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In recent times, urban road networks are faced with severe congestion problems as a result of the accelerating demand for mobility.
One of the ways to mitigate the congestion problems on urban traffic road network is by predicting the traffic flow pattern.
Accurate prediction of the dynamics of a highly complex system such as traffic flow requires a robustmethodology. An approach for
predictingMotorised Traffic Flow onUrbanRoadNetworks based onChaosTheory is presented in this paper. Nonlinear time series
modeling techniques were used for the analysis of the traffic flow prediction with emphasis on the technique of computation of the
Largest Lyapunov Exponent to aid in the prediction of traffic flow. The study concludes that algorithms based on the computation
of the Lyapunov time seem promising as regards facilitating the control of congestion because of the technique’s effectiveness in
predicting the dynamics of complex systems especially traffic flow.

1. Introduction

In recent times, urban traffic road networks are faced with
severe congestion problems as a result of the accelerating
demand for mobility. The excessive congestion in the form of
immense traffic jams on urban roads has hindered mobility
along these roads. This is one of the major challenges
encountered in most mega cities around the world with
urban road networks and in turn has a serious effect on road
users which includes economic, health, and environmental
problem such as vehicle emission and air pollution, arising
out of increased fuel consumption during the long periods
of congestion. U.S. Bureau of Transport Statistics in 2007
recorded that, due to traffic congestion, Americans residing
in urban areas were coerced to travel more 4.2 billion hours
and spent about $87.2 billion in purchasing extra 2.8 billion
gallons of fuel [1, 2].

Urban planning and complex traffic network studies have
been explored explicitly to potentially mitigate congestion
and its associated problems on urban roads. Several efforts
and studies have been made in time past by researchers on
two major areas that affect urban traffic, namely, traffic flow

modeling and prediction and information communications
technology which is meant to give guidance to drivers
through updated information about their desired routes [3].
However, without fundamental knowledge of the dynamics
of vehicles on road networks, these studies weremainly based
on costly and obsolete classical travel surveys on traffic flow
and travel times and to some extent failed to provide the
necessary information needed by road users in order to cope
with the increasing urban demand for mobility [4].

One of the major concerns of traffic managers in traffic
management system is traffic volume estimation, a major
component of Intelligent Transport System (ITS), as it helps
in the decision making and efficient traffic management
planning when monitoring the current traffic flows in the
road networks. Thus, to reduce the effect of congestion on
urban road networks, accurate prediction of the Motorised
Traffic Flow as well as traffic estimation is of paramount
importance as it provides information on road accidents and
level of congestion along the roads [3, 5]. Real time traffic
flow data are useful for traffic volume estimation and help
in forecasting traffic trends by determining the traffic flow
patterns. Traffic data collection, predicting traffic patterns,
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and forecasting traffic trends are usually performed for
pavement design, fuel-tax revenue projection, and highway
planning. However, the monitoring activities necessary for
accurate Annual Average Daily Traffic (AADT) estimates
are expensive in terms of costs and personnel. Thus, aside
providing information for road accidents frequency and
congestion, traffic estimation is also an issue for tactical
purposes of transportation [6].

Based on the reports on experimental data found in
literature, trafficflowpatterns are highly predictable and often
exhibit irregular and complex behaviours which changes
abruptly when entering or leaving a congestion zone [3, 7].
Shang et al. in [8] reported on the irregularity and complexity
of traffic flow as one approaches congestion zones in a
traffic stream. They stated that the current nature and future
dynamics of traffic flows highly depend on continuously
interacting properties such as human behaviour and traffic
characteristics. [9] noted that some of the main characteris-
tics responsible for the complex behaviour in a traffic flow
stream are variations in headways and spacing.

Several methods have been used in time past for short-
term traffic flow prediction flows, including ARIMA-type
models, Artificial Neural Networks, SARIMA models, Gen-
eralised Linear models, Nonparametric Statistical methods,
Dynamic Neural Networks, Support Vector Regression mod-
els, and STARIMA models just to mention but a few. A brief
review of some related work on Traffic Flow Prediction is
presented below.

Catriona and Casper in [10] presented a Linear Multi-
regression Dynamic Model (LMDM) which uses concept of
graph for the traffic flow forecasting where the time series
of flows at different sites are represented by the nodes and
the structure between the flows at different sites as well as
the independence is represented by the edges connecting the
nodes. The idea of using graphical dynamic model approach
in their work for traffic flow forecasting follows from that of
[11, 12], respectively, with focus on forecasting traffic flows
in two separate motorway networks using UK as a case
study. Based on the distinctive features of their the LMDM,
their model can be used for testing real-time instances. They
illustrated how the LMDM can be used for forecasting and
validated their model on some networks.The performance of
the proposed approach was compared with other models in
literature.

Dauwels et al. in [13] proposed a unified model by
developing different forecasting models that is matrix and
tensor based by applying partial least squares (PLS), higher
order partial least squares (HO-PLS), and 𝑁-way partial
least squares (𝑁-PLS) for the time series prediction. Their
focus was on collective prediction for multiple road segments
and prediction-horizons against the known prediction for
individual road segments and prediction horizons. One
interesting feature of the developed models was the ability
to carry out feature selection efficiently and simultaneously
carry out traffic condition forecasting for multiple road
segments and prediction-horizon. The computational per-
formance of the proposed models which was validated on
generic road networks consisting of expressway and arterial
roads, in particular, an urban subnetwork in Singapore by

performing a multihorizon speed prediction, showed that
the proposed models performed better than the Support
Vector Regression (SVR) traditional based model for longer
prediction horizons. For the short prediction horizons, lower
prediction errors were seen in SVR compared to the PLS
based methods with𝑁-PLS achieving higher accuracy when
compared with PLS and HO-PLS. In fact their proposed uni-
fied models achieved same prediction accuracy as compared
to the individual models but can be faster than the traditional
based model for moderately sized networks.

ARIMA is one of the most precise methods for traffic
flow prediction when compared to other known methods. In
particular, Seasonal ARIMA (SARIMA) models have been
shown to perform better than the other traditional based
models but often times it is faced with some restriction in
applicability as a result of using huge historical database
for model development. Kumar and Vanajakshi, having
this background knowledge in their work in [14], tried to
overcome such drawbacks by proposing a prediction scheme
approach using the SARIMA model for short-term traffic
flow prediction which needs on limited input data for model
development. They validated their proposed approach with
using both historic and real-time data considering cases
where peak period occurred both in morning and evening.
The data used for the analysis and model development was
from a 3-lane arterial roadway inChennai, India, with limited
flow data from 3 consecutive days.The results of the values of
the predicted flowswere comparedwith that of the actual flow
values. Thus, the proposed approach will work in most cases
where database is a major challenge when using ARIMA for
traffic flow prediction model development.

Previous studies have shown that ANN has stable and
consistent performance even if there is an increase in the
travel time interval for the traffic flow prediction.This was so
evident in [15] by Kumara et al. where ANN based model for
a neural network was used for short-term prediction of traffic
flow with heterogeneous condition for nonurban highway.
Their model incorporates speed, density, traffic volume, and
time as input variable but considers the speed separately in
contrast to most work in literature where average speed of
combined traffic flow was considered. For other works in
literature that applied Artificial Neural Network or ARIMA-
type models for traffic flow prediction, see [16–19]. Moreover,
previous and recent research findings have shown that policy
makers using existing traffic flow models to predict traffic
flows have not been able to mitigate the congestion problem
to fairly acceptable levels as expected and hence the need to
come upwith robustmethodology for predicting traffic flows.

