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We associate some (old) convergent series related to definite integrals with the cyclotomic equation 𝑥𝑚 − 1 = 0, for several natural
numbers m; for example, for 𝑚 = 3, 𝑥3 − 1 = (𝑥 − 1)(1 + 𝑥 + 𝑥

2

) leads to ∫1
0

𝑑𝑥(1/(1 + 𝑥 + 𝑥
2

)) = 𝜋/(3√3) = (1 − 1/2) + (1/4 −

1/5) + (1/7 − 1/8) + ⋅ ⋅ ⋅ . In some cases, we express the results in terms of the Dirichlet characters. Generalizations for arbitrarym
are well defined but do imply integrals and/or series summations rather involved.

1. Introduction

Nicola Oresmes proved ca. 1350, the divergence of the har-
monic series (e.g., see [1, page 183]). Indeed, today we know
precisely how it does diverge ([2, page 14]; see also [3]):

Harm (𝑁) :=

𝑁

∑

𝑛=1

1

𝑛

. (1)

For𝑁 ≫ 1

Harm (𝑁) 󳨀→ log (𝑁) + 𝛾 + 1

2𝑁

−

1

12𝑁 (𝑁 + 1)

− ⋅ ⋅ ⋅ ,

(2)

where 𝛾 is the Euler-Mascheroni constant (written and
named 𝐶 at times; for a recent reference, see [4]):

𝛾 = lim
𝑁→∞

(

𝑁

∑

𝑛=1

1

𝑛

− log (𝑁)) ≈ .577215 . . . . (3)

We do not know, even today (winter 2015), whether 𝛾 is
rational or not.

Later, in 1668 Mercator (= Kremer) proved [1, page
185] the convergence of the alternative series (of even/odd
numbers) and summed it (i.e., taking the𝑁 → ∞ limit):

1 −

1

2

+

1

3

−

1

4

+ ⋅ ⋅ ⋅ +

1

2𝑁 − 1

−

1

2𝑁

+ ⋅ ⋅ ⋅

󳨀→ ∫

1

0

𝑑𝑥

1 + 𝑥

= log (2) .
(4)

Apparently, some work from India preceded the (even
later) so-called Gregory-Leibniz formula ([1] again, page 184)
for another alternative series (of inverse of odd numbers):

1 −

1

3

+

1

5

−

1

7

+ ⋅ ⋅ ⋅ +

1

4𝑁 − 3

−

1

4𝑁 − 1

+ ⋅ ⋅ ⋅

󳨀→ ∫

1

0

𝑑𝑥

1 + 𝑥
2
=

𝜋

4

.

(5)

In this paper we interpret (4) and (5) as arising from the
cyclotomic equation of roots of the unity (Gauss; see, e.g.,
[5]):

𝑥
𝑚

− 1 = 0 𝑚 ∈ N; 𝑚 = 2, 3, 4, . . . ;

𝑥
𝑚

− 1 = (𝑥 − 1) (1 + 𝑥 + 𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑚−1

) .

𝑥
2𝑚

− 1 = (𝑥 − 1) (1 + 𝑥
2

+ 𝑥
4

+ ... + 𝑥
2(𝑚−1)

) .

(6)
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In our cases, 𝑚 = 2, 4, respectively, for (4) and (5),
and then perhaps we can write anew the results in terms of
some natural arithmetic functions. In (6), the roots ̸= ±1 are
complex conjugate pairs, as (6) describes a real equation, so
the roots have modulus 1, and all of them lie in the complex
unit circle ≈ 𝑆

1.
The main purpose of this paper is to generalize these

results for other (generic) natural numbers 𝑚 ∈ N. We will
try to relate the series to some definite integrals.

