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The wearable full-body exoskeleton robot developed in this study is one application of mobile cyberphysical system (CPS), which
is a complex mobile system integrating mechanics, electronics, computer science, and artificial intelligence. Steel wire was used as
the flexible transmission medium and a group of special wire-locking structures was designed. Additionally, we designed passive
joints for partial joints of the exoskeleton. Finally, we proposed a novel gait phase recognition method for full-body exoskeletons
using only joint angular sensors, plantar pressure sensors, and inclination sensors. The method consists of four procedures. Firstly,
we classified the three types of main motion patterns: normal walking on the ground, stair-climbing and stair-descending, and
sit-to-stand movement. Secondly, we segregated the experimental data into one gait cycle. Thirdly, we divided one gait cycle into
eight gait phases. Finally, we built a gait phase recognition model based on k-Nearest Neighbor perception and trained it with the
phase-labeled gait data. The experimental result shows that the model has a 98.52% average correct rate of classification of the main
motion patterns on the testing set and a 95.32% average correct rate of phase recognition on the testing set. So the exoskeleton robot

can achieve human motion intention in real time and coordinate its movement with the wearer.

1. Introduction

The number of China’s elderly and disabled people had
reached 260 million at the end of 2014, China’s rapid aging
has caused widespread concern, and it is difficult for China to
afford the issue of a rapidly aging population [1]. Additionally,
the number of hemiplegic and paraplegic patients and people
with walking difficulties increased year by year. Most of these
people can only use a wheelchair to achieve self-care. Walking
and standing are their greatest desire, the physical function
of the elderly declines, and their daily activities are limited
with the increase of age. It brings great pressure and burden
to the families and society to take care of the elderly, which
has become a major social problem. Thus, it is necessary
to develop a power exoskeleton device to assist the elderly
in their needs. The exoskeleton robot is a kind of wearable

human-machine integration device, which combines the
science of robotics and rehabilitation engineering. The appli-
cation of an exoskeleton robot can help the patients who have
lost their walking ability or have walking difficulties stand and
walk normally again.

The concept of mobile cyberphysical system (CPS) has
emerged as a promising tool where the operations of the
physical and engineered systems are monitored, controlled,
coordinated, and integrated by means of a computing and
communication core [2]. The exoskeleton robot must deter-
mine the wearer’s moving intention accurately and quickly
due to its close link with the wearer. Recent advances
in microelectromechanical systems (MEMS) have led to
the rapid development of microsensors [3, 4]. Correlations
among the data representing an event are usually reflected
in multiple measurements at different locations [5, 6]. The
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acquisition of electroencephalogram, electromyography, and
other biological signals have become a hot research topic
in the field of human-machine interaction owing to their
quick response [6, 7]. However, the measurement of biolog-
ical signals involves poor robustness because of their low
frequency, weak amplitude, and low signal-to-noise ratio
[8]. On the other hand, the traditional force feedback and
position tracking control strategies are also widely used for
exoskeleton control, which is based on physical signals; a
wearer with walking difficulties has difficulty in achieving
free walking by simply relying on physical signals because of
physical signals’ obvious signal delay and too many sensors.
As research based on biological signals, force, position, and
other physical signals has not yet achieved breakthroughs
in the motion intention estimation for exoskeleton robots,
researchers have been searching for new methods to assess
the wearer’s moving intentions accurately and quickly.

The Cybernetics Laboratory of Tsukuba University devel-
oped the HAL series of wearable power-assist robot systems
to help the elderly or the disabled to achieve normal walking
in 2002. This exoskeleton robot can help disabled people
stand up or reduce the labor intensity of workers. The control
strategy of the HAL series includes two kinds of control
modes: one is based on EMG and the other one involves
gait prelearning and gait pattern generation. Researchers
who developed HAL series established a joint torque control
method based on EMG signals to achieve control and main-
tain coordination with the wearer’s lower limb movement [9].