ChaosTheory is a novel science paradigmwith numerous
applications that have not been deeply explored and seems
very promising with respect to the analysis and prediction of
complex systems like traffic flows, although at the moment
little empirical evidence exists to confirm this notion. It
can be used to analyze the traffic flow patterns in urban
road network by utilizing the intrinsic deterministic nature
of the traffic flow in order to reduce congestion on urban
road networks. In this paper, we report a systematic review
of Chaos Theory and propose an approach to predicting
Motorised Traffic Flow on Urban Road Networks based on
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ChaosTheory with emphasis on the Largest Lyapunov Expo-
nent method for prediction, the most common, effective,
and direct technique of analyzing the presence of Chaos
in a given dynamical system. This work contributes to this
research field in the sense that the proposed approach is
different from other conventional models found in literature
and serves as an alternative method for predicting Motorised
Traffic Flow onUrbanNetworks. Also, the effectiveness of the
Largest Lyapunov Exponent prediction method seems very
promising in terms of prediction accuracy as well as reducing
the congestion problems on urban network, although this is
yet to be fully validated using computer based algorithm on
empirical traffic flow data.

The layout of this paper is as follows. The congestion
problem on urban road networks is introduced in Section 1
with brief review of related works on Motorised Traffic Flow
Prediction Models. Section 2 gave an insight on Motorised
Traffic Flow and Traffic FlowVariability by highlighting some
of the main characteristics for the complex behaviour of
traffic flow stream. A systematic review of Chaos Theory is
presented in Section 3 with emphasis on its application to the
analysis and prediction of Motorised Traffic Flow in Urban
Road Networks based on the Largest Lyapunov Exponent
Prediction Method. The conclusion and directions for future
work are drawn in Section 4.

2. Motorised Traffic Flow

2.1. Headway and Spacing. One of the applications of ITS as
earlier mentioned is predicting road traffic volumes in order
to make efficient traffic management and planning over a
network as well as implementing road safety measures. [20]
in reporting Shang et al.’s study in their paper noted that the
differences in the distribution of various vehicle types, human
driving habits (high driver perception-reaction times), space,
and time headway, are among the principle causes of chaotic
behaviour in traffic flows with the time and space headway
been the main factors causing variations in observed traffic
distributions and its transformation [9]. A proper knowledge
of the above mentioned will be helpful in understanding
traffic flow and to some extent provide theoretical foundation
for short-term traffic flow forecasting. For the purpose of this
study, our focus is on the linking space and time headways
and variation of traffic flows on a given road network.

Based on the study carried in [9], supposewe have a traffic
stream composed of two consecutive vehicles in a single lane
road such that we have a follower-vehicle, 𝑖 a leader-vehicle,
and 𝑖 + 1 as shown in Figure 1.

It can be observed that vehicle, 𝑖, is some distance, ℎ
𝑠𝑖
,

from its pacesetter, 𝑖 + 1, termed as the space headway
(usually expressed inmetres,𝑚). ℎ

𝑠𝑖
comprises of the distance

to the leader-vehicle, 𝑔
𝑠𝑖
(the space gap), and the self-length

of the follower-vehicle, 𝑙
𝑖
. Hence, ℎ

𝑠𝑖
is given by

ℎ
𝑠𝑖
= 𝑔
𝑠𝑖
+ 𝑙
𝑖
. (1)

𝑔
𝑠𝑖
is measured from the follower-vehicle’s anterior bumper

to the leader-vehicle’s hind bumper. The hind bumper of
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Figure 1: Two consecutive vehicles (a follower-vehicle, 𝑖 at position,
𝑥
𝑖
and a leader-vehicle, and 𝑖 + 1 at position, 𝑥

𝑖+1
) in a single lane

road (after [9]).
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Figure 2: Trajectories of a two-car traffic stream (after [9]).

the vehicle represents the vehicle’s position. Thus, the space
headway, ℎ

𝑠𝑖
, can be expressed as

ℎ
𝑠𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
. (2)

From (1), each of the two vehicles has also a time headway
associated with it. Thus, ℎ

𝑡𝑖
(measured in seconds, 𝑠) com-

prises a time difference, 𝑔
𝑡𝑖
, and a time of occupancy, 𝜌

𝑖
, given

by

ℎ
𝑡𝑖
= 𝑔
𝑡𝑖
+ 𝜌
𝑖
. (3)

Both space and timeheadway can be envisaged in a space time
diagram as shown in Figure 2.Thus, the positions 𝑥

𝑖
and 𝑥

𝑖+1

of the two vehicles, 𝑖 and 𝑖 + 1, can be plotted with respect to
time, tracing out two vehicle trajectories, as the vehicles are
in motion.

Figure 2 is called a time-space diagram. The respective
speeds of the two vehicles can be derived from the diagram
by drawing the tangent line. For simplicity, we assume that
both vehicles travel at a constant speed resulting into parallel
trajectories.

In single-lane traffic (microscopic traffic model), vehicles
always keep their relative order. However, formultilane traffic
(macroscopic traffic model), this principle can no longer
be obeyed due to overtaking manoeuvres, resulting into
irregular vehicle trajectories. If the same time-space diagram
were to be drawn for several lanes (in multilane traffic), then
some vehicles’ trajectories would suddenly appear or fade
away at the point where there exists a change of lane.
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Figure 3: A time-space diagram showing nonlinear trajectories of
several vehicles where movements are bounded by three regions of
measurement, that is, 𝑅

𝑡
, 𝑅
𝑠
, and 𝑅

𝑡,𝑠
(after [9]).

Figure 3 shows the relative trajectories of vehicular traffic
stream in a multilane facility.

In Figure 3, the three regions of measurement are always
bounded in both time and space (that is to say, a period of
measurement, 𝑇mp, and a length of road section, 𝐾). Black
dots were used to represent single measurements made in
the diagram.The following describes what the three bounded
regions represent:

(i) 𝑅
𝑡
representsmeasurements taken at certain locations

that are fixed in space, (𝑑𝑥), done in 𝑇mp time period.
An example of such a measurement is one obtained
by an underground automatic inductive loop.

(ii) 𝑅
𝑠
represents measurements taken at particular

instances in time, (𝑑𝑡), along length, 𝐾, of a road
section. An example is results taken from aerial
photographs.

(iii) 𝑅
𝑡,𝑠
represents a region where general measurements

are made. This region normally takes other forms
of shape other than a rectangular one (as illustrated
in Figure 3). An example of such a measurement is
results of video cameras.

It becomes more complicated to represent the vehicle trajec-
tories on the space diagram as a result of the disorderliness
in the dynamics of the vehicle movements along the traffic
stream. This causes variability in the traffic flow.

2.2. Traffic Flow Variability. Traffic flows are subject to vari-
ations over numerous time scales, namely, yearly, monthly,
weekly, and daily. It also varies directionally as well as from
place to place. Aside the fact that roads carry different
volumes of traffic, the characteristics of the vehicles using
these roads also change depending on the road facility [21].
For example, one road with about 10,000 vehicles per day
may have very little truck traffic, while another road with
the same volume of vehicles may have 2,000 trucks per day
mixed with 8,000 ordinary cars. Similarly, one road section
may be traversed by 1,000 heavily loaded trucks per day
while a nearby road is used by 1,000 partially loaded trucks
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Figure 4: Vehicle volume distributions by classification of vehicles
in California in 1996 (source: [22]).

(Traffic Monitoring Guide, 2013). We illustrate with the aid
of graph the two major types of traffic volume variations,
namely, Time-of-Day and Day-of-Week Variation based on
the findings of the Federal Highway Authorities [3].