We anticipate already here part of the workings for𝑚 = 2

and 4.
For 𝑚 = 2, 𝑥2 − 1 = (𝑥 − 1)(𝑥 + 1); we always leave out

the 𝑥 = 1 root. The inverse of (𝑥 + 1) enters into (4) and we
proceed to the four operations:

(a) inversion, (𝑥 + 1) = (1 + 𝑥) → (1 + 𝑥)
−1;

(b) expansion, (1+𝑥)−1 = 1−𝑥+𝑥
2

−𝑥
3

+𝑥
4

−⋅ ⋅ ⋅ (|𝑥| < 1);
(c) term-by-term integration,⇒ 𝑥−𝑥

2

/2+𝑥
3

/3−𝑥
4

/4+

⋅ ⋅ ⋅ ;
(d) taking the limits 𝑥 = 1 minus 𝑥 = 0, ⇒ (1 − 1/2) +

(1/3 − 1/4) + (1/5 − 1/6) ⋅ ⋅ ⋅ .

Then we obtain the above result for𝑚 = 2:

(𝑥 + 1) = (1 + 𝑥)

󳨐⇒

1

1 + 𝑥

󳨐⇒ (1 − 𝑥 + 𝑥
2

− ⋅ ⋅ ⋅ )

󳨐⇒ (𝑥 −

𝑥
2

2

) + (

𝑥
3

3

−

𝑥
4

4

) + ⋅ ⋅ ⋅

󳨐⇒ (𝑥 = 1 minus 𝑥 = 0) =

∞

∑

𝑛=1

(−1)
𝑛+1

𝑛

= log (2)

(7)

in terms of the arithmetic modulated “sign” function (=
even/odd) 𝑓(𝑛) := (−1)

𝑛+1

/𝑛. Note that after the integration,
the limit 𝑥 = 1 can be taken. Equation (7) involves the series

∞

∑

𝑛=1

(

1

2𝑛 − 1

−

1

2𝑛

) = ∫

1

0

𝑑𝑥

1

1 + 𝑥

= log (2) (8)

expressed as a genuine definite integral.
Similarly, for 𝑚 = 4, it is 𝑥4 − 1 = (𝑥

2

− 1)(𝑥
2

+ 1),
separating the roots ±1 and ±𝑖; now (1 +𝑥

2

)
−1 enters into (5),

which becomes, again after inversion, expansion, integration,
and taking limits,

(1 + 𝑥
2

)

−1

󳨐⇒ (1 −

1

3

) + (

1

5

−

1

7

) + (

1

9

−

1

11

)

+ ⋅ ⋅ ⋅ (=

𝜋

4

)

(9)

which can be written as the (alternative) difference between
the two series and of course also as one integral

∞

∑

𝑛=1

(

1

4𝑛 − 3

−

1

4𝑛 − 1

) = ∫

1

0

𝑑𝑥

1

1 + 𝑥
2
=

𝜋

4

. (10)

And it can be given now in terms of the so-calledDirichlet
characters (see below).

In this paper, as said, we will generalize the constructions
above (for𝑚 = 2, 4) for any integer𝑚 ∈ N (in principle) and
include (when possible) the appropriate Dirichlet character.

But first we want to fix our notation. For each 𝑚 ∈ N,
𝑚 > 1, we will consider first the finite sums, up to𝑚𝑁 terms;
so we define primarily

∑

𝑚

(𝑁) ≡ 1 +

1

2

+ ⋅ ⋅ ⋅ +

1

𝑚𝑁 − (𝑚 − 1)

+

1

𝑚𝑁 − (𝑚 − 2)

+ ⋅ ⋅ ⋅ +

1

𝑚𝑁

.

(11)

For example, ∑
3
(𝑁) ≡ 1 + 1/2 + 1/3 + ⋅ ⋅ ⋅ + 1/𝑁 + ⋅ ⋅ ⋅ +

1/(3𝑁−2) + 1/(3𝑁−1) + 1/3𝑁; so these sums diverge, for𝑁
arbitrarily large, and indeed as (2) indicates,

∑

𝑚

(𝑁) 󳨀→ log (𝑚𝑁) + 𝛾 + O(

1

𝑚𝑁

)

= log (𝑁) + 𝛾 + log (𝑚)
(12)

(fromnowonwewill keep only the dominant and the constant
terms in the divergent expansion (2)).