In the field of exoskeleton robots research, one walking
gait cycle is usually divided into multiple phases. In [10],
the walking gait cycle was divided into the stance phase and
the swing phase. Murray et al. [11] proposed an assistive
approach without dictating the spatiotemporal nature of
joint movement for the lower limb exoskeleton; a finite-state
machine consisting of six gait phase states was used to govern
the exoskeleton controller. Kazerooni et al. [12] adopted a
hybrid control strategy for different gait phases to control
the Berkeley Lower Extremity Exoskeleton. Liu et al. [13]
proposed an approach of gait phase recognition for a lower
limb exoskeleton with only joint angular sensors. Oh et al.
[14] considered that a single control method is not the best
option for all motion phases during the gait cycle. It is difficult
to use a fixed model to describe the process of walking and
obtain a fixed output setting due to individual differences in
human walking and the changes in road conditions. Normal
walking is the result of a coordinated body movement that
allows the body to move in the most efficient way [15].
In this study, we developed a set of novel wearable full-
body flexible exoskeleton robots and presented a method
of voluntary motion intention estimation, which can help
wearable exoskeleton robot walk comfortably.

2. Materials and Methods

2.1. Design of a Novel Wearable Full-Body Flexible Exoskeleton
Robot. The human body has three basic planes: the sagittal
plane, the coronal plane, and the horizontal plane, and these
three surfaces are perpendicular to each other at the center
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TABLE 1: Adjustment range of the connecting rod of the exoskeleton
robot.

Adjustable Component Range

Lower leg 340 mm-410 mm
Thigh 315 mm-385 mm
Upper arm 318 mm-379 mm
Forearm 218 mm-261 mm

of the body [16]. The exoskeleton robot is positioned on
the human body and the wearer coordinates his movement
with the robot; the design of the robots dimensions must
be in accordance with the specifications of the human body.
The length of the connecting rod of a full-body exoskeleton
robot should be adjustable to a certain range for better
compatibility. The size design of the exoskeleton in this
paper refers to the GB10000-88 (Chinese adult body size)
standard. Although the size of various parts of the body and
their proportions are basically fixed, there are differences
in proportions of the body between men and women; the
lower limb size of men is generally larger than that of women
[17]. The height range of a subject was limited from 1550
to 1850 mm, and then the regulating length range of the
connecting rod can be calculated as Table 1.

The exoskeleton robot must be a mechanical shadow of
the wearer and it must be able to mimic each of his actions
in real time, and even a millisecond’s hesitation can create a
burden that makes the wearer feel as impeded as walking in
water. Therefore, its sensors must be able to quickly read every
minor action and its microprocessor must be sufficiently
powerful to convert these data into instructions to the robot
in real time. The speed of traditional hydraulic transmission
is too slow which increases the weight of robot; additionally,
if a motor drive was mounted directly on the joint that will
require a larger body structure. Therefore, in this study, we
positioned all the drive units in the backpack to obtain a more
delicate exoskeleton robot system.

Figure 1 shows the overall structure of the exoskeleton
robot system. The system uses a distributed control architec-
ture, which is composed of the main control computer, data
acquisition board, motor drive board and various sensors,
and so forth.

2.1.1. Steel Wire Transmission. The steel wire and tube are
forced along the tangent direction of the wire line when the
motor drives the wire. The tube is rigid and incompressible in
the longitudinal direction although the wire and tube appear
to be soft, the interior of the tube is made of steel, and the
wall is rather thick. The steel wire and the tube can be bent
only to a limited degree according to different types, while
the deformation of the steel wire is negligible compared to the
moving distance of the motor output. As a result, the motor
torque can be transferred to the terminal almost without loss
[18].

The steel wire in one loop is divided into three parts: the
upper end of the wire between the upper part of tube and the
lower tube, the tube, and the part between the tube and the
lower end of the lower part of the wire, their length is L,
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L,, and L, respectively, and the total length of steel wire is
L which is shown in Figure 2.

L=L,+L,+L,. )

L, will increase when the motor rotates, L, does not
change because it is actually the length of the tube, and L
does not change because it is the length of the steel wire;
consequently, L; has to decrease. Thus, a wire drive circuit
is formed.

The advantage of this transmission approach described in
this paper is combined with hydraulic and pneumatic trans-
mission, gears drive, and any other traditional transmission,
which can realize flexible transmission with a rather simple
structure as shown in Figure 3. Additionally, it can avoid the
noise caused by hydraulic pumps or air pumps. Therefore, it
constitutes a major innovation for the structural design of the
exoskeleton robot, which can easily transfer the torque to any
joint of the robot without interfering with the other joints.