2.2.1. Time-of-Day Variation. The Federal Highway Admin-
istration (FHA) in 1996 reported that most truck travel falls
into one of two basic time-of-day patterns, namely, a pattern
that is centered on travel during the business hours of a day
(working hours) and a pattern that shows almost constant
travel all day through (twenty-four-hour day). Figure 4
summarizes the research findings of FHA in 1996.

As can be seen in Figure 4, cars tend to follow either
the traditional two-humped urban commute pattern or the
single-hump pattern commonly seen in rural areas, where
traffic volumes continue to grow throughout the day until
they begin to taper off in the evening. However, the truck
pattern differs from the rural car pattern; in that it peaks
in the early morning (many trucks make deliveries early
in the morning to help prepare businesses for the coming
workday) and tapers off gradually, until early afternoon,when
it declines quickly. The other truck pattern (travel constantly
occurring throughout the day) is common with long haul
trucking movements. In addition, at any specific location,
time-of-day patterns may differ significantly as a result of
local trip generation patterns that differ from the norm. For
example, Las Vegas, Nevada, generates an abnormal amount
of traffic during the night because that city is very active late at
night. In heavily congested urban areas, the commute period
traffic volume peaks flatten out and can last three or more
hours.

A close observation at Figure 4 reveals that cars tend to
follow either the traditional two-humped urban commute
pattern (double peaked pattern) or the single-hump pattern
commonly seen in rural areas, where traffic volumes continue
to grow throughout the day until they begin to taper off in



Mathematical Problems in Engineering 5

Traditional car
Recreational car

Typical truck
Through truck

Sun Mon Tues Wed Thurs Fri Sat

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Day of week

Fr
ac

tio
n 

of
 av

er
ag

e d
ai

ly
 tr

affi
c

Figure 5: Day of the week traffic variations in California in 1996
(source: [22]).

the evening. However, the truck pattern differs from the rural
car pattern; in that it peaks early in themorning due to the fact
that many trucksmake deliveries early in themorning to help
prepare businesses for the coming workday and tapers off
gradually, until early afternoon, when it declines quickly. The
other truck pattern maintains a constant pattern throughout
the day which is mostly common with long haul trucking
movements.

Moreover, time-of-day patterns usually differ signifi-
cantly with respect to places at any specific location as a result
of local trip generation patterns that differ from the norm.
For example, a city with night clubs or recreational facilities
will generate an abnormal amount of traffic during the night
hours or other hours of operation because that city is very
active late at night. Also, in heavily congested urban areas,
the commute period traffic volume peaks flatten out and can
last three or more hours.

2.2.2. Day-of-Week Variation. The same study also revealed
that there exists a large difference in daily patterns of the
ordinary vehicle categories and typical trucks since truck
travels are mainly business motivated as opposed to ordinary
vehicles whose drivers have several travel objectives. Figure 5
illustrates the day-of-the-week variations.

It is evident from the graph that the day-of-week traffic
variations are highly responsible for the traffic congestion that
comes in form of jams on urban roads. A good example is the
stampede observed along Kwame Nkrumah circle in Accra,
Ghana, whose immense traffic jams are estimated to have
caused annual losses of about $125 million to travelers along
this road in 2014 (monetary value of lost time during traffic
jam), as pointed out by traffic experts of the Ghana Institute
of Engineers [23].

To mitigate this problem of congestion on urban roads, it
is very necessary to carry out a substantial traffic estimation
which requires a method of high precision to forecast a

complex entity such as traffic flow.This is the main reason for
proposing an alternative way of addressing complex systems
like traffic flows, using effective techniques based on Chaos
Theory (which studies dynamic systems) to analyse and
predict traffic flow patterns.

3. Chaos Theory Review

3.1. Introduction. Several systems exist in everyday life that
evolve with time. Such systems are difficult to predict
accurately on long-term scale even with robust statistical
predictionmodels. Examples of such system include weather,
turbulent fluids (flowing across planes), population infected
by epidemic, and stock market indices and they are generally
referred to as dynamical systems [24].

These systems are said to exhibit “Chaos.” Chaos in a
simple term refers to any state of confusion or disorder that is
showing the absence of some kind of particular order. Many
work exists in literature that addresses dynamical systems
as well as the chaotic behaviour. Kiel and Elliott in [25]
described howmany disorganised systems can spontaneously
acquire organisation. For example, a shapeless liquid mass
upon cooling can be transformed into an exquisite shape.
Zhang and Jarrett in [26] studied the dynamic behaviour
of road traffic flows in an origin-destination network. Their
proposed dynamic model is a modification of the static
conventional model by Dendrinos which also describes the
traffic flow variability of theO-Dnetwork flows.They showed
that the O-D flow patterns varies depending on whether the
dimension is lower or higher. The characterization of the
chaotic attractors by positive Lyapunov Exponents and fractal
dimensions agrees with the fact that Largest Lyapunov Expo-
nents provide the best measure of Chaos in any dynamical
system. See [27] for details on the search for chaos in traffic-
flow dynamics.

AChaotic system can be described as one that is complex,
aperiodic (it never exactly repeats), and sensitive to its initial
conditions. Chaos Theory is novel Science paradigm in the
field of nonlinear analysiswhich is used to describe the realms
of nonrepeating and highly complex dynamic systems. This
discipline is accredited to a meteorologist from the Mas-
sachusetts Institute of Technology (MIT), Muhmoudabadi
[6], who described Chaotic systems to sensitively depend on
initial conditions. He termed this behaviour as “The Butterfly
Effect” (where the flap of butterfly’s wings in Brazil sets off a
tornado in Mexico). For clarity purposes, Chaotic processes
should not be confused with random processes because
Chaos does not imply randomness in any sense. Chaotic
processes do not have any kind of distribution like random
processes such as Brownian motion that exhibit a Gaussian
distribution [28]. Furthermore, Chaotic processes are per-
fectly deterministic while random process are attached to
some prior probabilities. Some properties of chaotic systems
outlined below will help in understanding the behaviour of
Chaotic systems.

3.2. Properties of Chaotic Systems. Chaotic systems have
a number of distinctive characteristics which are used to
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describe the dynamic evolution of such systems. These
characteristics include the following.

Sensitivity to Initial Conditions. As already introduced in
Section 3.1, Chaotic systems are highly dependent on initial
conditions, a property sometimes regarded as “The Butterfly
Effect.” Two trajectories emerging from two different close-
by initial conditions diverge exponentially from one another
as the system evolves in phase space (a phase space is a
representation of all possible states (configurations) of a
dynamic system, and each possible state mapped by unique
points [29]) [30]. In order to make accurate prediction of
long-term behavior of Chaotic systems, the initial conditions
must be known in their entirety and to high levels of
precision.

Determinism. Chaotic systems are strictly deterministic. A
deterministic system is one where for a given time interval
there is only one future state that follows from the current
state [31]. These systems can be described by Ordinary
Differential Equations (ODE’s). At least three variables are
needed for Chaos in continuous-time systems as opposed to
Chaos in discrete systems that requires only a single variable
[29]. The reason is that the space time trajectories have to be
aperiodic and finitely bounded in some region. However, it is
unlikely to have a single trajectory intersecting itself due to
the fact that every point has a unique mapping in space [29].

Nonlinearity. Intuitively, a nonlinear system is a systemwhose
outputs and inputs are not proportional to each other. In
other words, a nonlinear system is a system which cannot
be decomposed into parts and reassembled into the same
thing. This is a situation where the relationship between
variables describing a system is not simply static or directly
proportional to the output, but instead it is dynamic and
varies [32]. Nonlinear dynamic systems exhibit nonlinear
time series (discussed later in Section 3.4). In the case of
nonlinearity, there is no periodicity (nonrepetitive system) as
compared to linearity where the system repeats itself over a
time period.

