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EXISTENCE OF SOLUTIONS FOR ELLIPTIC EQUATIONS
HAVING NATURAL GROWTH TERMS
IN ORLICZ SPACES

A. ELMAHI AND D. MESKINE

Received 24 September 2003

Existence result for strongly nonlinear elliptic equation with a natural growth condition
on the nonlinearity is proved.

1. Introduction

Let Q be a bounded domain in RN (N > 2) with the segment property.
Consider the nonlinear Dirichlet problem

A(u) +g(x,u,Vu) = f, (1.1)

where A(u) = —diva(x,u, Vu) is a Leray-Lions operator defined on D(A) € WLy (Q) —
W1L3(Q) with M an N-function and where g is a nonlinearity with the “natural”
growth condition

|g(65,8) [ = b(lsl) (c(x) + M(I&1)) (1.2)

and which satisfies the classical sign condition g(x,s,&)s = 0. The right-hand side f is
assumed to belong to W' Ez;(Q).

It is well known that Gossez [12] solved (1.1) in the case where g depends only on x and
u. If g depends also on Vu, existence theorems have recently been proved by Benkirane
and Elmabhi in [3, 4] by making some restrictions.

In [3], g is supposed to satisfy a “nonnatural” growth condition of the form

|g(x,5,8) | <b(Isl) (c(x)+P(IE])) withP < M, (1.3)

and in [4], g is supposed to satisfy a natural growth of the form (1.2) but the result is
restricted to N-functions M satisfying a A,-condition.

It is our purpose in this paper to extend the result of [4] to general N-functions (i.e.,
without assuming a A,-condition on M) and hence generalize the results of [3, 4, 7].
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1032  Existence of solutions for elliptic equations

As an example of equations to which the present result can be applied, we give

(1)

exp (|Vul) —1

_div(exp(mlul) Tup

Vu) +usin® uexp (|Vul) =f, m=>0,

. ) N o (1.4)
with £ = fy+ 3.2 Jﬂﬁlog|fi|dx<00,
(2)
\Y%
—div(%w)mm)p(wm) -7 (1.5)

with suitable data f, where p is a given positive and continuous function which
increases from 0 to +oo and where g is a positive function on R.

For classical existence results for nonlinear elliptic equations in Orlicz-Sobolev spaces,
see, for example, [2, 3, 4, 6, 8,9, 10].

2. Preliminaries

2.1. Let M :R* — R* be an N-function, that is, M is continuous and convex, with M(t) >
0fort>0,M(t)/t — 0ast— 0,and M(t)/t — o ast — .

Equivalently, M admits the following representation: M(t) = fot m(t)dt, where m :
R* — R* is nondecreasing and right continuous, with m(0) = 0, m(t) >0 for ¢ > 0, and
m(t) — oo ast — oo,

The N-function M, conjugate to M, is defined by M(t) = [, 7(t)dz, where 7 : R* —
R is given by mi(t) = sup{s: m(s) < t} (see [1, 14, 15]).

The N-function M is said to satisfy the A,-condition if, for some k > 0,

M(Q2t) <kM(t) Vt=0. (2.1)

When (2.1) holds only for t = some £, > 0, then M is said to satisfy the A,-condition near
infinity.

We will extend these N-functions into even functions on all R.

Let P and Q be two N-functions. P < Q means that P grows essentially less rapidly
than Q, that is, for each € >0,

P(t)

— 0 ast-— oo, 2.2
Qet) 22
This is the case if and only if
Q) _
}1}2 ) 0. (2.3)

2.2. Let Q be an open subset of RY. The Orlicz class £;(Q) (resp., the Orlicz space
Ly(Q))) is defined as the set of (equivalence classes of) real-valued measurable functions
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u on Q such that

J M (u(x))dx < +o0 (resp., J M(@)dx<+oo for someA>0>. (2.4)
Q Q
L (Q) is a Banach space under the norm
||u||M=inf5LA>O:J M(@)dxsl} (2.5)
Q

and £(Q) is a convex subset of Ly (Q).

