provided by Crossref

Some new identities of Frobenius-Euler numbers and polynomials

Dae San Kim ${ }^{1}$ and Taekyun Kim²*
"Correspondence: tkkim@kw.ac.kr
${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we give some new and interesting identities which are derived from the basis of Frobenius-Euler. Recently, several authors have studied some identities of Frobenius-Euler polynomials. From the methods of our paper, we can also derive many interesting identities of Frobenius-Euler numbers and polynomials.

1 Introduction

Let $\lambda(\neq 1) \in \mathbf{C}$. As is well known, the Frobienius-Euler polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{1-\lambda}{e^{t}-\lambda} e^{x t}=e^{H(x \mid \lambda) t}=\sum_{n=0}^{\infty} H_{n}(x \mid \lambda) \frac{t^{n}}{n!}, \tag{1}
\end{equation*}
$$

with the usual convention about replacing $H^{n}(x \mid \lambda)$ by $H_{n}(x \mid \lambda)$ (see [1-6]).
In the special case, $x=0, H_{n}(0 \mid \lambda)=H_{n}(\lambda)$ are called the nth Frobenius-Euler numbers.
Thus, by (1), we get

$$
\begin{equation*}
(H(\lambda)+1)^{n}-\lambda H_{n}(\lambda)=H_{n}(1 \mid \lambda)-\lambda H_{n}(\lambda)=(1-\lambda) \delta_{0, n}, \tag{2}
\end{equation*}
$$

where $\delta_{0, n}$ is the Kronecker symbol.
From (1), we can derive the following equation:

$$
\begin{equation*}
H_{n}(x \mid \lambda)=(H(\lambda)+x)^{n}=\sum_{0 \leq l \leq n}\binom{n}{l} H_{n-l}(\lambda) x^{l} \quad(\text { see }[6-16]) . \tag{3}
\end{equation*}
$$

Thus, by (3), we easily see that the leading coefficient of $H_{n}(x \mid \lambda)$ is $H_{0}(\lambda)=1$. So, $H_{n}(x \mid \lambda)$ are monic polynomials of degree n with coefficients in $\mathbf{Q}(\lambda)$.
From (1), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(H_{n}(x+1 \mid \lambda)-\lambda H_{n}(x \mid \lambda)\right) \frac{t^{n}}{n!}=\frac{(1-\lambda) e^{(x+1) t}}{e^{t}-\lambda}-\lambda \frac{1-\lambda}{e^{t}-\lambda} e^{x t} . \tag{4}
\end{equation*}
$$

Thus, by (4), we get

$$
\begin{equation*}
H_{n}(x+1 \mid \lambda)-\lambda H_{n}(x \mid \lambda)=(1-\lambda) x^{n}, \quad \text { for } n \in \mathbf{Z}_{+} . \tag{5}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\frac{d}{d x} H_{n}(x \mid \lambda)=\frac{d}{d x}(H(\lambda)+x)^{n}=n H_{n-1}(x \mid \lambda) \quad(n \in \mathbf{N}) \tag{6}
\end{equation*}
$$

From (6), we have

$$
\begin{equation*}
\int_{0}^{1} H_{n}(x \mid \lambda) d x=\frac{1}{n+1}\left(H_{n+1}(1 \mid \lambda)-H_{n+1}(\lambda)\right)=\frac{\lambda-1}{n+1} H_{n+1}(\lambda) . \tag{7}
\end{equation*}
$$

Let $\mathbb{P}_{n}(\lambda)=\{p(x) \in \mathbf{Q}(\lambda)[x] \mid \operatorname{deg} p(x) \leq n\}$ be a vector space over $\mathbf{Q}(\lambda)$. Then we note that $\left\{H_{0}(x \mid \lambda), H_{1}(x \mid \lambda), \ldots, H_{n}(x \mid \lambda)\right\}$ is a good basis for $\mathbb{P}_{n}(\lambda)$.
In this paper, we develop some new methods to obtain some new identities and properties of Frobenius-Euler polynomials which are derived from the basis of Frobenius-Euler polynomials. Those methods are useful in studying the identities of Frobenius-Euler polynomials.