Also, we define partial bounded sums ∑𝑖
𝑚
= ∑
𝑖

𝑚
(𝑁) for

𝑖 = 1, 2, . . . , 𝑚 as displaced sums:

1

∑

𝑚

=

1

1

+

1

𝑚 + 1

+

1

2𝑚 + 1

+ ⋅ ⋅ ⋅ +

1

(𝑚𝑁 − (𝑚 − 1))

,

2

∑

𝑚

=

1

2

+

1

𝑚 + 2

+ ⋅ ⋅ ⋅ +

1

(𝑚𝑁 − (𝑚 − 2))

,

.

.

.

𝑚−1

∑

𝑚

=

1

𝑚 − 1

+

1

2𝑚 − 1

+ ⋅ ⋅ ⋅ +

1

𝑚𝑁 − 1

.

(13)

And finally,∑𝑚
𝑚
= 1/𝑚+ 1/2𝑚+ ⋅ ⋅ ⋅ + 1/𝑚𝑁 = (1/𝑚)(1 +

1/2 + ⋅ ⋅ ⋅ + 1/𝑁) so

(for 𝑁 ≫ 1)

𝑚

∑

𝑚

(𝑁) 󳨀→

log (𝑁)
𝑚

+

𝛾

𝑚

+ O(

1

𝑁

) . (14)

Therefore, ∑
𝑚
(𝑁) (in (11)) is the sum of all ∑𝑖

𝑚
(𝑁) with

𝑖 : {1, 2, . . . , 𝑚}:

∑

𝑚

(𝑁) = Sum𝑚
𝑖=1

𝑖

∑

𝑚

(𝑁) =

1

∑

𝑚

+

2

∑

𝑚

+ ⋅ ⋅ ⋅ +

𝑚

∑

𝑚

. (15)

Note that these sumsmake sense, spite diverging, because
all have only positive terms and they are finite sums.

The convergence or divergence of the above series is
usually self-explained: convergence occurs always for the
decreasing alternative series (Leibniz), but as the convergence
is not absolute, but conditional, the ordering in the series
should be maintained. The higher divergence behaves, if at
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all, with a factor ∝ log(𝑁): divergences are no higher than
logarithmic. We will try to be careful in subtracting two
divergent series. We use a philosophy close to physics (in
particular, to quantum electrodynamics or q. e. d.): we first
truncate the series, taking a fixed upper bound N ≫ 1 (called
the cut-off ; in physics this process is called regularization).
Then we subtract other series, also divergent but with a
similar type of divergence (this is called renormalization): the
result should be convergent (radiative corrections); see, for
example, the book by Schwinger [6].

For amodern treatment of theDirichlet series consult [7].

2. The Case for 𝑚=2: Four Methods

Here we repeat the log(2) result for the case 𝑚 = 2 (7) by
four different methods, because eventually the four might be
useful.

(1) Redundance (Direct) Proof. ∑
2
(𝑁) and ∑

2

2
(𝑁), defined

above, diverge in a known way, for fixed (and large)𝑁 and, as
said, ((12), (14))
1

∑

2

= ∑

2

−

2

∑

2

󳨀→ log (𝑁) + log (2) + 𝛾 − 1

2

log (𝑁) −
𝛾

2

=

1

2

log (𝑁) +
𝛾

2

+ log (2) .
(16)

So
1

∑

2

−

2

∑

2

󳨀→ (𝑁 󳨀→ ∞) = log (2) (17)

directly, without any integration or (infinite) series summa-
tion.

(2) Integration Proof. Trivial here, as it is already (4):

∫

1

0

𝑑𝑥

1 + 𝑥

= log (2) . (18)

(3) Summation Proof. We have the convergent series (so now
𝑁 = ∞)
1

∑

2

−

2

∑

2

= (1 −

1

2

) + (

1

3

−

1

4

) + ⋅ ⋅ ⋅ =

∞

∑

𝑛=1

(

1

2𝑛 − 1

−

1

2𝑛

)

=

1

4

∞

∑

𝑛=1

(

1

𝑛 (𝑛 − 1/2)

)

(19)

which can be explicitly done using the digamma functionΨ(𝑧)
(see, e.g., [8, page 258]):

Ψ (𝑧) :=

𝑑 (log Γ (𝑧))
𝑑𝑧

=

Γ
󸀠

(𝑧)

Γ (𝑧)

(𝑧 ∉ Z
−

:= Z \ N) (20)