The closure in Ly (Q) of the set of bounded measurable functions with compact sup-
port in Q is denoted by Ej(Q).

The equality Ep(Q) = Ly () holds if and only if M satisfies the A,-condition for all ¢
or for t large according to whether Q has infinite measure or not.

The dual of Ep(Q) can be identified with Lj(Q) by means of the pairing
Jq u(x)v(x)dx, and the dual norm on Lz;(Q) is equivalent to || - [I37.

The space Ly (Q) is reflexive if and only if M and M satisfy the A,-condition, for all ¢
or for t large, according to whether Q has infinite measure or not.

2.3. We now turn to the Orlicz-Sobolev space. WLy (Q) (resp., W!Ep(Q)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lie in Lps(Q2)
(resp., Ep(€2)). It is a Banach space under the norm

lulliae= > [1D%l|5p (2.6)

lal<1

thus W'Ly(Q) and W!Ep(Q) can be identified with subspaces of the product of N +
1 copies of Ly(Q). Denoting this product by I1Ly, we will use the weak topologies
0(I1Ly, T1E57) and o(T1Ly, I1L77).
The space W Ep(Q) is defined as the (norm) closure of the Schwartz space 9(Q) in
W'Ep(Q) and the space W{ Ly(Q) as the o(ITLy;, IT1Eg;) closure of 9(Q) in WLy (Q).
We say that u, converges to u for the modular convergence in W'Ly(Q) if for some
A>0,

A

this implies convergence for o(I1Ly, I1L37).
If M satisfies the A,-condition on R* (near infinity only if Q has finite measure), then
modular convergence coincides with norm convergence.

[24 _ 144
J M(M)dx—- 0 Vial<1; (2.7)
Q

2.4. Let W™Ly;(Q) (resp., W'E;(Q)) denote the space of distributions on Q which
can be written as sums of derivatives of order less than or equal to 1 of functions in
L77(Q) (resp., Ez;(Q)). It is a Banach space under the usual quotient norm.

If the open set Q) has the segment property, then the space 2(Q) is dense in W Ly(Q)
for the modular convergence and thus for the topology o (I1Ly, I1L77) (cf. [9, 11]). Con-
sequently, the action of a distribution S in W~!L37(Q) on an element u of W Ly(Q) is
well defined. It will be denoted by (S, u).
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3. The main result

Let Q) be a bounded open subset of RN (N > 2) with the segment property. Let M and P
be two N-functions such that P < M.

Let A:D(A) C WiLy(Q) — W 'Ly(Q) be a mapping (not everywhere defined)
given by

A(u) = —diva(x,u, Vu), (3.1)

where a: QX R xRN — RY is a Carathéodory function satisfying, for a.e. x € Q, and for
allseRandall &, &* e RN, & £ &%)

la(x,5,8)| <Blex)+P 'M(yls) + M 'M(yl&])], (3.2)
[a(x,5,8) —a(x,s,EF)][E-&EF] >0, (3.3)
aM(I€]) < a(x,s,§)¢E, (3.4)

where c(x) belongs to Ezz(Q), ¢ = 0, and &, 3, > 0.
Furthermore, let g(x,s,&) : Q xR X RN -~ Rbea Carathéodory function such that for
ae.x€Qandforallse R, & € RN,

g(x,5,8)s = 0, (3.5)
|g(x5,8) | <b(Isl) (c'(x)+M(IE])), (3.6)

where b: R — R is a continuous and non decreasing function and ¢’(x) is a given non-
negative function in L'(Q). Finally, we assume that

fe W Ex(Q). (3.7)
Consider the following elliptic problem with Dirichlet boundary condition:

u e WiLy(Q), gle,u,Vu) € LY(Q), gle,u,Vu)u e LY(Q),

(A(u),v) +Jﬂg(x,u,Vu)vdx =(f,v) (3.8)
for all v € WLy (Q) N L*(Q) and for v = u.