2 Some identities of Frobenius-Euler polynomials

Let us take $p(x) \in \mathbb{P}_{n}(\lambda)$. Then $p(x)$ can be expressed as a $\mathbf{Q}(\lambda)$-linear combination of $H_{0}(x \mid \lambda), \ldots, H_{n}(x \mid \lambda)$ as follows:

$$
\begin{equation*}
p(x)=b_{0} H_{0}(x \mid \lambda)+b_{1} H_{1}(x \mid \lambda)+\cdots+b_{n} H_{n}(x \mid \lambda)=\sum_{0 \leq k \leq n} b_{k} H_{k}(x \mid \lambda) . \tag{8}
\end{equation*}
$$

Let us define the operator Δ_{λ} by

$$
\begin{equation*}
g(x)=\Delta_{\lambda} p(x)=p(x+1)-\lambda p(x) . \tag{9}
\end{equation*}
$$

From (9), we can derive the following equation (10):

$$
\begin{equation*}
g(x)=\Delta_{\lambda} p(x)=\sum_{0 \leq k \leq n} b_{k}\left(H_{k}(x+1 \mid \lambda)-\lambda H_{k}(x \mid \lambda)\right)=(1-\lambda) \sum_{0 \leq k \leq n} b_{k} x^{k} . \tag{10}
\end{equation*}
$$

For $r \in \mathbf{Z}_{+}$, let us take the r th derivative of $g(x)$ in (10) as follows:

$$
\begin{equation*}
g^{(r)}(x)=(1-\lambda) \sum_{r \leq k \leq n} k(k-1) \cdots(k-r+1) b_{k} x^{k-r}, \quad \text { where } g^{(r)}(x)=\frac{d^{r} g(x)}{d x^{r}} . \tag{11}
\end{equation*}
$$

Thus, by (11), we get

$$
\begin{equation*}
g^{r}(0)=\left.\frac{d^{r} g(x)}{d x^{r}}\right|_{x=0}=(1-\lambda) r!b_{r} \tag{12}
\end{equation*}
$$

From (12), we have

$$
\begin{equation*}
b_{r}=\frac{g^{(r)}(0)}{(1-\lambda) r!}=\frac{1}{(1-\lambda) r!}\left(p^{(r)}(1)-\lambda p^{(r)}(0)\right) \tag{13}
\end{equation*}
$$

where $r \in \mathbf{Z}_{+}$and $p^{(r)}(0)=\left.\frac{d^{r} p(x)}{d x^{r}}\right|_{x=0}$. Therefore, by (13), we obtain the following theorem.

Theorem 1 For $\lambda(\neq 1) \in \mathbf{C}, n \in \mathbf{Z}_{+}$, let $p(x) \in \mathbb{P}_{n}(\lambda)$ with $p(x)=\sum_{0 \leq k \leq n} b_{k} H_{k}(x \mid \lambda)$. Then we have

$$
b_{k}=\frac{1}{(1-\lambda) k!} g^{(k)}(0)=\frac{1}{(1-\lambda) k!}\left(p^{(k)}(1)-\lambda p^{(k)}(0)\right) .
$$

Let us take $p(x)=H_{n}\left(x \mid \lambda^{-1}\right)$. Then, by Theorem 1 , we get

$$
\begin{equation*}
H_{n}\left(x \mid \lambda^{-1}\right)=\sum_{0 \leq k \leq n} b_{k} H_{k}(x \mid \lambda), \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
b_{k} & =\frac{1}{(1-\lambda) k!} \frac{n!}{(n-k)!}\left\{H_{n-k}\left(1 \mid \lambda^{-1}\right)-\lambda H_{n-k}\left(\lambda^{-1}\right)\right\} \\
& =\frac{1}{1-\lambda}\binom{n}{k}\left\{H_{n-k}\left(1 \mid \lambda^{-1}\right)-\lambda H_{n-k}\left(\lambda^{-1}\right)\right\} \\
& =\frac{1}{1-\lambda}\binom{n}{k}\left\{\left(1-\lambda^{-1}\right) 0^{n-k}+\frac{1}{\lambda} H_{n-k}\left(\lambda^{-1}\right)-\lambda H_{n-k}\left(\lambda^{-1}\right)\right\} . \tag{15}
\end{align*}
$$