Most steel wire transmission systems achieve the torque
transmission through a pulley or pulley group. Furthermore,
most of steel wire transmission systems involve only one-
way transmission, which require a spring or other devices to
assist in the return time of a loop, and they also need large
pretightening force of the steel wire to prevent slipping. In
this study, we designed a group of special wire-locking pulley
structures as shown in Figure 4 that resulted in a wire without

Motor

FIGURE 3: Steel wire transmissions.

FIGURE 4: Wire-locking pulley.

Pulley

slippage; thus, transmission could be fully implemented as

needed.
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FIGURE 6: Passive spherical joint group.

2.1.2. Passive Spherical Joint. 'This joint is composed of a
special sliding bearing structure containing an inner ring
with an outer spherical surface and an outer ring with an
inner sphere. The joint which is shown in Figure 5 has two
bonded spherical surfaces that can withstand large loads and
it is usually used for the low speed of the swing movement.
It can also be tilted in a certain angle because of the sliding
surface of the spherical shape, which can operate normally
even when the support shaft and the shaft shell hole are not
concentric. Several joints can be connected to a group as
needed, which is shown in Figure 6.

This type of joint is very suitable for the flexible robot
developed in this study, which can be worn without being
bound by the mechanical structure of exoskeleton robot, and
it greatly improves comfort to the wearer.

2.1.3. System Overview. The wearable exoskeleton robot
developed in this study is a complex intelligent system
integrating mechanics, electronics, computer science, and
artificial intelligence, which is necessary to capture the move-
ment state and motion intention of the wearer through signals
from the sensor system. The sensor system mainly includes
angle sensors, inclination sensors, plantar pressure sensors,
and pressure sensors between the human limbs and the
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FIGURE 7: Full-body flexible exoskeleton robot.

exoskeleton robot as shown in Figure 7. The gait acquisition
system was established in advance, and the sensors were
installed at each joint of the gait acquisition system, the gait
acquisition system could adapt to wearers of different heights,
and the following are the main tasks of the four kinds of
Sensors:

(1) The inclination sensors help detect body posture and
prevent falling.

(2) The plantar pressure sensors are used to determine the
motion state.

(3) The joint angle sensors are used to determine the joint
angle of the robot.

(4) The pressure sensor is used to collect the real-time
interaction data between the human limb and the
exoskeleton robot.

Energy consumption of the knee joint is the most of all the
joints according to the data curve of the joint movement angle
and output torque [19]. The exoskeleton robot is difficult to
be designed with the same freedom as with human shoulder
using only a motor drive because of complex human body
structure, whereas the elbow joint movement is simple. The
exoskeleton robot developed in this study was designed to
only add active driving in the knee and elbow joints, and
we used flexible passive degrees of freedom for all the other
joints.

2.2. Sensor Data Acquisition System and Experiment. The
lower limb of human is generally believed to have seven
degrees of freedom [20]: hip adduction, abduction, external
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FIGURE 9: Plantar pressure sensor distribution.

rotation, internal rotation, ankle valgus and virus, external
rotation, and internal rotation motion. The angles of the
hip, knee, and ankle changed regularly during the walking.
We only collected data from the angle of the hip, knee, and
ankle in the sagittal plane as shown in Figure 8 to facilitate
the analysis of the gait. The distribution of plantar pressure
sensors is shown in Figure 9. In walking, the upper part of the

5
TABLE 2: Exoskeleton sensor data.
Type Number
Plantar pressure 8
Joint angle 6
Inclination angle 4

body exhibits a slight swing with the swing of the feet [21]. We
installed sensors to acquire upper body swinging data to more
accurately reproduce the process of walking. We collected
and analyzed the changes of the hip, knee, ankle angle, and
body posture that occur in the process of walking, stair-
climbing, and sit-to-stand (STS) movement to understand
the real human gait; Table 2 shows the number of three types
of sensors.

Subjects. All the recruited subjects before the experiment were
informed about the experimental nature, procedure, effect,
and the potential risk. They were very willing to partici-
pate in experiment and sign the informed consent forms.
Meanwhile, this experiment has been approved by Shenzhen
Institutes of Advanced Technology Ethics Committee.

We selected 10 young men with normal lower limb func-
tion to perform walking on the ground, treadmill walking,
stair-climbing and stair-descending, and STS tests using
our sensor data acquisition system. The mean age of the
group was 25.3 years, with an average height of 173.3 cm
and an average weight of 67.7 kg. Before the experiment, the
participants’ thigh and leg length and waist thickness were
measured, and the various links of the collector were adjusted
to the appropriate size to conduct the experiment.