We will prove the following existence theorem.

THEOREM 3.1. Assume that (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7) hold true. Then there
exists at least one solution u of (3.8).
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Remark 3.2. Note that conditions (3.4) and (3.6) can be replaced by the following ones:

M(uﬂ) <a(x,s,&)E,

H (39
s <blish) (¢ @+m(L)),
with A" > A > 0.
Remark 3.3. The Euler equation of the integral
[Vul
J <a(u)J M) M0dr)ax (. (3.10)
Q 0
is
N
9 M%) / J'v”‘ M@®) . _
s (o s o ) | e (3.11)
where a(s) is a smooth function satisfying a’(s)s > 0. Note that
[Vul
a'(u)J @dt (3.12)
0

satisfies the growth condition (3.6) and then Theorem 3.1 can be applied to Dirichlet
problems related to (3.11).

Proof of Theorem 3.1
Step 1 (a priori estimates). Consider the sequence of approximate problems

u, € WLy (Q),

(3.13)
(A(un)sv) +J G (%ot Vi) vdx = (fov) Vv e WiLy(Q),
Q

where

gn(x)5>€) = Tn(g(xas)g)) (314)

and where for k > 0, Ty is the usual truncation at height k defined by Tk (s) = max(—k,
min(k,s)) for all s € R.

Note that g,(x,s,&)s = 0, [g.(x,5,8)] < |g(x,5,8)], and |g,(x,s,&)| < n. Since g, is
bounded for any fixed n > 0, there exists at least one solution u, of (3.13) (see [13, Propo-
sitions 1 and 5]).

Using in (3.13) the test function u,, we get

Jaa(x,un,Vun)Vundxs (f>un). (3.15)
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Consequently, one has that (u,) is bounded in W Ly(€Q). By [13, Proposition 5] (see [13,
Remark 8)), (a(x, tn, Vuy)), is bounded in (Lz(Q))N,

J &n (%, un, V) uydx < C, (3.16)
Q

where C is a real constant which does not depend on .
Passing to a subsequence, if necessary, we can assume that
u, — uweakly in W{ Ly (Q) for o (I1Lr, T1Eg;), strongly in Ep(Q), and a.e. in O
a(x,un, Vu,) — hand a(x, Ty (un), V Tk (un)) — hy weakly in (L)Y

for o(I1Ly7, TIEy) for some h and hy € (Lyz(Q))".
(3.17)

Step 2 (almost everywhere convergence of the gradients). Fix k >0 and let ¢(t) = te"’,
o > 0. It is well known that when o = (b(k)/2«)?, one has

b(k)

q)'(t)—7|go(t)\ > VteR. (3.18)

Take a sequence (v;) C 9(Q) which converges to u for the modular convergence in
WoLy(Q) (cf. [11]) and set 64 = Ti(uy) — Tk (v;), 0/ = T(u) — T(v;), and 2 = p(61).
Using in (3.13) the test function z,, we get

(A(un),zh) +Iﬂgn(x,un,wn)z$dx = (f.2). (3.19)

Denote by ¢&(n,j) (i =0,1,2,...) various sequences of real numbers which tend to 0
when #n and j — oo, that is,

lim lim &(#n, j) = 0. (3.20)

j~»oo n— oo
In view of(3.17), we have z,]; — ¢(07) weakly in W{ Ly1(Q) for o(I1Lys, TTE;) as n — oo
and then (f,zi) - (f,(p(Hf)) as n — oo, Using, now, the modular convergence of (v;), we
get (f,9(07)) — 0as j — oo so that
(f.z0) = eo(n, ). (3.21)

Since g, (x, Uy, Vun)z{l > 0 on the subset {x € Q: |u,| >k}, we have

(A(un),zfl)+L‘ ‘ k}g,,(x,un,Vu,,)zZ,dxseo(n,j). (3.22)
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The first term on the left-hand side of (3.22) reads as