By (14) and (15), we get

$$
\begin{align*}
& H_{n}\left(x \mid \lambda^{-1}\right) \\
&=-\frac{1}{\lambda} H_{n}(x \mid \lambda)+\sum_{k=0}^{n}\left\{\frac{\binom{n}{k}}{\lambda(1-\lambda)} H_{n-k}\left(\lambda^{-1}\right)-\frac{\lambda\binom{n}{k}}{1-\lambda} H_{n-k}\left(\lambda^{-1}\right)\right\} H_{k}(x \mid \lambda) \\
&=-\frac{1}{\lambda} H_{n}(x \mid \lambda)+\sum_{k=0}^{n}\binom{n}{k} \frac{1+\lambda}{\lambda} H_{n-k}\left(\lambda^{-1}\right) H_{k}(x \mid \lambda) . \tag{16}
\end{align*}
$$

Therefore, by (16), we obtain the following theorem.

Theorem 2 For $n \in \mathbf{Z}_{+}$, we have

$$
\lambda H_{n}\left(x \mid \lambda^{-1}\right)+H_{n}(x \mid \lambda)=(1+\lambda) \sum_{0 \leq k \leq n}\binom{n}{k} H_{n-k}\left(\lambda^{-1}\right) H_{k}(x \mid \lambda) .
$$

Let

$$
\begin{equation*}
p(x)=\sum_{0 \leq k \leq n} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda) \in \mathbb{P}_{n}(\lambda) . \tag{17}
\end{equation*}
$$

From Theorem 2, we note that $p(x)$ can be generated by $\left\{H_{0}(x \mid \lambda), H_{1}(x \mid \lambda), \ldots, H_{n}(x \mid \lambda)\right\}$ as follows:

$$
\begin{equation*}
p(x)=\sum_{0 \leq k \leq n} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda)=\sum_{0 \leq k \leq n} b_{k} H_{k}(x \mid \lambda) . \tag{18}
\end{equation*}
$$

By (17), we get

$$
\begin{equation*}
p^{(k)}(x)=\frac{(n+1)!}{(n-k+1)!} \sum_{k \leq l \leq n} H_{l-k}(x \mid \lambda) H_{n-k}(x \mid \lambda), \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
b_{k}= & \frac{1}{(1-\lambda) k!}\left\{p^{(k)}(1)-\lambda p^{(k)}(0)\right\} \\
= & \frac{(n+1)!}{(1-\lambda) k!(n-k+1)!} \sum_{l=k}^{n}\left\{H_{l-k}(1 \mid \lambda) H_{n-l}(1 \mid \lambda)-\lambda H_{l-k}(\lambda) H_{n-l}(\lambda)\right\} \\
= & \frac{n+1}{(1-\lambda)(n-k+1)}\binom{n}{k} \sum_{l=k}^{n}\left\{\left(\lambda H_{l-k}(\lambda)+(1-\lambda) \delta_{0, l-k}\right)\left(\lambda H_{n-l}+(1-\lambda) \delta_{0, n-l}\right)\right. \\
& \left.-\lambda H_{l-k}(\lambda) H_{n-l}(\lambda)\right\} \\
= & \frac{n+1}{(1-\lambda)(n-k+1)}\binom{n}{k} \sum_{l=k}^{n}\left\{\lambda(1-\lambda) \delta_{0, l-k} H_{n-l}(\lambda)+\lambda(1-\lambda)\right. \\
& \left.\times H_{l-k}(\lambda) \delta_{0, n-l}+(1-\lambda)^{2} \delta_{0, l-k} \delta_{0, n-l}+\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)\right\} \\
= & \frac{n+1}{(1-\lambda)(n-k+1)}\binom{n}{k} \sum_{l=k}^{n}\left\{\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)+\lambda(1-\lambda)\right. \\
& \left.\times H_{n-k}(\lambda)+\lambda(1-\lambda) H_{n-k}(\lambda)+(1-\lambda)^{2} \delta_{n, k}\right\} \\
= & \frac{n+1}{n-k+1}\binom{n}{k} \sum_{l=k}^{n}\left\{-\lambda H_{l-k}(\lambda) H_{n-l}(\lambda)+2 \lambda H_{n-k}(\lambda)+(1-\lambda) \delta_{n, k}\right\} . \tag{20}
\end{align*}
$$