Gait analysis is a method to study walking patterns
that aims to reveal the key links and factors affecting gait
by means of mechanics and kinematics. This technique is
also helpful to guide the robot in the later control stage.
Compared with other biometrics, such as fingerprint, iris, and
face recognition, gait represents a type of external dynamic
performance that is closely related to spatial and temporal
information. Gait recognition must begin with the lower
limb of the human body and the gait signal is divided
periodically. It must accurately and quickly determine the
wearer’s movement intentions and make decisions because
the robot has a close relationship with the wearer. People
always maintain the center of gravity while walking [22].
In the initial stage of the gait, the wearer is not yet skilled
at controlling the robot. The motion planning algorithm
requires more intervention and learning to adapt to the gait.
The algorithm will gradually stabilize and finally achieves a
regular gait when a stable complete gait is achieved.

2.2.1. Walking at Different Speeds on the Ground and a Tread-
mill. The walking gait of a human has the characteristics of
periodicity, left-right symmetry, and coordination, and the
walking motion is mainly performed in the sagittal plane
[23]. The time of the process that the same heel touches the
ground again is called a complete gait cycle during walking.
Both sides have their own gait cycle as the left and right legs
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FIGure 11: STS.

alternate. The right lower limb is considered as an example
because of the symmetry of human gait; the same person’s left
and right leg gait are usually only a phase difference.

2.2.2. Stair-Climbing and Stair-Descending. The cyclic pattern
of the lower limbs during the task of stair-climbing and stair-
descending as shown in Figure 10 is very similar to the pattern
observed during walking on the ground [24].

For both tasks, periods of support (stance) and non-
support (swing) can be defined. Joseph and Watson have
cited similar figures (i.e., 60% stance, 40% swing) for a stair-
descending task. In contrast, for the lower limbs of subjects
in stairs-climbing task it was observed that 66% time of the
gait cycle is stance phase and the remaining 33% time is the
swing phase [25].

2.2.3. STS. STS movement is also divided into phases as
shown in Figure 11 for better understanding, the most
commonly used classification for which contains two phases
[26], one is the preparation phase, which includes the flexion
process of the upper part of the body and the process of the
body begins the seat-off motion, the other one is the rising
phase, which contains the process from the seat-off action
(maximum anterior flexion of the trunk) to the standing
posture, and finally people maintain their body in a quasi-
stationary position.

2.3. Voluntary Motion Intention Estimation. The phases of
the gait data are firstly classified offline before the motion
intention estimation.
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FIGURE 12: Human walking gait cycle.
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FIGURE 13: Gait cycle cutting.

2.3.1. Gait Cycle Division. The lower limbs repetitively deviate
from the standard standing position in walking [27]. Gait
of walking is a cyclic phenomenon that can be divided into
phases from the initial contact with the floor to the final
contact with the floor in the swing phase; it begins when the
tibia is vertical to the floor and ends when the foot strikes the
floor again.

In this study, one gait cycle was divided into eight phases
as shown in Figure 12; the proportion of each phase in one
gait cycle is as follows:

(1) Initial contact phase (0%).

(2) Loading response phase (0-10%).
(3) Middle stance phase (10-30%).
(4) Terminal stance phase (30-50%).
(5) Preswing phase (50-60%).

(6) Initial swing phase (60-73%).

(7) Middle swing phase (73-87%).
(8) Terminal swing phase (87-100%).

One gait cycle is defined by the time that the right heel
hits the ground two times. The moment of mutation is used
as the dividing point according to the data of the plantar
pressure sensors. The gait sequence can be automatically
divided into several gait cycles by using this method. We
defined the moment when two consecutive point values of the
heel pressure sensors are greater than the setting threshold as
the dividing point which is shown in Figure 13.

T,

wyele =ti1 —ti i=1,2,..,N,

2)
At; = (At} Aty, Ats, ..., At,) .