Instability. Chaotic systems have a sustainable irregular man-
ner caused by sensitive dependence on initial conditions and
thus predictions for a given system can only be made on
short-term scales to high precision [29].

Attractors. These are 𝑑-dimensional sets of states, X ∈

R𝑑 (points in phase space) invariant under the system’s
dynamics where all states in close proximity asymptotically
approach each other [33]. Many dynamic systems in nature
have attractors and it has been discovered by researchers that
all Chaotic systems’ dynamics of evolution emerge into a
certain type of attractors called strange attractors which are
sensitively dependent on their initial conditions [24]. The
four known types of attractors are briefly described as follows:

(i) Point attractor: a system is said to have a point attrac-
tor if the system evolves to a fixed point, for example,
a single singing pendulum bob (see Figure 6(a)).

y-axis

x-axis

(a)

(b)

(d)

(c)

CycleStrange

Attractor

Torus attractor

Strange attractor Point attractor

Attractor

Cycle

Figure 6: Different types of attractors constructed in 2-dimensional
phase space; (a) point attractor, (b) limit cycle, (c) limit torus, and
(d) strange attractor (after [29]).

(ii) Limit cycle: if the system is cyclic and its position in
the cycle can be predicted, then the system is said to
have a limit cycle, for example, planetarymotions (see
Figure 6(b)).

(iii) Limit torus: a system that has a limit torus is similar to
that of a limit except that the system’s trajectories are
bounded within a region of a ring torus; for example,
the “halo” ring of planet Jupiter is a torus composed
of mainly dust particles in motion (see Figure 6(c)).

(iv) Strange attractor: if a system takes an aperiodic
irregular shape and never repeats itself in time, the
system is said to have a strange attractor. Such an
attractor can also be described as a limit region
(object with fractional (fractal) dimension) within
phase space which is ultimately occupied by all
trajectories of a dynamical system. Examples of such
strange attractors include the famous Lorenz attractor
illustrated in Figure 6(d) [30], Hénon attractor, and
logistic map attractor.

Fractal Dimensionality. It is an already established fact that
that the geometrical dimension of a line, plane, and box is 1,
2, and 3, respectively. However, many examples seen in our
everyday life as well as many objects are not geometrically
smooth like the ones mentioned above. Complex, noninteger
dimensions are called fractal dimensions [35]. This is usually
used to measure the complex nature of a given Chaotic
system. When a Chaotic system’s evolution is represented in
phase space, the topological dimension,𝑑, of the space state of
the system’s trajectories is a noninteger. A famous example of
a plot with fractal dimension isMandelbrot’s plot (𝑧 = 𝑧

2

+𝑐),
which lies in the category of fractals, which are shapes that
infinitely repeat themselves in smallermagnifications (scales)
[34]. Figure 7 is an illustration of Mandelbrot’s plot in a 2-
dimensional complex plane.
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Im(z)

Re(z)

Figure 7: Mandelbrot’s plot that is self-replicating according to
some predetermined rule such that the boundary of the set has
fractal dimensions (drawn in a 2-dimensional complex plane) (after
[34]).

Other examples of shapes in nature with fractal dimen-
sions include coastlines and slow flakes [34].

To summarize the properties of Chaotic systems, we
note that there are two important characteristics that make
chaotic systems very complex and our focus is on these
characteristics:

(i) The strange attractor, which contains a large number
of unstable system trajectories.

(ii) The ergodicity (ergodicity is a system behaviour that
is averaged over time and space for all the system’s
states) in the dynamics of the system trajectories.
In other words, as the system evolves temporarily, a
small neighbourhood of every point in one of the
unstable orbits within the attractor is visited [29, 36].

We note that in Chaos Theory, there is no need for prior
knowledge of probabilities unlike in statistical physics. Under
appropriate circumstances, it has been reported that algo-
rithms based on Chaos Theory have shown the capability
of attaining high level of performance, far better than those
obtained using classical stochastic methods or techniques
based on signal processing, and these can be applied in the
following areas among others [37].

In meteorology, Chaos Theory is used to predict slight
changes in weather, air, and aerosol movements in the
atmosphere and so forth as studied by Lorenz in the late
1960s [30]; it is used in most biological processes such
as heart beat detection, circadian rhythms, in particular,
and electrocardiographic recording of a pregnant woman
[29]. In economics and finance, Chaos Theory is used in
foreign exchange rates and stock market indices for market
crash forecasting. This is based on the Mandelbrot fractal
hypothesis which predicts a market crash every two decades
starting from 1987 up to date [34]. Moreover, ChaosTheory is
also applied in traffic flow predictions, which is still an open
and new area for research opportunities. This is the main
motivation for this review [38].

3.3. Limitations and Control of Chaotic Systems. Although
Chaotic systems have good characteristics that are suitable for
analysis of complex behaviours, there are significant factors
that hinders one from accurately predicting the behaviour
of complex system. They include sensitive dependence on
initial conditions which are in most cases unknown as most
assumptions made often lead to error, the current stage of
this “new” discipline of science (just half a century old) as
one is not yet very sure of how much data is required to
precisely reconstruct phase space and determine the fractal
dimension of a given system (discussed in Section 3.4.1), the
nature of the calculations involved inChaosTheorywhich are
repetitive, high extensive, and tediouswhich can only be done
with the help of computers with high accuracy and precision
[29, 30, 39].

Chaos systems can be controlled in order to reduce
computational errors due to the adverse effects of the above
limitations. Shewalo et al. in [29] stated that Chaos in systems
can be controlled in exactly three ways which we have sum-
marised below without full details (see [29] for full details).
First, the systems parameters can be changed heuristically so
that the range of fluctuations is limited. Secondly, one can
apply perturbation to the Chaotic system which causes the
system to organise itself using Ott-Grebogi-Yorke method,
and finally the relationship between the system and the
environment is changed using Pyragas method.

Having established the fact that Chaotic systems exhibit
nonlinearity property with time evolution in previous sec-
tions, we now briefly describe the Chaotic Time Series and
how it can be applied in the prediction of dynamical systems
such as traffic flow based on the nonlinearity concept.

3.4. Chaotic Time Series Prediction. Phase space dynamics
can be used to analyse and make predictions of dynamical
systems. Nonlinear processes resulting in higher dimensional
objects (called attractors when drawn in phase space) are
characterised by nonlinear time series that intrinsically
describe the behaviour of the system under study [40].

One can make prediction for a given time series using
phase space techniques which is often referred to as the
determinism test of a system. Such techniques are based
on the fundamental fact that trajectories in close proximity
asymptotically approach each other within the phase space
[7]. A dynamical system can be represented in an 𝑚-
dimensional finite dimensional vector space, R𝑚, by the
following equation:

{𝑋
𝑛+1

} = 𝐹 (𝑋
𝑛
)
{𝑛=0,1,2,...}

, (4)

where 𝑛 is the dimension of the vector space, {𝑋
𝑛
} repre-

sents 𝑛-phase space time evolution points, and 𝐹(𝑋
𝑛
) is an

arbitrary function representing the system’s behaviour (but is
usually unknown). This is as a result of the fact that, in most
cases, elements of𝑋

𝑛
are very difficult to observe empirically;

that is, one may only be able to measure a single variable for a
given time series and still have no explicit knowledge on the
system’s nonlinear dynamics [20].