From (18) and (20), we have

$$
\begin{align*}
\sum_{0 \leq k \leq n} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda)= & (n+1) \sum_{0 \leq k \leq n-1} \frac{\binom{n}{k}}{n-k+1} \sum_{k \leq l \leq n}\left\{(-\lambda) H_{l-k}(\lambda) H_{n-l}(\lambda)\right. \\
& \left.+2 \lambda H_{n-k}(\lambda)\right\} H_{k}(x \mid \lambda)+(n+1) H_{n}(x \mid \lambda) . \tag{21}
\end{align*}
$$

Therefore, by (21), we obtain the following theorem.

Theorem 3 For $n \in \mathbf{Z}_{+}$, we have

$$
\begin{aligned}
& \frac{1}{n+1} \sum_{0 \leq k \leq n} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda) \\
& \quad=\sum_{0 \leq k \leq n-1} \frac{\binom{n}{k}}{n-k+1} \sum_{k \leq l \leq n}\left\{(-\lambda) H_{l-k}(\lambda) H_{n-l}(\lambda)+2 \lambda H_{n-k}(\lambda)\right\} H_{k}(x \mid \lambda)+H_{n}(x \mid \lambda) .
\end{aligned}
$$

Let us consider

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} \frac{1}{k!(n-k)!} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda) \in \mathbb{P}_{n}(\lambda) . \tag{22}
\end{equation*}
$$

By Theorem 1, $p(x)$ can be expressed by

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} b_{k} H_{k}(x \mid \lambda) . \tag{23}
\end{equation*}
$$

From (22), we have

$$
\begin{equation*}
p^{(r)}(x)=2^{r} \sum_{k=r}^{n} \frac{H_{k-r}(x \mid \lambda) H_{n-k}(x \mid \lambda)}{(k-r)!(n-k)!} \quad\left(r \in \mathbf{Z}_{+}\right) . \tag{24}
\end{equation*}
$$

By Theorem 1, we get

$$
\begin{align*}
b_{k}= & \frac{1}{2 k!}\left\{p^{(k)}(1)-p^{(k)}(0)\right\} \\
= & \frac{2^{k-1}}{k!} \sum_{l=k}^{n} \frac{1}{(l-k)!(n-l)!}\left\{H_{l-k}(1 \mid \lambda) H_{n-l}(1 \mid \lambda)-\lambda H_{l-k}(\lambda) H_{n-l}(\lambda)\right\} \\
= & \frac{2^{k-1}}{k!} \sum_{l=k}^{n} \frac{1}{(l-k)!(n-l)!}\left\{\left(\lambda H_{l-k}(\lambda)+(1-\lambda) \delta_{0, l-k}\right)\left(\lambda H_{n-l}(\lambda)+(1-\lambda) \delta_{0, n-l}\right)\right. \\
& \left.-\lambda H_{l-k}(\lambda) H_{n-l}(\lambda)\right\} \\
= & \frac{2^{k-1}}{k!}\left\{\sum_{l=k}^{n} \frac{\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)}{(l-k)!(n-l)!}+\frac{2 \lambda(1-\lambda) H_{n-k}(\lambda)}{(n-k)!}+(1-\lambda)^{2} \delta_{n, k}\right\} \\
= & \begin{cases}\frac{2^{k-1}}{k!} \sum_{l=k}^{n}\left\{\frac{\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)}{(l-k)!(n-l)!}+\frac{2 \lambda(1-\lambda) H_{n-k}(\lambda)}{(n-k)!}\right\}, & \text { if } k \neq n, \\
\frac{2^{n-1}(1-\lambda)}{n!}, & \text { if } k=n .\end{cases} \tag{25}
\end{align*}
$$

Therefore, by (25), we obtain the following theorem.