We can divide the gait cycle as required by determining
two such successive points. From the 10 recruited subjects

that performed the walking test with the sensor data acqui-
sition system, 4500 gait cycles were obtained. Each captured
gait cycle dataset can be expressed in the form of a matrix.

sl .-+ s18
> j=1)2)---)N) (3)
slj --- s18j

where j is the number of data points of each captured gait
cycle, which depends on the walking speed and sampling
frequency, and sl to s18 are all the data of the sensors installed
in the sensor data acquisition system.

2.3.2. Gait Phase Labels on Gait Data. We verified the
classification method after dividing the gait cycle. Each of the
obtained 4500 gait cycles was divided into eight phases by the
proportion of time in one gait cycle.

One gait cycle was taken for analysis; a gait cycle
determined with the above method begins approximately
at the moment that one foot leaves the ground and ends
with the ipsilateral foot leaving the ground. The gait phase
classification resulted in the values as shown in Figure 14.
The cyclic pattern of the lower limbs during the task of stair-
climbing and stair-descending is very similar to the pattern
of walking on the ground [28]. Therefore, we used the same
proportion of time in a cycle as normal walking in this
study. The STS movement was also divided into two phases
for better understanding [28]. The first phase is the flexion
phase, which occurred during the first 35% of the STS cycle.
The second phase is the extension phase; a gait cycle is also
generally divided into two main phases: the stance phase
(60%) and the swing phase (40%) [29]. The opposite process
applies and the phases are easy to divide during the process
of standing up and sitting down.

2.3.3. Gait Phase Recognition. In the actual movement pro-
cess, we can use the following methods to obtain the real-
time behavior of the robot once the instantaneous sensor
data information is obtained. In this study, all the actions
were divided into the three categories of normal walking on
the ground, stair-climbing and stair-descending, and STS.
Firstly, we used the following method to distinguish these
three categories. In each category, the phase in the gait cycle
needs to be found out in real time; walking on the ground
was taken as an example, and then Figure 15 shows how we
further identified the specific gait phases, the eight different
color blocks represent the eight phases in a gait cycle, the
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FIGURE 14: Gait phases in one cycle.
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FIGURE 15: Gait phase recognition.

blue dot inside the blocks represents the specific data points
in each phase, the nearest blue point to the target point was
found by calculating, and the same method is also applied to
other categories.

Distinguishing of Walking on the Ground, Stair-Climbing,
and Stair-Descending. A novel method was developed to
distinguish these two categories as shown in Figure 16 based
on the gait cycle classification data described above and then
a k-Nearest Neighbor classifier was created for data training.
0i =0y — Oy i=12,...,N,

(4)

AGi = (AO1,A02,A63,...,A0n),
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FIGURE 16: Distinguishing of normal walking and stair-climbing.

where 0 denotes the left knee joint angle for stair-climbing
and Oy indicates the right knee joint angle for normal
walking.

STS. Standing from a seated position is an activity that
we perform many times every day. STS is a rather action
different from normal walking and stair-climbing and stair-
descending; the angular values that we recorded reflected the
relationships of the lower limb joints. This difference was
confirmed by a reversal of the rapid increase of angle in knee
extension. The angle of the hip and ankle joints also increased.
The left and right leg have the same phase during the STS
action; this is the greatest difference between STS and other
actions, in which the two legs have the same phases. Thus, we
can easily distinguish STS categories.

eLA = 9RA>
Ok = Ok (5)
Oy = Opy,

where 0; , denotes the left ankle joint angle, Oy, is the right
ankle joint angle, 0, x is the left knee joint angle, Oy, indicates
the right knee joint angle, 0, ; is the left hip joint angle, and
Oryy denotes the right hip joint angle.

3. Results and Discussion

We observed that angle changes of the hip joint, knee joint,
and ankle joint had obvious regularity in the process of
walking through the analysis of the gait data. Furthermore,
we verified that the walking gait described above was periodic
and left-right symmetrical. In addition, we determined that
there is a slight swing around the waist; the body naturally
inclines to the side of the supporting leg to focus on the foot
when people walk, which is to maintain the balance of the
body and avoid falling.

We firstly divided them into normal walking, stair-
climbing and stair-descending, and STS after obtaining the
instantaneous 18-dimensional sensor data and then inserted
them into the KNN model, which was built in a Python
environment. We finally got a recognition rate of 98.21%,
which is nearly with no intersection of other phases, except
the very standing stationary points that have the same phase.
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Secondly, normal walking is taken as an example; we used
the six angle sensors data to calculate the nearest point to
the instantaneous point and then obtained the corresponding
gait phase and the most probable point.

