

p(x) =
n∑

k=

bkHk(x|λ). ()
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From (), we have

p(r)(x) = r
n∑
k=r

Hk–r(x|λ)Hn–k(x|λ)
(k – r)!(n – k)!

(r ∈ Z+). ()

By Theorem , we get

bk =

k!

{
p(k)() – p(k)()

}

=
k–

k!

n∑
l=k


(l – k)!(n – l)!

{
Hl–k(|λ)Hn–l(|λ) – λHl–k(λ)Hn–l(λ)

}

=
k–

k!

n∑
l=k


(l – k)!(n – l)!

{(
λHl–k(λ) + ( – λ)δ,l–k

)(
λHn–l(λ) + ( – λ)δ,n–l

)
– λHl–k(λ)Hn–l(λ)

}
=
k–

k!

{ n∑
l=k

λ(λ – )Hl–k(λ)Hn–l(λ)
(l – k)!(n – l)!

+
λ( – λ)Hn–k(λ)

(n – k)!
+ ( – λ)δn,k

}

=

⎧⎨
⎩

k–
k!

∑n
l=k{ λ(λ–)Hl–k (λ)Hn–l(λ)

(l–k)!(n–l)! + λ(–λ)Hn–k (λ)
(n–k)! }, if k �= n,

n–(–λ)
n! , if k = n.

()

Therefore, by (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have

∑
≤k≤n


k!(n – k)!

Hk(x|λ)Hn–k(x|λ)

=
∑

≤k≤n–

k–

k!
∑
k≤l≤n

{
λ(λ – )Hl–k(λ)Hn–l(λ)

(l – k)!(n – l)!
+
λ( – λ)Hn–k(λ)

(n – k)!

}
Hk(x|λ)

+
n–( – λ)

n!
Hn(x|λ).

3 Higher-order Frobenius-Euler polynomials
For n ∈ Z+, the Frobenius-Euler polynomials of order r are defined by the generating func-
tion to be

(
 – λ

et – λ

)r

ext = eH
(r)(x|λ)t

=
∞∑
n=

H (r)
n (x|λ) t

n

n!
, ()

with the usual convention about replacing (H (r)(x|λ))n by H (r)
n (x|λ) (see [–]). In the

special case, x = ,H (r)
n (|λ) =H (r)

n (λ) are called the nth Frobenius-Euler numbers of order
r (see [, ]).

http://www.journalofinequalitiesandapplications.com/content/2012/1/307
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From (), we have

H (r)
n (x|λ) = (

H (r)(λ) + x
)n = n∑

l=

(
n
l

)
H (r)

n–l(λ)x
l, ()

with the usual convention about replacing (H (r)(λ))n by H (r)
n (λ).

By (), we get

H (r)
n (λ) =

∑
n+···+nr=n

(
n

n,n, . . . ,nr

)
Hn (λ) · · ·Hnr (λ), ()

where
( n
n,n,...,nr

)
= n!

n!n!···nr ! . From () and (), we note that the leading coefficient of
H (r)

n (x|λ) is given by

H (r)
 (λ) =

∑
n+···+nr=

(
n

n,n, . . . ,nr

)
Hn (λ) · · ·Hnr (λ)

=H(λ) · · ·H(λ) = . ()

Thus, by (), we see thatH (r)
n is a monic polynomial of degree nwith coefficients inQ(λ).

From (), we have

H ()
n (x|λ) = xn, for n ∈ Z+, ()

and

∂

∂x
H (r)

n (x|λ) = ∂

∂x
(
H (r)(λ) + x

)n = nH (r)
n–(x|λ) (r ≥ ). ()

It is not difficult to show that

H (r)
n (x + |λ) – λH (r)

n (x|λ) = ( – λ)H (r–)
n (x|λ). ()

Now, we note that {H (r)
 (x|λ),H (r)

 (x|λ), . . . ,H (r)
n (x|λ)} is also a good basis for Pn(λ).

Let us define the operator D as Df (x) = df (x)
dx and let p(x) ∈ Pn(λ). Then p(x) can be writ-

ten as

p(x) =
n∑

k=

CkH (r)
k (x|λ). ()

From () and (), we have

�λH (r)
n (x|λ) =H (r)

n (x + |λ) – λH (r)
n (x|λ) = ( – λ)H (r–)

n (x|λ). ()

Thus, by () and (), we get

�r
λp(x) = ( – λ)r

n∑
k=

CkH ()
k (x|λ) = ( – λ)r

n∑
k=

Ckxk . ()

Let us take the kth derivative of �r
λp(x) in ().

http://www.journalofinequalitiesandapplications.com/content/2012/1/307
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Then we have

Dk(�r
λp(x)

)
= ( – λ)r

n∑
l=k

l!
(l – k)!