Taking a look at traffic systems in particular, they highly
depend on human and physical factors in a given road facility
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and this even becomes more complicated due to the presence
of immeasurable quantities such as traffic laws and social
codes. Nevertheless traffic flow patterns are deterministic and
their time series have been found to be nonlinear [4, 20].

Since Chaotic systems exhibit a nonlinearity property,
developing a Chaos prediction model for a given dynamical
system is based on nonlinear time series analyses which
mainly involves two steps, that is,

(i) reconstruction of the phase space from a given data
set,

(ii) developing of a methodology for predicting the phase
space dynamics.

These steps can be explored following Takens’ Fundamental
Embedding Theorem (from 1981) [33]. We note that the
reconstruction of the original time series data is done using
this theorem known as the foundation of all Chaos based
predictions [36].

Theorem 1 (Takens’Theorem). LetX ∈ R𝑑 be a bounded set.
In the Cartesian product space of 𝐶1 mappings on X and the
𝐶
1 functionX → R, there exists an open and dense subset,𝑈

such that if (𝑇, 𝑓) ∈ 𝑈, then the reconstruction map, 𝑅(𝑚)
𝑚𝑎𝑝

, is
embedding whenever𝑚 > 2 dim(X). Moreover the embedding
is continuously differentiable and also has a differentiable
inverse (𝐶1 diffeomorphism). We have a deterministic system,
𝑇 : X → X, and we also have a read-out function, 𝑓 : X →

R. If 𝑚 > 2 dim(X), there exists a precise deterministic rule,
𝑔, for predicting the next state of a time series.

Interpretation of Takens’ Theorem. The proof of Takens’
Theorem is omitted in this work but the following definitions
and interpretation of the theorem will give an understanding
of the theorem.

Definition 2 (a diffeomorphism). A diffeomorphism is a map
between manifolds (smooth space system states), which is
differentiable and has a differentiable inverse.

X is called the attractor set corresponding to the follow-
ing time series:

{𝑥
𝑡
} = {𝑥

0
, 𝑥
1
, 𝑥
2
, . . .} = {𝑓 (𝑥

0
) , 𝑓 (𝑥

1
) , 𝑓 (𝑥

2
) , . . .} , (5)

andwe can rebuild the system’s dynamics by the rule,𝑔, which
states that

dim (X) ≤ 𝑚 ≤ 2 dim (X) + 1, (6)

where all the 𝑑-dimensional manifolds (space-states) of the
system’s attractor, X, can be embedded in an 𝑚 = (2𝑑 +

1)-dimensional reconstructed space while preserving the
geometrical invariants, and 𝑑 = dim(X).

This simply means that all the information about the sys-
tem’s complex 𝑑-dimensional attractor can still be captured
in the discretized reconstructed𝑚-dimensional phase space.
Based on the knowledge of the outcomes of Theorem 1, we
can now determine the topological parameters of the system’s
attractor.

3.4.1. Reconstruction of Phase Space. During reconstruction,
new space states are created that are (in the sense of
diffeomorphisms) equivalent to the original space states so
that the relevant geometrical properties of the system are
always preserved. The set of reconstructed trajectories, 𝑋,
corresponds to amatrix inwhich each row is a vector in phase
space; that is,

𝑋 = [𝑋⃗
1
, 𝑋⃗
2
, . . . , 𝑋⃗

𝑖
, . . . , 𝑋⃗

𝑀
]
𝑇

, (7)

where 𝑋⃗
𝑖
is the system state at discrete time, 𝑖, and for a real

time serieswith𝑁-points, {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, each 𝑋⃗

𝑖
is denoted

by

𝑋⃗
𝑖
= [𝑥
𝑖
, 𝑥
𝑖+𝜏

, 𝑥
𝑖+2𝜏

, . . . , 𝑥
𝑖+(𝑚−1)𝜏

] , (8)

where 𝜏 is the reconstruction delay time (lag) and 𝑚 is the
embedding dimension.

Therefore the matrix𝑋 is𝑀×𝑚matrix given by

𝑋 =

(
(
(
(
(
(

(

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑀

𝑥
1+𝜏

𝑥
2+𝜏

⋅ ⋅ ⋅ 𝑥
𝑀+𝜏

𝑥
1+2𝜏

𝑥
2+2𝜏

⋅ ⋅ ⋅ 𝑥
𝑀+2𝜏

.

.

.
.
.
.

.

.

.
.
.
.

𝑥
1+(𝑚−2)𝜏

𝑥
2+(𝑚−2)𝜏

⋅ ⋅ ⋅ 𝑥
𝑀+(𝑚−2)𝜏

𝑥
1+(𝑚−1)𝜏

𝑥
2+(𝑚−1)𝜏

⋅ ⋅ ⋅ 𝑥
𝑀+(𝑚−1)𝜏

)
)
)
)
)
)

)

𝑇

, (9)

where the constants 𝑀,𝑁,𝑚, and 𝜏 are related by the
equation 𝑀 = 𝑁 − (𝑚 − 1)𝜏 and by Theorem 1, 𝑚 > 2𝑑

where 𝑑 is the dimension of the system’s attractor.
Now, suppose we have a scalar observed nonlinear times

series, say from empirical traffic data,

{𝑥
𝑡
}
{𝑡=1,2,3,...,𝑁}

. (10)

The vector for each reconstructed single point time series is
given by

𝑋
𝑡
= {𝑥
𝑡
, 𝑥
𝑡+𝜏

, 𝑥
𝑡+2𝜏

, . . . , 𝑥
𝑡+(𝑚−1)𝜏

} , (11)

and it follows that

𝑋
𝑡+1

= {𝑥
𝑡+1

, 𝑥
𝑡+1+𝜏

, 𝑥
𝑡+1+2𝜏

, . . . , 𝑥
𝑡+1+(𝑚−1)𝜏

} , (12)

where 𝜏 is the time delay and𝑚 is the embedding dimension
(as before), and that

[𝑡 + 1 + (𝑚 − 1) 𝜏] ≤ 𝑁. (13)

Consider Figure 8 illustrating the time series, {𝑋
𝑡
} and

{𝑋
𝑡+1

} in a time-space diagram, and a phase space diagram,
respectively.

Figure 8(b) gives a probable representation of the strange
attractor of the data set, whose result is set of points of the
above two time series plotted in 2-dimensional phase space.
However the trajectories of the attractor (as in the diagram)
may appear to intersect each other but they actually never
cross even in higher dimensions.
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X(t)

Xt

t

Latest observations X(t)

Delay time 𝜏

Xt+1

(a)

Xt

Xt+1

(b)

Figure 8: Illustration time series, {𝑋
𝑡
} and {𝑋

𝑡+1
}, plotted in a space time (a) and a 2-dimensional phase space plot (b) (after [39]).

Parameters (topological parameters) such as the dimen-
sion of 𝑑, the attractor, 𝜏, the delay time, and 𝑚, the
embedding dimension, are necessary for reconstruction of
the systems’ dynamics in phase space before any predictions
can be made. These parameters can be determined by the
procedures in the order described below. First, we compute
the delay time, 𝜏, as follows.

(i) Determination of Delay Time, 𝜏. There are several
approaches for determining the delay time.Thefirst approach
as pointed out in [33] is by computing the Auto Correlation
Function (ACF) of the data given by the following equation:

C (𝑟) =
1

𝑁

𝑁−1

∑

𝑖=0

(𝑥
𝑖
− ⟨𝑥⟩) (𝑥

𝑖+1
− ⟨𝑥⟩) , (14)

where ⟨𝑥⟩ is the arithmetic mean of the observations, given
by

⟨𝑥⟩ =
1

𝑁

𝑁−1

∑

𝑖=0

𝑥
𝑖
. (15)

The choice of 𝜏 is determined by the duration after which 𝑥
𝑖

(or 𝑥
𝑡
) and 𝑥

𝑖+1
(or 𝑥
𝑡+𝜏

) become uncorrelated, although [20]
claims that it is difficult to obtain this.