(for Γ(𝑧) is the ordinary, Euler’s gamma function), with help
of the expression [8, page 259, formula 6.3.16]

∞

∑

𝑛=1

𝑧

𝑛 (𝑛 + 𝑧)

= Ψ (𝑧) + 𝛾 +

1

𝑧

(21)

for 𝑧 = −1/2. In total we get, as expected,
∞

∑

𝑛=1

1

𝑛 (𝑛 − 1/2)

= 4 log (2) . (22)

(4) Use of Hansen Formula. This formula, again depending
on the Digamma functionΨ(𝑧), reads (cf. [9]; notice the sum
starts in zero; 𝑥, 𝑦, and 𝑧 are some parameters)
∞

∑

𝑛=0

1

(𝑛𝑥 + 𝑦)
2

− 𝑧
2

=

1

2𝑥𝑧

{Ψ(

𝑦 + 𝑧

𝑥

) − Ψ(

𝑦 − 𝑧

𝑥

)} .

(23)

We put our 𝑛󸀠 above in∑
1
(1/𝑛
󸀠

(𝑛
󸀠

− 1/2)) as (𝑛󸀠 = 𝑛 + 1),
because 𝑛 runs now from zero; hence this is equivalent to (23)
with the parameter values 𝑥 = 1, 𝑦 = 3/4, and 𝑧 = 1/4. So
our sum is (with Ψ(1) = −𝛾 and Ψ(1/2) = −𝛾 − 2 log(2))

∑ = 2[Ψ (1) − Ψ(

1

2

)] = 4 log (2) (24)

as it should be.
Of the four methods, the most common and “easy” is the

second (integration); it can, in principle (i.e., if the integrand
is known and the integration feasible), always be used. The
Mathematica Computer Programs give many integrals and
double sums also directly.

Please note in this (initial) 𝑚 = 2 case that what appears
as result is the sign function𝑓(𝑛) := ∑

∞

𝑛=1
((−1)
𝑛+1

/𝑛); later, for
some 𝑚 > 2, (including 𝑚 = 4) this will become a Dirichlet
character: here we have, as résumé (to repeat),

2

∑

1

−

2

∑

2

(= log (2)) =
∞

∑

𝑛=1

(−1)
𝑛+1

𝑛

≡

odd
∑ −

even
∑ (25)

so NO Dirichlet character this time.

3. The Case for 𝑚 = 3, 4, 6

We discuss𝑚 = 3 first. Now (𝑥
3

− 1) = (𝑥 − 1)(1 + 𝑥 + 𝑥
2

) as
the roots are +1, 𝜔 = exp(2𝜋𝑖/3) and conjugate 𝜔; here 𝜔 is
equivalent to a plane rotation by 120∘. By direct integration,
we obtain at once

∫

1

0

𝑑𝑥

1 + 𝑥 + 𝑥
2
=

𝜋

3√3

(26)

which is a particular case of

∫

1

𝐴

𝑑𝑥

for 𝐴 = (𝑥 − 𝜔) (𝑥 − 𝜔) = 𝑥
2

− (Tr𝜔) 𝑥 + 1,

Tr𝜔 = 𝜔 + 𝜔.

(27)

For a general positive integer 𝑚 we obtain, after an easy
calculation (𝜔 is root of 𝑥𝑚 − 1 = 0),

∫

1

0

𝑑𝑥

1 − Tr𝜔𝑥 + 𝑥2
=

𝜋

2 sin (2𝜋/𝑚)
⋅

𝑚 − 2

𝑚

. (28)
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This formula (28) can be used at once for𝑚 = 3, 4, and 6,
yielding (26) and

∫

1

0

𝑑𝑥

1 − Tr𝜔 ⋅ 𝑥 + 𝑥
2
=

{
{
{

{
{
{

{

𝜋

4

(𝑚 = 4)

2𝜋

3√3

(𝑚 = 6) .