(A(un),zf;) = Lm ‘Sk}a(x,un,Vun)[VTk(un) - VTk(v,-)]<p’(9£l)dx

—J a(x,un,Vun)VTk(vj)qJ'(Ozl)dx
{5k} | (3.23)
= |, 08 Tiltn), 9T () [V i) = VTi ()] (0
_J'{‘ ‘ k}a(x,u,,,Vu,,)VTk(vj)q)'(Hi)dx
and then
(A(tn),2h) = JQ [a (e, T (4n), V Tk (1)) — a(x, T (un), V Tk (v)) x3) ]
X [V Tk (ua) = VTi(v)) x5 19’ (67) dx

AP _ NS/ (B
+ | al Tilun), V)R [V Tiln) =TTy )ig1of (B dx (55,
L a0 T ), T Ti)) VT () (B
Q\0;
_J a(x,un,Vun)VTk(vj)¢'(9ﬁ)dx,
{lun| >k}
where y; denotes the characteristic function of the subset
Q5 ={xeQ:|VTi(vj) | <s}. (3.25)
We will pass to the limit in # and in j for s fixed in the last three terms of the right-hand
side of (3.24).
Starting with the fourth term, observe that, since
|V Tk ()it @ (60) | < ¢/ 2K | VTi(v)) | < ¢/ 2K)||Vvjll. =a; €R,  (3.26)
we have

VTk(v) Xl sk @ (62) — VTi(v) xiui=k1 ¢ (67) strongly in (Ex(Q))"  asn — o,

(3.27)
and hence
J{Iunbk} a(%,ttn, Vi) VT (v7) ¢ (0r) dx — {lul=k} hVTi(v;)¢ (6)dx asn— .
(3.28)
Observe that

| VT (vi)xtu=k 9 (67) | <9 2k) [ VTi(v;) | <¢'(2k) | Vv |5 (3.29)
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then, by using the modular convergence of | Vv;| in Ly(2) and Vitali’s theorem, we get
VTr(vi)xiju=k1 ¢ (67) — 0 (3.30)

for the modular convergence in (Ly(Q))Y, and thus

J hV T (vi)g' (0/)dx — 0 as j — oo. (3.31)
{lul=k}
We have then proved that
J . a(x, un,Vu,,)VTk(vj)go'(Gf;)dx =¢1(n, j). (3.32)
{lun >k}

The second term on the right-hand side of (3.24) tends to (by letting n — o)
[ a6 Tiw), VT ()10 [V T - VTl 1 (60 (3.33)

since a(x, Tk (uy), VTk(vj)Xj-)(p’(Qil) — a(x, Tx(u), VTk(vj)Xj-)(p’(Gf) strongly in (Ez7(Q))N
as n — o by [3, Lemma 2.3], while V Ty (u,) — V Tx(u) weakly in (L (Q))N by (3.17).

Since VTk(Vj)Xj — VTi(u)y® strongly in (Ep(Q))N as j — oo, where y* denotes the
characteristic function of Q; = {x € Q: |V T (u)| < s}, it is easy to see that

Jﬂa(x, Tw), VT (v) 1) [V Tilt) — VT (v)) 6] (07)dx — 0 as j — o0, (3.34)
and thus
Lza(x, Tk (1), VT (vi) xi) [V Ti(un) = VT (vi) x; 19" (Gfl)dx =&(n,j). (3.35)
Concerning the third term on the right-hand side of (3.24), we have

—J a(x, Te(un), V Tic(4)) V T (v)) ¢’ (05 dx — — hV Ti(vi) @' (67)dx
0\ oo
(3.36)

as n — oo by using the fact that V Ty (v;) belongs to (Epr(Q))N.
In view of the modular convergence of (Vv;) in (L (Q))N, we have

—J thTk(vj)(p'(Hj)dx—>—j WV T (w)dx  as j — oo (3.37)
0\ o\

and thus

—J a(x,Tk(un),VTk(un))VTk(VjW(@Z)dx=£3(n,j)—J hieV Ty (u)dx.
o\0; Q\Q,
(3.38)



A. Elmahi and D. Meskine 1039
Combining now (3.32), (3.35), and (3.38), we obtain
(A(u,,),z,];) = JQ [a(x, T (t4n), V Tk (1)) = a(x, T (un), VT (v)) x3) ]

X [V T () — VT (v;)x: 1o (01 dx — Lm eV T (w)dx + e4(n, ).