Clxl–k . ()

Thus, from (), we have

Dk(�r
λp()

)
= ( – λ)r

n∑
l=k

l!Cl

(l – k)!
l–k = ( – λ)rk!Ck . ()

Thus, by (), we get

Ck =
Dk(�r

λp())
( – λ)rk!

=
�r

λ(Dkp())
( – λ)rk!

=


( – λ)rk!

r∑
j=

(
r
j

)
(–λ)(r–j)Dkp(j). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For r ∈ Z+, let p(x) ∈ Pn(λ) with

p(x) =


( – λ)r
∑

≤k≤n

CkH (r)
k (x|λ) (

Ck ∈Q(λ)
)
.

Then we have

Ck =


( – λ)rk!
∑
≤j≤r

(
r
j

)
(–λ)r–jDkp(j).

That is,

p(x) =


( – λ)r
∑

≤k≤n

( ∑
≤j≤r


k!

(
r
j

)
(–λ)r–jDkp(j)

)
H (r)

k (x|λ).

Let us take p(x) =Hn(x|λ) ∈ Pn(λ). Then, by Theorem , p(x) =Hn(x|λ) can be generated
by {H (r)

 (x|λ),H (r)
 (λ), . . . ,H (r)

n (x|λ)} as follows:

Hn(x|λ) =
∑

≤k≤n

CkH (r)
k (x|λ), ()

where

Ck =


( – λ)r

k!

∑
≤j≤r

(
r
j

)
(–λ)r–jDkp(j), ()

and

p(k)(x) =Dkp(x) = n(n – ) · · · (n – k + )Hn–k(x|λ) = n!
(n – k)!

Hn–k(x|λ). ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/307
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By () and (), we get

Ck =


( – λ)r

(
n
k

) ∑
≤j≤r

(
r
j

)
(–λ)r–jHn–k(j|λ). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have

Hn(x|λ) = 
( – λ)r

∑
≤k≤n

(
n
k

)( ∑
≤j≤r

(
r
j

)
(–λ)r–jHn–k(j|λ)

)
H (r)

k (x|λ).

Let us assume that p(x) =H (r)
n (x|λ).

Then we have

pk(x) = n(n – ) · · · (n – k + )H (r)
n–k(x|λ)

=
n!

(n – k)!
H (r)

n–k(x|λ). ()

From Theorem , we note that p(x) = H (r)
n (x|λ) can be expressed as a linear combination

of H(x|λ),H(x|λ), . . . ,Hn(x|λ)

H (r)
n (x|λ) =

∑
≤k≤n

bkHk(x|λ), ()

where

bk =


( – λ)k!
{
pk() – λp(k)()

}

=
n!

( – λ)k!(n – k)!
{
H (r)

n–k(|λ) – λH (r)
n–k(λ)

}
. ()

By () and (), we get

bk =
(
n
k

)
H (r–)

n–k (λ). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have

H (r)
n (x|λ) =

∑
≤k≤n

(
n
k

)
H (r–)

n–k (λ)Hk(x|λ).

Remark From () and (), we note that

d
dλ

(
 – λ

et – λ

)
=

 – et

(et – λ)
=


( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)
et

)

=


( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)
(
et – λ + λ

))

http://www.journalofinequalitiesandapplications.com/content/2012/1/307
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=


 – λ

(
( – λ)

(et – λ)
–

 – λ

et – λ

)

=


 – λ

∞∑
n=

(
H ()

n (λ) –Hn(λ)
) tn
n!
, ()

and

d

dλ

(
 – λ

et – λ

)
= !

 – et

(et – λ)
=

!
( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)
et

)

=
!

( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)
(
et – λ + λ

))

=
!

( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)

)

=
!

( – λ)

∞∑
n=

(
H ()

n (λ) –H ()
n (λ)

) tn
n!
. ()

Continuing this process, we obtain the following equation:

dk

dλk

(
 – λ

et – λ

)
=

k!
( – λ)k

(
( – λ)k+

(et – λ)k+
–

( – λ)k

(et – λ)k

)

=
k!

( – λ)k

∞∑
n=

(
H (k+)

n (λ) –H (k)
n (λ)

) tn
n!

(see []). ()

By (), () and (), we get

dk

dλk Hn(λ) =
k!

( – λ)k
(
H (k+)

n (λ) –H (k)
n (λ)

)
,

where k is a positive integer (see [, ]).
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