(29)

later, we shall need also 𝐼 = ∫

1

0

𝑑𝑥(1/(1 − Tr𝜔𝑥 + 𝑥
2

))

for 𝜔 = exp(2𝜋𝑖𝑟/𝑚), for 𝑟 natural between 1 and 𝑚 − 1. The
integral is now

𝐼 =

𝜋

(2 sin (2𝜋𝑟/𝑚))
⋅

(𝑚 − 2𝑟)

𝑚

(1 ≤ 𝑟 ≤ (𝑚 − 1)) . (30)

Coming back to 𝑚 = 3, the specific series is 1 − 𝑆 + 𝑆2 −
𝑆
3

+ 𝑆
4

− ⋅ ⋅ ⋅ , with 𝑆 ≡ 𝑥 + 𝑥
2; after developing, we get (after

term-by-term integration and taking limits 1, 0)

(1 −

1

2

) + (

1

4

−

1

5

) + ⋅ ⋅ ⋅ +

1

3𝑁 − 2

−

1

3𝑁 − 1

+ ⋅ ⋅ ⋅

=

∞

∑

𝑛=1

(

1

3𝑛 − 2

−

1

3𝑛 − 1

) ≡

1

∑

3

−

2

∑

3

=

𝜋

3√3

.

(31)

Hence ∑1
3
−∑
2

3
finishes the calculation for 𝑚 = 3 (as the

third sum ∑
3

3
trivially computable).

In terms of the [10] Dirichlet character mod 3, namely
𝜒
(3)

2
, we have

1

∑

3

−

2

∑

3

=

𝜋

3√3

=

∞

∑

𝑛=1

𝜒
(3)

2
(𝑛)

𝑛

, (32)

where of course 𝜒(3)
2
(1, 2, 3, 4, 5, 6) = (1, −1, 0, 1, −1, 0) (so 3-

periodic).We can even use Dirichlet’s L-functions, which will
include the 1/𝑛 factors, but we refrain from doing that, as it
does not illuminate the matter any further.

As recapitulation, the series are obtained from the poly-
nomial of roots ̸=1:

(𝑚 = 3) 𝑃
2
(𝑥) = 𝑥

2

+ 𝑥 + 1 (33)

after INVersion, EXPansion, INTegration, and TAKing 𝑥 = 1.
In principle, the result of the series summation can be also
obtained from the Hansen formula (22).

Finally for this 𝑚 = 3 case, we quote the four diverging
series for completeness (the signal → meaning just the limit
for𝑁 ≫ 1):

1

∑

3

−

2

∑

3

=

∞

∑

𝑛=1

(

1

3𝑛 − 2

−

1

3𝑛 − 1

) =

𝜋

3√3

=

∞

∑

𝑛=1

𝜒
(3)

2
(𝑛)

𝑛

(34)

as the complete solution for the 𝑚 = 3 case. We quote the
following four divergent series for later use, still in this𝑚 = 3

case (the limit → meaning just𝑁 ≫ 1):

∑

3

= 1 +

1

2

+ ⋅ ⋅ ⋅ +

1

3𝑁

󳨀→ log (𝑁) + 𝛾 + log (3) ,

3

∑

3

=

1

3

+

1

6

+ ⋅ ⋅ ⋅ +

1

3𝑁

󳨀→

1

3

log (𝑁) +
𝛾

3

,

1

∑

3

=

1

4

+

1

7

+ ⋅ ⋅ ⋅ +

1

3𝑁 − 2

󳨀→

1

3

log (𝑁) +
𝛾

3

+

1

2

log (3) + 𝜋

6√3

,

2

∑

3

=

1

2

+

1

5

+ ⋅ ⋅ ⋅ +

1

3𝑁 − 1

󳨀→

1

3

log (𝑁) +
𝛾

3

+

1

2

log (3) − 𝜋

6√3

.

(35)

Now, for 𝑚 = 4, we have first the natural cyclotomic
expression

(I) 𝑥
4

− 1 = (𝑥
2

− 1) (𝑥
2

+ 1) (36)

(wewrite (I) because this is not the only possible factorization
to be used). Repeating the steps as before for𝑚 = 3, our first
final result is here:

1

∑

4

−

3

∑

4

=

∞

∑

𝑛=1

(

1

4𝑛 − 3

−

1

4𝑛 − 1

) = ∫

1

0

𝑑𝑥

𝑥
2
+ 1

= arctan (1) = 𝜋

4

(37)

with 𝜒(𝑚=4)
2

(1, 2, 3, 4, 5, 6, 7, 8) = (1, 0, −1, 0, 1, 0, −1, 0) being
periodic mod 4 (and restrictedmultiplicative). Note also why
do we get 𝑖 = 1 and 3 in ∑𝑖