(3.39)
We now turn to the second term on the left-hand side of (3.22). We have
’ J gn (%, 14, Vi) 2 dx
{lun| <k}
- ‘ [ g Tem), 9T ()
{lug| <k} (340)
< |, B0 @) |90 |+ bi0) | M1V Tewn) 1) 9(64) |dx
b(k j .
< P, T ), VT 0)) 9 i) 900) 5, ).
The first term of the right-hand side of this inequality reads as
b(k)
2 1060 T 0, T Til)) = o Tiln) 9T (1)10)]
X [V Tk (un) = VTi(v))x3] | 9(62) | dx
b J (%6 Ti (1), VT (vi) x3) [V Ti () = VT (vj) 131 oo ( (65) | dx
J (2, Tie (), VT () ) V T (v X]|‘P 6] )| dx
(3.41)
and, as above, it is easy to see that
b(k)
7Jﬂa(x,Tk(un),VTk(vj)X;)[VTk(un) VTi(vi)x; |(p Hn ) | dx = es(n, j)
(3.42)
and that
PO [ s T (1), V T () ) 9 Tk () | (6 | i = (1, 343
o ), 800 Tieun), V T (e k()X [ 9(6) |dx = &7(n, j) (3.43)
so that

' J g,,(x,un,Vu,,)zZ,dx'
{lun <k}

< @ L} [a(x, Tic(un), V Tk () = a(x, T (un), Vi (v)) 1) ] (3.44)

X [V Ti(un) — VTk(vj)Xj] {(p(@f,) |dx +es(n, ).
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Combining this inequality with (3.22) and (3.39), we obtain

JQ [a(x, T (tn), V Ti (un) ) — ax, Tie(un), V Tk (vi) ) 1V Tic(un) = Vi (v)) 3]

« [go'(e;') 5 460 ]dx <eo(mj)+ LMS IeV Te(u)dx

(3.45)

Consequently,

JQ [a(x, Ti(un), V Tk (un)) = a(e, T (un), V T (v;) x5) [V Ti () = VT (v)) x; 1 dx

< 25(n, j) +zj eV Ty (w)dx
OQ\Qy
(3.46)

On the other hand,
[ 006 T 000), 9 i) = 0 Tain), 9T 19 Tiltn) = 9 Tiwp’
= | 006 T (), Y Tin)) =006, T (), Vi) 9 Tilin) = 9 Tilp) s
+ | a(x Te(un), VT () [V Tr (vj)x; = V T(w)y’|dx
a(x, Ty (un), VT (w)y*) [V Ti () — ¥ Te(u)y ) dx

+

) o) o

a(x, Ti (un), VT (vi) x5) [V Tic () — V Tic(v)) x; ] dx.
(3.47)

We will pass to the limit in # and in j in the last three terms on the right-hand side of
the above equality. Similar tools as in (3.24) and (3.41) give

Jﬂa(x, T (140), VT (102)) [V T (v — 9 Ty Jdx = eno (), (3.48)
Ioa(x, Te (), V Te()) [V Ti () — V T () dx = €01 (m, ), (3.49)
jﬂa(x, T (140), V T (7)) [ T () — 9 T (v)) i 1dx = e, ) (3.50)
which imply that

J;) [a(x, Ti (1), V Ti(un)) = a(x, Ti (), V Ti(u) ") [V Tic () — V T ()’ |dx

_ JQ [a(x, Te (un), V Ti () ) = a (%, Tic (), V T (v)) x5 [V T () = V T (v;) x} 1 dx