Theorem 4 For $n \in \mathbf{Z}_{+}$, we have

$$
\begin{aligned}
& \sum_{0 \leq k \leq n} \frac{1}{k!(n-k)!} H_{k}(x \mid \lambda) H_{n-k}(x \mid \lambda) \\
& \quad=\sum_{0 \leq k \leq n-1} \frac{2^{k-1}}{k!} \sum_{k \leq l \leq n}\left\{\frac{\lambda(\lambda-1) H_{l-k}(\lambda) H_{n-l}(\lambda)}{(l-k)!(n-l)!}+\frac{2 \lambda(1-\lambda) H_{n-k}(\lambda)}{(n-k)!}\right\} H_{k}(x \mid \lambda) \\
& \quad+\frac{2^{n-1}(1-\lambda)}{n!} H_{n}(x \mid \lambda)
\end{aligned}
$$

3 Higher-order Frobenius-Euler polynomials

For $n \in \mathbf{Z}_{+}$, the Frobenius-Euler polynomials of order r are defined by the generating function to be

$$
\begin{align*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right)^{r} e^{x t} & =e^{H^{(r)}(x \mid \lambda) t} \\
& =\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!}, \tag{26}
\end{align*}
$$

with the usual convention about replacing $\left(H^{(r)}(x \mid \lambda)\right)^{n}$ by $H_{n}^{(r)}(x \mid \lambda)$ (see [1-10]). In the special case, $x=0, H_{n}^{(r)}(0 \mid \lambda)=H_{n}^{(r)}(\lambda)$ are called the nth Frobenius-Euler numbers of order r (see [8, 9]).

From (26), we have

$$
\begin{equation*}
H_{n}^{(r)}(x \mid \lambda)=\left(H^{(r)}(\lambda)+x\right)^{n}=\sum_{l=0}^{n}\binom{n}{l} H_{n-l}^{(r)}(\lambda) x^{l}, \tag{27}
\end{equation*}
$$

with the usual convention about replacing $\left(H^{(r)}(\lambda)\right)^{n}$ by $H_{n}^{(r)}(\lambda)$.
By (26), we get

$$
\begin{equation*}
H_{n}^{(r)}(\lambda)=\sum_{n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} H_{n_{1}}(\lambda) \cdots H_{n_{r}}(\lambda), \tag{28}
\end{equation*}
$$

where $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$. From (27) and (28), we note that the leading coefficient of $H_{n}^{(r)}(x \mid \lambda)$ is given by

$$
\begin{align*}
H_{0}^{(r)}(\lambda) & =\sum_{n_{1}+\cdots+n_{r}=0}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} H_{n_{1}}(\lambda) \cdots H_{n_{r}}(\lambda) \\
& =H_{0}(\lambda) \cdots H_{0}(\lambda)=1 . \tag{29}
\end{align*}
$$

Thus, by (29), we see that $H_{n}^{(r)}$ is a monic polynomial of degree n with coefficients in $\mathbf{Q}(\lambda)$. From (26), we have

$$
\begin{equation*}
H_{n}^{(0)}(x \mid \lambda)=x^{n}, \quad \text { for } n \in \mathbf{Z}_{+}, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x} H_{n}^{(r)}(x \mid \lambda)=\frac{\partial}{\partial x}\left(H^{(r)}(\lambda)+x\right)^{n}=n H_{n-1}^{(r)}(x \mid \lambda) \quad(r \geq 0) . \tag{31}
\end{equation*}
$$

It is not difficult to show that

$$
\begin{equation*}
H_{n}^{(r)}(x+1 \mid \lambda)-\lambda H_{n}^{(r)}(x \mid \lambda)=(1-\lambda) H_{n}^{(r-1)}(x \mid \lambda) . \tag{32}
\end{equation*}
$$