4
(not 2!) mod 4: the expansion is

for 1/(1 + 𝑥
2

) ≈ 1 − 𝑥
2

+ 𝑥
4

− 𝑥
6, and so forth, so it is with

even powers only, so with only odd powers after integration!
We are donewith this, as∑

4
,∑0
4
, and∑2

4
are automatically

obtainable.
The second factorization of𝑥4−1 is obtained by separating

only the 𝑥 = 1 root:

(II) 𝑥
4

− 1 = (𝑥 − 1) (1 + 𝑥 + 𝑥
2

+ 𝑥
3

) . (38)

As 𝐵 := (1 + 𝑥 + 𝑥
2

+ 𝑥
3

) contains the 𝑥 = −1 root,
one writes 𝐵 = (𝑥 + 1)(1 + 𝑥

2

), where the integral can be
computed at once (indeed, it is indicated above). The final
result for factorization (II) is

∫

1

0

𝑑𝑥

1 + 𝑥 + 𝑥
2
+ 𝑥
3
=

1

4

log (2) + 𝜋

8

(39)
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which is a redundant result, as defines ∑1
4
−∑
2

4
computable

from the above calculation (I). In fact, we end up this 𝑚 = 4

case by writing the analogy to (35):

4

∑

4

=

1

4

+

1

8

+ ⋅ ⋅ ⋅ +

1

4𝑁

󳨀→

1

4

log (𝑁) +
𝛾

4

,

2

∑

4

=

1

2

+

1

6

+ ⋅ ⋅ ⋅ +

1

4𝑁 − 2

󳨀→

1

2

1

∑

2

=

1

4

log (𝑁) +
𝛾

4

+

1

2

log (2) ,

1

∑

4

=

1

2

+

1

5

+ ⋅ ⋅ ⋅ +

1

3𝑁 − 1

󳨀→

1

4

log (𝑁) +
𝛾

4

+

3

4

log (2) + 𝜋

8

,

3

∑

4

󳨀→

1

4

log (𝑁) +
𝛾

4

+

3

4

log (2) − 𝜋

8

.

(40)

The nonprime structure of 𝑚 implies only a difference
calculation, as it was also the case for𝑚 = 3, prime.

So the full solution for the𝑚 = 4 case has one redundancy
(two factorizations), and it is done (solved) once a single
calculation is made; for example, ∫1

0

𝑑𝑥(1/(1 + 𝑥
2

)) = 𝜋/4.
Now it is the turn of𝑚 = 6. But here there are also several

factorizations, as for the 𝑚 = 4 case above. The simplest is
(perhaps)

(I) Firstly is 𝑥6 − 1 = (𝑥
3

− 1) (𝑥
3

+ 1) . (41)

As (1 + 𝑥3) = (1 + 𝑥)(1 − 𝑥 + 𝑥
2

), the integral is easy, with
this factoring:

∫

1

0

𝑑𝑥

1 + 𝑥
3
=

1

3

log (2) + 𝜋

3√3

. (42)

The operations INV, EXP, INT, and TAK 𝑥 = 1 applied to
the polynomial𝑃

3
(𝑥) = 1+𝑥

3 yield the infinite but convergent
sum
1

∑

6

−

4

∑

6

=

∞

∑

𝑛=1

(

1

6𝑛 − 5

−

1

6𝑛 − 2

) =

log (2)
3

+

𝜋

3√3

. (43)

Notice again the jump, now by three: it is due to the cubic
𝑥
3𝑛 terms in 1/(1 + 𝑥3).
All other factorizations are therefore redundant; we just

write them:

(II) (𝑥
6

− 1) = (𝑥 − 1) (1 + 𝑥 + 𝑥
2

+ 𝑥
3

+ 𝑥
4

+ 𝑥
5

)

󳨐⇒

1

∑

6

−

2

∑

6

(III) (𝑥
6

− 1) = (𝑥
2

− 1) (1 + 𝑥
2

+ 𝑥
4

) 󳨐⇒

1

∑

6

−

3

∑

6

.