+813(1’l,j).
(3.51)
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For r < 5, one has
0= JQ, [a(x, Tic (), V Tic (4) ) = @ (6, Tie (), V T () ][V T () — ¥ Ti(w) ] dx
= L) [a(x, Ti(t4n), V T (t4n) ) — @, T (), V Tie(w)) [V T (1) — V Tic(u0) ] dx
- JQS [a(x, Tk (t4n), V T (t4)) — a6, Tr (1), V Tk ()x") | [V T () — V T(w) ] dx
< JQ [a(x, Tk (un)> VTi () = a6, Tr (), V Te(w)y*) [V T () = V i () | dx

- JQ [a(x, Ti (), V Ti () ) — a6, Te (), V T (vi) x5 1V T () = V Tie (v;) ;1 dx

+e13(n, f)

< e14(n, j) +2J 7V Ty () dx.
O\Qs
(3.52)

This implies that, by passing at first to the limit sup over n and next over j,

0 <limsup | [a(x, Tk (un), VTi(un)) — alx, Tx (1), VT () [V Tx (1) — V Ti(u) | dx

n—oo  JQ,

< 2J IV T (1) .
Q\Qy
(3.53)

Using the fact that 4V Ty (u) € L'(Q) and letting s — o0, we get

J;) [a(x: Tk(”n)’VTk(un)) - a(x> Tk(un)aVTk(u))] [VTk(un) - VTk(u)]dx —0
' (3.54)

asn — oo,
As in [3], we deduce that there exists a subsequence still denoted by u, such that

Vu, — Vu a.e. inQ, (3.55)
which implies that
a(x,un, V) — a(x,u, Vu) weakly in (LM(Q))N for o (I1Ly;, I1Eyy). (3.56)
Step 3 (modular convergence of the truncations). Going back to (3.46), we can write

JQa(x, Tk (1n), Vi () VTi () dx < Jﬂa(x, Tk(un),VTk(un))VTk(vj)Xj dx

+ | ol Te(wn), 9 Tr)x)
X [V Ti(un) = VTi(v)x;ldx

(3.57)

+2£9(n,j)+2j IV Ty (u)dx,
OQ\Q



1042  Existence of solutions for elliptic equations

which implies, by using (3.50),

[ 006 Te00), 9 i (0 9 T ()
o (3.58)

< J a(x, Tk(u,,),VTk(un))VTk(vj)Xj dx +e15(n, §) +2J heV Ti(u)dx.
Q 0\Q,

Passing to the limit sup over # in both sides of this inequality yields

limsup | a(x, Tx(tn), V Tk (un)) V Tk (u) dx
o

n—oo

< I a(x, Tk(u),VTk(u))VTk(vj)Xj dx + lim &15(n, j) +2J eV T (u)dx,
Q oo Q\Q,

(3.59)
in which we can pass to the limit in j to obtain
limsup | a(x, Tk (t4), V Tk (un)) V Tk () dx
e 10 (3.60)

sJ a(x,Tk(u),VTk(u))VTk(u)xsdx+2J eV T (u)dx
Q OQ\Q
which gives, by letting s — oo,

limsup Qa(x, Ti(1n), Vi (t4n)) V Ti (uy) dx < Jﬂa(x, Ty (1), VTi(u)) VT (u)dx.
(3.61)

On the other hand, we have, by using Fatou’s lemma,

Joa(x, Tk (1), VTe(u)) VT (u)dx < liirlioglfJ'Qa(x, Tk (un), VT (1)) V Ti (1) dx,
(3.62)

which implies that

Jﬂa(x, Ti (1), V Te (14) ) V T (1) dx — Jﬂa(x, To(w), VTe()) VT (w)dx  asn — oo,
(3.63)

and by using [4, Lemma 2.4], we conclude that
a(x, T (un), V T (un) ) VT (un) — ax, Te(w), VTk()) VTi(u) in LY(Q).  (3.64)
This implies, by using (3.4), that
Ti(un) — Ti(w) in WoLu(Q) (3.65)

for the modular convergence.
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Step 4 (equi-integrability of the nonlinearities and passage to the limit). We will prove
that g, (x, u,, Vu,) — g(x,u, Vu) strongly in L!(Q) by using Vitali’s theorem.