Now, we note that $\left\{H_{0}^{(r)}(x \mid \lambda), H_{1}^{(r)}(x \mid \lambda), \ldots, H_{n}^{(r)}(x \mid \lambda)\right\}$ is also a good basis for $\mathbb{P}_{n}(\lambda)$.
Let us define the operator D as $D f(x)=\frac{d f(x)}{d x}$ and let $p(x) \in \mathbb{P}_{n}(\lambda)$. Then $p(x)$ can be written as

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} C_{k} H_{k}^{(r)}(x \mid \lambda) . \tag{33}
\end{equation*}
$$

From (9) and (32), we have

$$
\begin{equation*}
\Delta_{\lambda} H_{n}^{(r)}(x \mid \lambda)=H_{n}^{(r)}(x+1 \mid \lambda)-\lambda H_{n}^{(r)}(x \mid \lambda)=(1-\lambda) H_{n}^{(r-1)}(x \mid \lambda) . \tag{34}
\end{equation*}
$$

Thus, by (33) and (34), we get

$$
\begin{equation*}
\triangle_{\lambda}^{r} p(x)=(1-\lambda)^{r} \sum_{k=0}^{n} C_{k} H_{k}^{(0)}(x \mid \lambda)=(1-\lambda)^{r} \sum_{k=0}^{n} C_{k} x^{k} . \tag{35}
\end{equation*}
$$

Let us take the k th derivative of $\triangle_{\lambda}^{r} p(x)$ in (35).

Then we have

$$
\begin{equation*}
D^{k}\left(\Delta_{\lambda}^{r} p(x)\right)=(1-\lambda)^{r} \sum_{l=k}^{n} \frac{l!}{(l-k)!} C_{l} x^{l-k} \tag{36}
\end{equation*}
$$

Thus, from (36), we have

$$
\begin{equation*}
D^{k}\left(\Delta_{\lambda}^{r} p(0)\right)=(1-\lambda)^{r} \sum_{l=k}^{n} \frac{l!C_{l}}{(l-k)!} 0^{l-k}=(1-\lambda)^{r} k!C_{k} . \tag{37}
\end{equation*}
$$

Thus, by (37), we get

$$
\begin{align*}
C_{k} & =\frac{D^{k}\left(\triangle_{\lambda}^{r} p(0)\right)}{(1-\lambda)^{r} k!} \\
& =\frac{\triangle_{\lambda}^{r}\left(D^{k} p(0)\right)}{(1-\lambda)^{r} k!}=\frac{1}{(1-\lambda)^{r} k!} \sum_{j=0}^{r}\binom{r}{j}(-\lambda)^{(r-j)} D^{k} p(j) . \tag{38}
\end{align*}
$$

Therefore, by (33) and (38), we obtain the following theorem.

Theorem 5 For $r \in \mathbf{Z}_{+}$, let $p(x) \in \mathbb{P}_{n}(\lambda)$ with

$$
p(x)=\frac{1}{(1-\lambda)^{r}} \sum_{0 \leq k \leq n} C_{k} H_{k}^{(r)}(x \mid \lambda) \quad\left(C_{k} \in \mathbf{Q}(\lambda)\right)
$$

Then we have

$$
C_{k}=\frac{1}{(1-\lambda)^{r} k!} \sum_{0 \leq j \leq r}\binom{r}{j}(-\lambda)^{r-j} D^{k} p(j)
$$

That is,

$$
p(x)=\frac{1}{(1-\lambda)^{r}} \sum_{0 \leq k \leq n}\left(\sum_{0 \leq j \leq r} \frac{1}{k!}\binom{r}{j}(-\lambda)^{r-j} D^{k} p(j)\right) H_{k}^{(r)}(x \mid \lambda) .
$$