(44)

Redundancy arises because from (39) one obtains ∑1
6
, as

∑
4

6
is directly computable (Section 2); so, in (II), we know

already the result, as ∑2
6
is again trivial, the same in (III), as

∑
3

6
is again directly computable.
It is remarkable here that in the original expansion (𝑥6 −

1) = (𝑥
3

− 1)(𝑥
3

+ 1) the simplest factorization (𝑥
3

+ 1) =

(𝑥 + 1)(1 − 𝑥 + 𝑥
2

) yields, for 𝑃
2
(𝑥) = 1 − 𝑥 + 𝑥

2, the double
series expansion

(1 +

1

2

) − (

1

4

+

1

5

) + (

1

7

+

1

8

) − (

1

10

+

1

11

) ± ⋅ ⋅ ⋅

=

1

∑

6

+

2

∑

6

−

4

∑

6

−

5

∑

6

= ∫

1

0

𝑑𝑥

1 − 𝑥 + 𝑥
2
=

2𝜋

3√3

(45)

which is again a redundant calculation, as included in the
(summed) ∫1

0

𝑑𝑥(1/(1 + 𝑥
3

)).
To finish these simple cases, we just write down the

nontrivial summations:
1

∑

6

(𝑁) =

1

6

log (𝑁) +
𝛾

6

+

log (2)
3

+

log (3)
4

+

log (2)
3

+

𝜋

4√3

,

4

∑

6

=

log (𝑁)
6

+

𝛾

6

+

log (3)
4

−

6𝜋

12√3

,

1

∑

6

−

5

∑

6

=

log (3)
4

.

(46)

And, in this𝑚 = 6 case, we get also

1

∑

6

−

4

∑

6

=

𝜋

3√3

, (47)

computing∑2
6
and ∑4

6
= (1/2)(𝜋/3√3) as in Section 1.

In terms of some Dirichlet functions we get

1

∑

6

−

5

∑

6

= ∑

𝜒
(6)

2

𝑛

,

as 𝜒
(6)

2
(1, 2, 3, 4, 5, 6) = (1, 0, 0, 0, −1, 0) =

log (3)
4

.

(48)

For a modern treatment of sums involving harmonic
numbers, see [4].

4. General Numbers

Here the cyclotomic equation is, for𝑚 = 5,

𝑥
5

− 1 = (𝑥 − 1) (1 + 𝑥 + 𝑥
2

+ 𝑥
3

+ 𝑥
4

)

= (𝑥 − 1) (𝑥 − 𝜔) (𝑥 − 𝜔) (𝑥 − 𝜔
2

) (𝑥 − 𝜔
2
) ,

(49)

where𝜔 = exp(2𝜋𝑖/5)=Rotation by 72∘ and𝜔2 = exp(4𝜋𝑖/5)
= Rotation by 144∘.
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We obtain easily

cos (72∘) =
√5 − 1

4

, cos (144∘) = −1 − √5

4

. (50)

The integral𝑇 ≡ ∫

1

0

(𝑑𝑥/(1+𝑥+𝑥
2

+𝑥
3

+𝑥
4

)) can be done
as the real denominator splits in two real ones and quadratic,
but we abstain to write explicitly (𝜔 = 𝑒

2𝜋𝑖/5

)

(1 + 𝑥
2

+ 𝑥
3

+ 𝑥
4

) = (1 − 𝑥Tr𝜔 + 𝑥
2

) (1 − 𝑥Tr𝜔2 + 𝑥2) .
(51)

The expression for the integral is too long to be written.
In summation terms, it is 1/(1 + 𝑥 + 𝑥

2

+ 𝑥
3

+ 𝑥
4

) = ⋅ ⋅ ⋅ =

(1 − 1/2) + (1/6 − 1/7) + ⋅ ⋅ ⋅ = ∑
∞

𝑛=1
(1/(5𝑛 − 4) − 1/(5𝑛 − 3))

still computable (e.g., with Mathematica) but still too long.
The final result will be

∫

1

0

𝑑𝑥

1

1 + 𝑥 + 𝑥
2
+ 𝑥
3
+ 𝑥
4
=

1

∑

5

−

2

∑

5

. (52)

This does not correspond to none mod 5 Dirichlet
characters, but one can always put a (Dirichlet) function

𝑓
(5)

2
(1, 2, 3, 4, 5, 6, 7, . . .)