Since g, (x,un, Vu,) — g(x,u, Vu) a.e. in Q, thanks to (3.55), it suffices to prove that
gn(X,uy, Vuy,) are uniformly equi-integrable in Q. Let E C Q) be a measurable subset of Q.
We have, for any m > 0,

|gn(x,un,Vun)|dx+J | gn (2, un, Vuy) | dx

En{lu,|>m}

I | g (2, un, V) | dx = J
E E

< b(m) L“("’ T (1), V T (14)) V T (1) dx

N{lup|<m}

+b(m)J

1
' d +_J n\A» n)vn nd~
Ec(x)x ol IR (%, thny Vuy) uy dx

(3.66)

Standard arguments allow to deduce, using the strong convergence (3.64), that there
exists y > 0 such that

|E| <y = J | gn(x,tn, Vuy) |dx <, Vn, (3.67)
E

which shows that g, (x, u,, Vu,) are uniformly equi-integrable in Q) as required.
In order to pass to the limit, we have, by going back to approximate equations (3.13),

J a(x, un, Vu,) Vwdx+ I gn (% un, Vi) wdx = (f,w) (3.68)
Q Q
for all w € 9(Q), in which, we can easily pass to the limit as n — o to get
J a(x,u,Vu)dex+J gou, Vuywdx = (f,w). (3.69)
Q Q

Let now v € WLy (Q) N L*(Q). There exists (w;) € D(Q) such that [|w) e < (N +
DIvlle,q forall j € N and

w;—v (3.70)

for the modular convergence in WLy (). Taking w = w; in (3.69) and letting j — oo
yields

J a(x,u,Vu)Vvdx+J gl u, Vu)vdx = (f,v). (3.71)
Q Q
By choosing v = Ty (u) in the last equality, we get
I a(x,u,Vu)VTk(u)derJ g, u, Vu) Te(w)dx = (f, Tr(u)). (3.72)
Q Q

From (3.16), we deduce by Fatou’s lemma that g(x,u, Vu)u € L'(Q) and since |g(x, u,
Vu)Te(u)| < g(x,u, Vu)u and Ty (u) — u in WLy (Q) for the modular convergence and
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a.e.in Q as k — oo, it is easy to pass to the limit in both sides of (3.72) (by using Lebesgue
theorem) to obtain

JQa(x, u, Vu)Vudx + L)g(x,u, Vu)udx = {f,u). (3.73)

This completes the proof of Theorem 3.1. O

Remark 3.4. 1f we replace, as in [5], (3.2) by the general growth condition
la(x,5,8)| <b(Isl) (c(x)+ M M(y|&])), (3.74)

where y >0, ¢ € Ez;(Q), and b:R, — R, is a continuous nondecreasing function, we
prove the existence of solutions for the following problem:

u e WiLy(Q), g, u,Vu) € L'(Q), g, u, Vu)u e L1(Q),

(A(u), Te(u—v)) + L)g(x,u, Vu)Ti(u—v)dx < (f, Ti(u—v)) (3.75)
Vv € WiLy(Q) N L (Q).

Indeed, we consider the following approximate problems:

Uy € WELy(Q),

3.76
—diva(x, Ty (un), Viiy) + gn(x,un, Vuy) = f in Q, (3.76)
and we conclude by adapting the same steps.
As an application of this result, we can treat the following model equations:

mexp (|Vul) —1

—div<(1+|u|) T

Vu>+ucoszuexp(\Vu|) =f, m=0. (3.77)

Remark that the solutions of (3.77) belong to L®(Q2) so that (3.77) holds in the distri-
butional sense.
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