Let us take $p(x)=H_{n}(x \mid \lambda) \in \mathbf{P}_{n}(\lambda)$. Then, by Theorem 5, $p(x)=H_{n}(x \mid \lambda)$ can be generated by $\left\{H_{0}^{(r)}(x \mid \lambda), H_{1}^{(r)}(\lambda), \ldots, H_{n}^{(r)}(x \mid \lambda)\right\}$ as follows:

$$
\begin{equation*}
H_{n}(x \mid \lambda)=\sum_{0 \leq k \leq n} C_{k} H_{k}^{(r)}(x \mid \lambda), \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}=\frac{1}{(1-\lambda)^{r}} \frac{1}{k!} \sum_{0 \leq j \leq r}\binom{r}{j}(-\lambda)^{r-j} D^{k} p(j), \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{(k)}(x)=D^{k} p(x)=n(n-1) \cdots(n-k+1) H_{n-k}(x \mid \lambda)=\frac{n!}{(n-k)!} H_{n-k}(x \mid \lambda) . \tag{41}
\end{equation*}
$$

By (40) and (41), we get

$$
\begin{equation*}
C_{k}=\frac{1}{(1-\lambda)^{r}}\binom{n}{k} \sum_{0 \leq j \leq r}\binom{r}{j}(-\lambda)^{r-j} H_{n-k}(j \mid \lambda) . \tag{42}
\end{equation*}
$$

Therefore, by (39) and (42), we obtain the following theorem.

Theorem 6 For $n \in \mathbf{Z}_{+}$, we have

$$
H_{n}(x \mid \lambda)=\frac{1}{(1-\lambda)^{r}} \sum_{0 \leq k \leq n}\binom{n}{k}\left(\sum_{0 \leq j \leq r}\binom{r}{j}(-\lambda)^{r-j} H_{n-k}(j \mid \lambda)\right) H_{k}^{(r)}(x \mid \lambda) .
$$

Let us assume that $p(x)=H_{n}^{(r)}(x \mid \lambda)$.
Then we have

$$
\begin{align*}
p^{k}(x) & =n(n-1) \cdots(n-k+1) H_{n-k}^{(r)}(x \mid \lambda) \\
& =\frac{n!}{(n-k)!} H_{n-k}^{(r)}(x \mid \lambda) . \tag{43}
\end{align*}
$$

From Theorem 1, we note that $p(x)=H_{n}^{(r)}(x \mid \lambda)$ can be expressed as a linear combination of $H_{0}(x \mid \lambda), H_{1}(x \mid \lambda), \ldots, H_{n}(x \mid \lambda)$

$$
\begin{equation*}
H_{n}^{(r)}(x \mid \lambda)=\sum_{0 \leq k \leq n} b_{k} H_{k}(x \mid \lambda), \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
b_{k} & =\frac{1}{(1-\lambda) k!}\left\{p^{k}(1)-\lambda p^{(k)}(0)\right\} \\
& =\frac{n!}{(1-\lambda) k!(n-k)!}\left\{H_{n-k}^{(r)}(1 \mid \lambda)-\lambda H_{n-k}^{(r)}(\lambda)\right\} . \tag{45}
\end{align*}
$$

By (34) and (45), we get

$$
\begin{equation*}
b_{k}=\binom{n}{k} H_{n-k}^{(r-1)}(\lambda) . \tag{46}
\end{equation*}
$$

Therefore, by (44) and (46), we obtain the following theorem.

Theorem 7 For $n \in \mathbf{Z}_{+}$, we have

$$
H_{n}^{(r)}(x \mid \lambda)=\sum_{0 \leq k \leq n}\binom{n}{k} H_{n-k}^{(r-1)}(\lambda) H_{k}(x \mid \lambda) .
$$