= (1, −1, 0, 0, 0, 1, −1) periodic mod 5.
(53)

The simplest summation (according toMathematica) is

1

∑

5

−

4

∑

5

=

1 + √5𝜋

5√2 − √5

. (54)

Notice that the factorization in (49) does not allow us
to write it as difference between two series, because the
coefficients are not integer numbers.

For the next prime, namely,𝑚 = 7, we have three couples
of complex roots, plus the 𝑥 = 1 value: the sextic integral has
not been attempted, but the summation can be again done;
we refrain from elaborating.

This is the general trend for prime numbers 𝑝; there are
(𝑝 − 1)/2 pairs of complex conjugate roots; “a priori,” the
only integral versus series is the simplest case, generalizing
the above result:

∫

1

0

𝑑𝑥

1

1 + 𝑥 + 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝−1
=

1

∑

𝑝

−

2

∑

𝑝

. (55)

The number (𝑝 − 1)/2 coincides also with the Euler
number.

5. General Case

We deal now with some composite numbers. Compound
numbers are easier; we just add a calculation for𝑚 = 8, with
𝜙(8) = 8 − 4 = 4:

𝑥
8

− 1 = (𝑥
4

− 1) (𝑥
4

+ 1) ,

(𝑥
4

+ 1) = (𝑥
2

− √2𝑥 + 1) (𝑥
2

+ √2𝑥 + 1) ,

(56)

and so

∫

1

0

𝑑𝑥

𝑥
4
+ 1

=

𝜋 + log (3 + 2√2)

4√2

= ⋅ ⋅ ⋅ =

1

∑

8

−

5

∑

8

=

∞

∑

𝑛=1

(

1

8𝑛 − 7

−

1

8𝑛 − 3

)

=

𝜋

4√2

+

log (3 + 2√2)

4√2

.

(57)

Another factorization is (𝑥8−1) = (𝑥
2

−1)(1+𝑥
2

+𝑥
4

+𝑥
6

).
It is equivalent to

∫

1

0

𝑑𝑥

1

(1 + 𝑥
2
+ 𝑥
4
+ 𝑥
6
)

=

1

∑

8

−

3

∑

8

=

∞

∑

𝑛=1

(

1

8𝑛 − 7

−

1

8𝑛 − 5

) .

(58)

Still, a third factorization is (𝑥8 − 1) = (𝑥 − 1)(1 + 𝑥 +

𝑥
2

+ ⋅ ⋅ ⋅ + 𝑥
7

), which yields ∑1
8
−∑
2

8
, so the remaining ∑7

8
is

obtained by difference (with∑2,4,6,8
8

inmediate).The case𝑚 =

8 is potentially resolved. Again, we refrain from elaborating.
For𝑚 = 9,∑3

9
and∑6

9
can be computed directly, whereas

the odd cases ∑1,3,5,7
9

require further work, but it is again
feasible, similarly for𝑚 = 10.

As general conclusion, we have shown a remarkable
relation between the cyclotomic equation 𝑥

𝑚

− 1 = 0 and
some series and definite integrals; they go from the simplest
integrals (and series) in the literature (like ∫𝑑𝑥(1/(1 + 𝑥)) =
log(2)) to very complicated cases, still feasible: the integrals
have denominators factoring in quadratic ones, and the series
are of the type∑(1/(𝑎𝑛2 + 𝑏𝑛 + 𝑐)), computable, in principle,
by means of the Hansen’s formula.

There are, however, some questions left in our work: for
example, the series for 1/(1+𝑥+𝑥2+𝑥3+⋅ ⋅ ⋅+𝑥𝑞)we identify
it with the series ∑1

𝑞+1
; this is correct, but we have checked it

“case by case,” offering no general proof, and so forth. Also
we feel that some new series might perhaps appear, whenever
the quadratic components offer an integer expansion: those
are two questions for the future.
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