Another method of determining 𝜏 is to calculate the
nonlinear Auto Correlation Function called the Average
Mutual Information (AMI), 𝐼(𝜏). AMI is a standard tech-
nique that tells us howmuch informationwe can obtain about
a measurement taken from one time series, say {𝑥

𝑡
}, that is

affected by another measurement taken from another time
series, {𝑥

𝑡+𝜏
}, sampled after a time interval, 𝜏 [41]. In other

words 𝐼(𝜏) is a measure of the mutual dependence between
two time series, and it is given by

𝐼 (𝜏) = ∑

𝑖𝑗

𝑝
𝑖𝑗
ln𝑝
𝑖𝑗
(𝜏) − 2∑

𝑖

𝑝
𝑖
ln𝑝
𝑖
(𝜏) , (16)

where 𝑝
𝑖
is the probability that 𝑥

𝑡
takes the 𝑖th bin of a

histogram, 𝑝
𝑖𝑗
is the probability that 𝑥

𝑡
is in the 𝑖th bin, and

𝑥
𝑡+𝜏

is in the 𝑖th bin.
The concept of bin in a histogram will help in under-

standing how the information is obtained. We define a bin of

Number of cars per hour

Fr
eq

ue
nc

y

Bin

i

j

Figure 9: An example of a histogram plot illustrating arbitrary bins,
𝑖 and 𝑗 (after [42]).

a histogram intuitively with the following example. The bar
graph of a histogram simply shows how many data points fit
within a certain range.That range is called the bin (sometimes
called the bin width). See Figure 9.

For instance, suppose we want to plot a histogram graph
after counting the number of cars passing through a certain
area per hour. Using histogram chart in Figure 9, we might
decide to plot it using the intervals 1–10, 11–20, 21–30, and
so on. In this case, our bin would be 10 and every bar on
your histogram represents a range of ten cars. The same data
could be plotted on a range of 5 as 1–5, 6–10, 11–15, and so on.
Here, our bin would be five. Obviously, the smaller the bin is,
the more information we obtain about our data set, and vice
versa. The narrower the bin is, the more you miss out on the
point of a histogram.

Thus, we can compute the above probabilities (𝑝
𝑖
and 𝑝

𝑖𝑗
)

and hence 𝐼(𝜏), by the Fraser and Swinney (1986) algorithm
that is fully described by [42]. This algorithm can be directly
applied to a given time series.

𝐼(𝜏) is plotted against increasing values of 𝜏 and this plot
is known as the AMI graph.This takes a shape such as the one
illustrated in Figure 10.

To obtain the most appropriate value of 𝜏, the first
minimum in theAMI graph is chosen.This is because the first
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Figure 10: AMI against 𝜏 plot (after [41]).

minimum preserves both the independence and correlation
of the values of the two time series of 𝑥

𝑡
and 𝑥

𝑡+𝜏
and with

this we can have a good approximation of the coordinates for
the reconstructed vectors [7].

Claim. In [43], the criterion suggests that 𝐼(𝜏)/𝐼(0) ≈ 1/5 if 𝜏
time series works well for down sampled data. 𝜏 ≤ 5𝑇

𝑠
, where

𝑇
𝑠
is the sampling time of the data set.
Next, we compute the embedding dimension, 𝑚, as

follows.

(ii) Determination of Embedding Dimension, 𝑚. This is done
by computing the False Nearest Neighbours (FNN) Method
[43].This method is based on the assumption that two points
that are in close proximity in the appropriate embedding
dimension, 𝑚, must remain close as we move to higher
dimensions [44].However, if the embedding dimension is too
small, then the points that are truly farther apart could seem
to be neighbours, and such points are known as FNN.

Now, suppose 2 points,𝑥(𝑎) and𝑥(𝑏), are in close proximity
in phase space. We compute the Euclidean distance of the
2 points given by |𝑥

(𝑎)

− 𝑥
(𝑏)

| in 2 consecutive embedding
dimensions, 𝑚

0
and 𝑚

0
+ 1 for (𝑚

0
≥ 2). Then, we

determine whether a certain ratio (which is a function of the
Euclidean distances in dimensions,𝑚

0
and𝑚

0
+ 1) is greater

than some predetermined value. One detects FNN within a
given vector when the points close in dimension, 𝑚, move a
significant distance apart in the following state while doing
the computation. In dimension,𝑚

0
, the Euclidean distance is

obtained as follows:

𝑅
2

𝑚0

=

𝑚0−1

∑

𝑚=1

{𝑥
(𝑎)

(𝑡 + 𝑚𝜏) − 𝑥
(𝑏)

(𝑡 + 𝑚𝜏)}
2

. (17)

Moving fromdimension,𝑚
0
, to dimension,𝑚

0
+1,means that

position of points in phase space changes by an amount equal
to 𝑥(𝑡+𝑑𝜏) and this has a contribution to each delay vector. It
follows that the Euclidean distance in the dimension,𝑚

0
+ 1,

is given by

𝑅
2

𝑚0+1
= 𝑅
2

𝑚0

+
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑎)

(𝑡 + 𝑑𝜏) − 𝑥
(𝑏)

(𝑡 + 𝑑𝜏)
󵄨󵄨󵄨󵄨󵄨

2

. (18)

x(b)

x(a)
x(c)

Xt

Xt+1

Figure 11: A 2-dimensional plot of the Hénon attractor showing 𝑥(𝑏)

called the FNN of 𝑥(𝑎) and 𝑥
(𝑐) called the TN of 𝑥(𝑎) (after [41]).

The relative distance between the 2 dimensions gives the
following relationship (a ratio):

√𝑅
2

𝑚0+1
− 𝑅2
𝑚0

𝑅
𝑚0

=

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑎)

(𝑡 + 𝑑𝜏) − 𝑥
(𝑏)

(𝑡 + 𝑑𝜏)
󵄨󵄨󵄨󵄨󵄨

𝑅
𝑚0

. (19)

Based on this criterion, [43] states that if the ratio in (19)
above is found to be greater than some predetermined value,
𝑅tol, called the tolerance threshold, then the points 𝑥(𝑎) and
𝑥
(𝑏) are characterised as “False Nearest Neighbour” (FNN).
In the same way, 𝑅

𝑚0+1
> 𝜎/𝑅tol, where 𝜎 is the statistical

standard deviation of the attractor’s time series data set
around the mean, ⟨𝑥⟩.

Claim. Reference [43] showed that, for several dynamical
systems, 𝑅tol ≈ 15.

The authors of [20] stated that the claim presented in [43]
was later empirically confirmed by a study on the eruption
of Vatnajökull volcano of Iceland that 9 ≤ 𝑅tol ≤ 17,
and a value of 𝑅tol = 10 has proved to give good results.
Thus, FNN is calculated for a given observed time series to
determine the sufficient delay time necessary for phase space
reconstruction.

Consider Figure 11 showing theHénon attractor to help us
intuitively understand the difference between FNNand “True
Neighbours” (TN).

The above procedure is repeated for all possible pairs of
points in dimensions of ascending order until the fraction of
FNN drops to zero (or gets close to zero), a process usually
termed as “unfolding” of the attractor. The percentage of
FNN should drop to zero when the appropriate embedding
dimension,𝑚, is achieved.