Remark From (2) and (37), we note that

$$
\begin{aligned}
\frac{d}{d \lambda}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =\frac{1-e^{t}}{\left(e^{t}-\lambda\right)^{2}}=\frac{1}{(1-\lambda)^{2}}\left(\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}-\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}} e^{t}\right) \\
& =\frac{1}{(1-\lambda)^{2}}\left(\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}-\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}\left(e^{t}-\lambda+\lambda\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{1-\lambda}\left(\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}-\frac{1-\lambda}{e^{t}-\lambda}\right) \\
& =\frac{1}{1-\lambda} \sum_{n=0}^{\infty}\left(H_{n}^{(2)}(\lambda)-H_{n}(\lambda)\right) \frac{t^{n}}{n!}, \tag{47}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d^{2}}{d \lambda^{2}}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =2!\frac{1-e^{t}}{\left(e^{t}-\lambda\right)^{3}}=\frac{2!}{(1-\lambda)^{3}}\left(\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}}-\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}} e^{t}\right) \\
& =\frac{2!}{(1-\lambda)^{3}}\left(\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}}-\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}}\left(e^{t}-\lambda+\lambda\right)\right) \\
& =\frac{2!}{(1-\lambda)^{2}}\left(\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}}-\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}\right) \\
& =\frac{2!}{(1-\lambda)^{2}} \sum_{n=0}^{\infty}\left(H_{n}^{(3)}(\lambda)-H_{n}^{(2)}(\lambda)\right) \frac{t^{n}}{n!} . \tag{48}
\end{align*}
$$

Continuing this process, we obtain the following equation:

$$
\begin{align*}
\frac{d^{k}}{d \lambda^{k}}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =\frac{k!}{(1-\lambda)^{k}}\left(\frac{(1-\lambda)^{k+1}}{\left(e^{t}-\lambda\right)^{k+1}}-\frac{(1-\lambda)^{k}}{\left(e^{t}-\lambda\right)^{k}}\right) \\
& =\frac{k!}{(1-\lambda)^{k}} \sum_{n=0}^{\infty}\left(H_{n}^{(k+1)}(\lambda)-H_{n}^{(k)}(\lambda)\right) \frac{t^{n}}{n!} \quad \text { (see [8]). } \tag{49}
\end{align*}
$$

By (1), (2) and (49), we get

$$
\frac{d^{k}}{d \lambda^{k}} H_{n}(\lambda)=\frac{k!}{(1-\lambda)^{k}}\left(H_{n}^{(k+1)}(\lambda)-H_{n}^{(k)}(\lambda)\right)
$$

where k is a positive integer (see $[7,8]$).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

'Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.

Received: 27 November 2012 Accepted: 7 December 2012 Published: 27 December 2012

References

1. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
2. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler L-functions. Adv. Stud. Contemp. Math. 18(2), 135-160 (2009)
3. Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv. Stud. Contemp. Math. 19(1), 39-57 (2009)
4. Carlitz, L: A note on q-Eulerian numbers. J. Comb. Theory, Ser. A 25(1), 90-94 (1978)
5. Kim, DS, Dolgy, DV, Kim, T, Rim, S-H: Some formulae for the product of two Bernoulli and Euler polynomials. Abstr Appl. Anal. 2012, Article ID 784307 (2012)
6. Kim, T, Choi, J: A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on \mathbb{Z}_{p}. Adv. Stud. Contemp. Math. 22(2), 215-223 (2012)
7. Kim, T : An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbb{Z}_{p}. Rocky Mt. J. Math. 41(1), 239-247 (2011)
8. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
9. Kim, T: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \mathbf{Z}_{p}. Russ. J. Math. Phys. 16(1), 93-96 (2009)
10. Rim, S-H, Jeong, J: On the modified q-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 22(1), 93-98 (2012)
11. Rim, S-H, Lee, J: Some identities on the twisted (h, q)-Genocchi numbers and polynomials associated with q-Bernstein polynomials. Int. J. Math. Math. Sci. 2011, Article ID 482840 (2011)
12. Ryoo, CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14(4), 495-501 (2011)
13. Simsek, Y, Bayad, A, Lokesha, V: q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers. Math. Methods Appl. Sci. 35(8), 877-884 (2012)
14. Simsek, Y, Yurekli, O, Kurt, V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math - Jang'jun Math. Soc. 15(2), 187-194 (2007)
15. Shiratani, K: On the Euler numbers. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 27, 1-5 (1973)
16. Shiratani, K, Yamamoto, S: On a p-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 39(1), 113-125 (1985)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1029-242X-2012-307
 Cite this article as: Kim and Kim: Some new identities of Frobenius-Euler numbers and polynomials. Journal of Inequalities and Applications 2012 2012:307.