6
dist_angle = { Z (test; — target,)’, i=1,2,3,4,56, (6)
T

where test; denotes the data from the six ankle joint angles
after training, target; represents the instantaneous ankle joint
angle data, and dist_angle indicates the distance between the
target point and instantaneous point in the gait cycle.

8
2
dist_pressure = \ Z (testj — target j) > )
7
1

j=1,2,3,4,56,7,8,

where test; represents the data from the eight plantar pressure
sensors after training and target; indicates the instantaneous
plantar pressure sensor data.

In an actual gait, the plantar pressure sensors and the
angle sensors data are not uniform, and the weight of the
impact on the calculation results is unknown. Therefore, we
must define a new coeflicient u:

dist = dist_angle + dist_pressure * u, (8)

where dist denotes the distance between the target point and
instantaneous point and u is the weight coefficient.

We inserted the target data into the training model and
determined the best coefficient u (from 1 to 100).

We calculated that the best recognition rate was 95.32%
when u = 7,8,9 and that the recognition rate no longer
increases when u > 35; they are shown in Figure 17, so we
did not choose the number larger than 100 to try. Finally, we
selected u = 8 and input four normal walking gait cycles
into the model to identify the corresponding phase and pose,
which provided the following result.

From Figure 18, we can easily see that the length of each
gait cycle may be different according to the walking speed.
We can acquire approximately 55 to 58 data points in a gait

cycle while walking at a normal pace. The abscissa shows each
point in the gait cycle; the ordinate is the every phase of the
gait cycle. The blue curve shows the actual gait phases data,
and the red one is predicted value through the gait phase
recognition method.

In Figure 18(a) the middle stance phase exhibits recog-
nition errors, while all the other phases are predicted accu-
rately. In Figure 18(b), only the loading response phase and
the preswing phase have small recognition errors and Fig-
ure 18(c) shows four gait phase recognition errors. However,
each gait phase had only a few gait data points due to the
sampling rate. Therefore, erroneously identified data points
affected severely the correct recognition rate. In Figure 18(d),
only one phase has a few recognition errors. From Figure 18,
the correct rate of phase (CRP) of the four cycles was
above 90% and the CRP of the entire gait set was 95.32%.
Further analysis determined that, in each of the phases that
exhibited identification errors, only one gait data point was
identified incorrectly. Therefore, the gait phase recognition
model described in this paper was able to predict the gait
phase labels accurately.

4. Conclusions

In this study, we designed a novel wearable full-body flexible
exoskeleton robot as one application of mobile cyberphysical
system (CPS). We used a signal acquisition system to collect
data for normal walking on the ground, treadmill walking in
a setting speed, stair-climbing and stair-descending, and STS.
We employed a novel simple method to distinguish all kinds
of action mentioned above according to the posture charac-
teristics of angle and pressure. To date, many approaches have
been developed to identify the gait phase. Here, we propose a
novel gait phase recognition method using lower limb joint
angle, plantar pressure, and inclination sensors. According
to the characteristics of the gait data, we defined eight
gait phases to extract the gait phase features. The deviation
distances were calculated and classified by fixed proportion
of time in one gait cycle. Then, the gait phase labels of the
gait set were obtained. Through offline gait data classification,
one gait cycle was divided into eight phases. We built a gait
phase recognition model using the gait phase-labeled data. By
training the model with a 14-dimensional input vector, we can
recognize the gait phase in real time through the lower limb
joint angle and plantar pressure sensor data. For the tested
set, the model had a CRP of 95.32%; the experimental results
demonstrate the effectiveness of the gait phase recognition
technique. This novel method can accurately and quickly
assess the wearer’s moving intentions with a rather simple
sensor system. In future work, we intend to improve the
existing control strategy of the full-body exoskeleton with
the novel gait phase recognition method and develop a
gait evaluation method for the exoskeleton robot. The same
method can be applied to the upper-limb movement of the
robot. Thus, the flexible full-body exoskeleton robot system
will be realized in the near future. In the future, we can also
use a mobile phone to receive the real-time sensor data of
exoskeleton robot and choose the best control mode and
walking route for the wearers.
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FIGURE 18: The gait phase recognition results of four cycles acquired from four different subjects. KNN, gait phase recognition model.
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