For a given dynamical system such as traffic flow, a
suitable value of 𝑅tol has to be chosen although 10 is usually
the best value as stated above. Based on this criterion, we
note that a graph of the percentage of FNN against increasing
values of embedding dimension, 𝑚, is plotted, which takes a
shape similar to the one illustrated in Figure 12.

Normally, the value of 𝑚 corresponding to the first
minimum value of FFN% (for curve (a) in Figure 12) above
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Figure 12: Plot of the percentage of FNN against embedding
dimension,𝑚 (after [41]).

zero is taken as the most appropriate embedding dimension
of the reconstructed time series. This is because by then
the percentage of FNN has substantially reduced and the
attractor is unfolded.

Noise Reduction. In the case of clean Chaotic data (having
no random noise), it is expected that the percentage of FNN
is reduced to zero when the proper embedding dimension
is found. If the time series data is too noisy, however, it is
likely that the method fails due to futile attempt of trying
to unfold the noise in the data. Apart from determining the
optimal embedding dimension, 𝑚, the FNN method is a
good indicator of a noisy data set. From Figure 12, if FNN%
converge in the range of increasing values of𝑚 (i.e., lim

𝑚→∞

FNN% → 0) as shown in curve (b) of Figure 12, then there is
high possibility of random noise, which may be responsible
for spreading the data, and therefore, it needs to be filtered
[45]. As a stochastic process, noisy data must not unfold at
any given dimension in phase space (in this case, we have
no clear-cut minimum). Moving average and low-pass filter
are commonly used methods for noise reduction in data sets
although it is not discussed in this work [6].

We now discuss the different methodologies for pre-
diction of Chaotic system’s behaviour having discussed the
topological parameters of the attractor.

3.4.2. Methodology for Prediction. Literature suggests that it
is very necessary to check for Chaos in a given data set before
predictions are made. The reason for the check is that there
might be presence of random data, which are often assumed
to be chaotic, in the data set.

There are several methods used to test for Chaos in a time
series data set of a dynamical system.The following methods
covered in this work were briefly discussed. They include
computation of the (i) Correlation Dimension, 𝑑

𝑐
; (ii) Hurst

Exponent, H; (iii) Kolmogorov Entropy, 𝐾; and (iv) Largest
Lyapunov Exponent (LLE), 𝜆max.

(i) Correlation Dimension, 𝑑
𝑐
. This method has been widely

used by physicists to test for Chaos in dynamical systems [33].

It provides a measure of which points in a given data set of an
attractor affect each other.This parameter provides one of the
best measures used in differentiating between stochastic and
Chaotic systems.

The Correlation Function,C(𝑟), is given by

C (𝑟) = lim
𝑁→0

2

𝑁 (𝑁 − 1)

𝑁

∑

𝑖,𝑗=1

𝐻(𝑢) , (20)

where𝐻(𝑢) is the Heaviside step function given by

𝐻(𝑢) =
{

{

{

1; 𝑢 > 0

0; 𝑢 ≤ 0,

𝑢 = 𝑟 −
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑖
− 𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨
, (21)

where 𝑟 is the radius of the sphere whose center is at𝑋
𝑖
or𝑋
𝑗

and𝑁 is the number of points in the reconstructed attractor’s
data set.

If the time series is characterized by an attractor, then

C (𝑟) ∝ 𝜇𝑟
𝑑𝑐 , (22)

where 𝜇 is a constant of proportionality and 𝑑
𝑐
is the

CorrelationDimension or the gradient of the logC(𝑟) against
log 𝑟 plot denoted by

𝑑
𝑐
= lim
𝑟→0

logC
log 𝑟

, (23)

where 𝑑
𝑐
can also be estimated by themethod of least squares

or a smooth line over a certain range of 𝑚 values referred
to as the scaling region. This region can be estimated by
determining the local slope given by

𝑑
𝑐
=
𝑑 [logC]

𝑑 [log 𝑟]
. (24)

Reference [33] states that 𝑑
𝑐
provides the lower bound of the

dimension, 𝑑, of the attractor and satisfies the inequality

𝑑
𝑐
≤ 𝑑. (25)

To observe the existence of Chaos in the data, a plot of
the Correlation Dimension against increasing embedding
dimension values is obtained. The plot takes such a shape as
illustrated in Figure 13.

If 𝑑
𝑐
∈ R \ {Z} < ∞, then Chaos exists in the data set.

The closest integer above the scaling region of the curve gives
the least value of phase space variables used in the modeling
of the actual dimension, 𝑑, of the attractor.

Note. If 𝑑
𝑐
is unbounded and is observed to increase with

increasing embedding dimension, 𝑚, that is, lim
𝑚→∞

𝑑
𝑐
→

∞, then the system is considered to be stochastic.
Now we define an upper bound for the 𝑑-dimension of

the attractor called the Limit capacity, 𝑑
𝑙
, which satisfies the

following inequality:

𝑑
𝑐
≤ 𝑑 ≤ 𝑑

𝑙
. (26)
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Figure 13: Plot of theCorrelationDimension,𝑑
𝑐
, against embedding

dimension,𝑚 (after [20]).

To determine 𝑑
𝑙
, we let 𝑁(𝜖) be the number of spheres of

radius, 𝑟, for 0 < 𝑟 < 1, such that all the points of the attractor
are covered by the spheres. Then it follows that

𝑑
𝑙
= lim
𝜖→0

ln𝑁(𝜖)

ln (1/𝜖)
. (27)

In practice, we do not know the prior dimension, 𝑑, of the
attractor and the most appropriate value of 𝑚 of the newly
reconstructed dynamics.Therefore, the dimensional estimate
of 𝑑 is found by increasing values of 𝑚 (starting with 𝑚 =

2) until a stable value of 𝑑 is achieved (as described in
Section 3.4.1(ii)).

(ii) Hurst Exponent,H. Similar to the Lyapunov Exponents, a
well-established parameter that is commonly used for testing
for the Chaos in systems is the Hurst Exponent [38].

The Hurst Exponent, H, is a measure of the degree to
which a given time series can be statistically expressed as a
random walk (i.e., Brownian motion).

If a time series vector, 𝑥
𝑡
, on average moves away from its

original position by an amount that is directly proportional
to√Δ𝑡 (where Δ𝑡 represents a time interval), it is said that its
Hurst Exponent is 1/2 as stressed by [39] in reporting Kantz
and Schreiber’s work of 1997.

Therefore, one can determinewhether the time series data
is randomly distributed or not. This is obtained through the
square root relation between increments after a certain time
interval as follows:

Δ𝑥
2

∝ Δ𝑡
2H

, (28)

whereH is the Hurst Exponent and 0 ≤ H ≤ 1 and Δ𝑡 is the
time interval.

Reference [45] claimed that the relationship between the
Hurst Exponent,H, and Correlation Dimension, 𝑑

𝑐
is

𝑑
𝑐
= 2 −H. (29)

In a data set where H = 1/2, we conclude that the data is
randomly distributed and is not correlated, while for H >

1/2, we say that the data set has a positive correlation, and
finally when H < 1/2, the time data set has negative
correlation.

(iii) Kolmogorov Entropy, 𝐾. A change in volume gives
information about the sum of the corresponding Lyapunov
Exponents which is equal to the Kolmogorov Entropy, 𝐾,
given by

𝐾 = ∑

𝜆𝑖>0

𝜆
𝑖
, (30)

where 𝜆
𝑖
is the spectrum of Lyapunov Exponents (seen later

in Section 3.4.2(iv)) [46].
For 𝑁(𝜖)-number of spheres (as defined before in part

(ii)) and embedding dimension, 𝑚, if a time series is com-
pletely deterministic (Chaotic), then

lim
𝑁(𝜖)→∞

lim
𝑚→∞

𝐾 󳨀→ 0. (31)

On the other hand, for a completely random time series,
the value 𝐾 will not converge to single value, that is,
(lim
𝑁(𝜖)→∞

lim
𝑚→∞

𝐾 → ∞). Therefore, lower values of 𝐾
imply higher predictability of the system and vice versa.

(iv) Largest Lyapunov Exponent, 𝜆max. As far as we know,
computation of Lyapunov exponents provides the best mea-
sure of Chaos in any dynamical system [46]. For this reason,
we are going to explicitly explain and focus on this method
since it is the most direct and most effective technique used
for analysing the Chaotic behavior in a given dynamical
system which is helpful in making predictions. Lyapunov
exponents can clearly explain all the information contained
in a time series. Thus, can be used to determine the length
of the predicting period for any dynamical system, as argued
out by [20].

Having established that the exponential divergence of
nearby trajectories is the hallmark of Chaotic behaviour as
explained by [30], the Lyapunov spectrum of exponents is
given by

𝜆
𝑖{𝑖=1,2,...,𝑛}

, (32)

where 𝑛 is the number of points in the reconstructed data set.
If the exponents are arranged in descending order such

that

𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
, (33)

then the following relationships are true:

(i) The length of the principle axis of spectrum is propor-
tional to 𝑒𝜆1𝑡.

(ii) The area determined by 2 principle axes is propor-
tional to 𝑒(𝜆1+𝜆2)𝑡.

(iii) The volume of the first 𝑘-principle axes is propor-
tional to 𝑒(𝜆1+𝜆2+⋅⋅⋅+𝜆𝑘)𝑡,

where 𝑡 is time interval for the system to evolve fromone state
to another in phase space.

To understand the above relationships, we compute the he
Euclidean distance between 2 points in phase space. Suppose
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Figure 14: A plot of the Stretching Factor, S, against number of
points,𝑁, in the data set (after [20]).

that originally we have 2 points in phase space that is 𝑥(𝑛0) and
𝑥
(𝑛1) whose Euclidean distance is given by

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛0) − 𝑥

(𝑛1)
󵄨󵄨󵄨󵄨󵄨
= 𝛿
0
. (34)

After a time interval, 𝑡, the system evolves and the new
distance is given by 𝛿 = 𝛿

0
𝑒
𝜆1𝑡, where 𝜆

1
> 0, called

the Lyapunov exponent. Thus, computing the Euclidean
distances between points in consecutive higher dimensions
will give the area and the volume, respectively.

Our focus is mainly on the Largest Lyapunov Exponent
(LLE), 𝜆max = 𝜆

1
, which gives evidence for determinism

of a given system. In reporting Rosemstein et al.’s study,
Shang et al. in [20] suggest that, after determining the most
suitable topological parameters 𝜏 and 𝑚 of the attractor, a
point 𝑥(𝑛0) is chosen and all the neighbouring points 𝑥(𝑛𝑖) =
[𝑥
(𝑛1), 𝑥
(𝑛2), . . . , 𝑥

(𝑛𝑗)], called True Neighbours (TN), closer
than the distance, 𝑟 (for chosen arbitrarily between 0 and 1),
are found.

A number of 𝑁-trajectories are utilized in finding the
closest points on the predicted trajectory, 𝑥(𝑡

1
+𝑚𝜏), which is

used as the starting vector during the computation of the LLE.
This procedure is repeated for𝑁-number of points along the
orbits and an average quantity, S, known as the Stretching
Factor given by (35) is calculated. One has

S =
1

𝑁

𝑁

∑

𝑛𝑖=1

(ln 1

𝑢
𝑥
(𝑛0)

∑
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛0) − 𝑥

(𝑛𝑖)
󵄨󵄨󵄨󵄨󵄨
) , (35)

where 𝑢
𝑥
(𝑛0) is the number of neighbours around 𝑥

(𝑛0).

Claim. Xue and Shi in [36] stated that if 20 ≤ |𝑢
𝑥
(𝑛0) | ≤ 30,

then a good approximation of the LLE can be obtained. A plot
of S against the number of points 𝑁 (or 𝑡 = 𝑁Δ𝑡) yields a
curve that has a linear inverse in one region which is followed
by a plateau in another region. This plot takes the shape as
illustrated in Figure 14.

The least squares approach gives a smooth line (fit) on
Figure 14 and its slope gives an estimation of LLE, 𝜆max.

Prediction. If 𝜆max ∈ ]0, 1[, then the system under analysis is
not a Chaotic system but rather a stochastic one, and so we
cannot make any predictions based on Chaos Theory.

If 0 < 𝜆max < 1, then it implies that there is Chaos in the
system. For practical purposes, we compute the approximate
period limit, Δ𝑡max (often called Lyapunov time) for accurate
prediction since it is a function of the LLE, 𝜆max.

The Lyapunov time, Δ𝑡max, is given by

Δ𝑡max =
1

𝜆max
. (36)

If 𝜆max → 0 implies Δ𝑡max → ∞, then long-term accurate
predictions are possible. Initially, one starts with a vector,
𝑋(𝑡
1
), followed by selecting 𝑘-closest trajectories (not points)

on the system’s attractor which is then followed by choice of
𝑘-closest points to 𝑋(𝑡

1
) (one on each trajectory). It follows

that we precisely know the dynamic evolution of the system
after time, Δ𝑡max.

In the same way, if 𝜆max → ∞ implies Δ𝑡max → 0, long-
term accurate predictions are not possible, but rather short-
term ones can be made. With the Lyapunov time, Δ𝑡max, we
can precisely predict any observed quantity (say traffic flow)
for this time [20].

Practically in traffic flow analysis, the one-dimensional
traffic flow time series data is replaced with 𝑚-dimensional
reconstructed data. The reconstructed time series data is
then plotted, and this is followed by analysis of the previous
observationswhich are neighbours to the preceding ones, and
short-term predictions are finally made.

4. Conclusions

This study have shown how Chaos Theory can be used in
the analysis of dynamical systems via a systematic review of
the characteristic features of Chaotic system. In particular, it
showed how ChaosTheory can be used for Motorised Traffic
Flow Time Series Prediction in Urban Transport Network
based on the the method of computation of the Largest
Lyapunov Exponent, 𝜆max, which is the best method so far for
analysis and prediction of chaotic behaviours of a given com-
plex system like traffic flow as reported bymost researchers in
literature. Using the Largest Lyapunov Exponent prediction
method, it was shown how the Lyapunov time, Δ𝑡max, can
be obtained which is the time interval for making accurate
predictions of traffic flows.

In order to make a complete and robust prediction
model for traffic flow, there is need to develop a computer
based algorithm that will compute the time delay, embedding
dimension, and Lyapunov time of a real time series from
empirical traffic flow data. Thus, the validation aspect of
the proposed approach and comparison with other known
conventional models for traffic flow prediction especially in
the area of prediction accuracy is still in progress and left for
our future work so as to enable us have access to available
traffic flow data sets. Moreover, there is need to come up
with a concrete relationship (most preferably a mathematical
equation) that links the Lyapunov time with traffic flow so
as to aid in proper traffic predictions. The effect of noise
on traffic flow data as well as determining the type of noise
and magnitude is also an important area to look into in our
future work. Thus, by effectively incorporating all these into
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the present work, it is believed that the proposed approach
will be useful in reducing the congestion problem on urban
traffic networks.
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