View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 910281, 6 pages
http://dx.doi.org/10.1155/2015/910281

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

Research of Improved FP-Growth Algorithm in

Association Rules Mining

Yi Zeng, Shiqun Yin, Jiangyue Liu, and Miao Zhang

Faculty of Computer and Information Science, Southwest University, Chongqing 400715, China

Correspondence should be addressed to Shiqun Yin; qqqq-qiong@163.com

Received 17 September 2014; Revised 22 January 2015; Accepted 22 January 2015

Academic Editor: Oleg V. Gendelman

Copyright © 2015 Yi Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Association rules mining is an important technology in data mining. FP-Growth (frequent-pattern growth) algorithm is a classical
algorithm in association rules mining. But the FP-Growth algorithm in mining needs two times to scan database, which reduces
the efficiency of algorithm. Through the study of association rules mining and FP-Growth algorithm, we worked out improved
algorithms of FP-Growth algorithm—Painting-Growth algorithm and N (not) Painting-Growth algorithm (removes the painting
steps, and uses another way to achieve). We compared two kinds of improved algorithms with FP-Growth algorithm. Experimental
results show that Painting-Growth algorithm is more than 1050 and N Painting-Growth algorithm is less than 10000 in data volume;
the performance of the two kinds of improved algorithms is better than that of FP-Growth algorithm.

1. Introduction

Data mining is a process to obtain potentially useful, previ-
ously unknown, and ultimately understandable knowledge
from the data [1]. Association rules mining is one of the
important portions of data mining and is used to find the
interesting associations or correlation relationships between
item sets in mass data [2]. Discovering frequent item sets is
a key technology and step in the applications of association
rules mining [3]. The most famous algorithm is Apriori
put forward by Agawal in the algorithms of discovering
frequent item sets [4]. Apriori algorithm through continuous
connection scans the database removing unfrequented item
sets to find all the frequent item sets in data. But the Apriori
algorithm repeatedly scans the database in mining process
and produces a large number of candidate item sets, which
influence the running speed of mining [5].

FP-Growth (frequent-pattern growth) algorithm is an
improved algorithm of the Apriori algorithm put forward
by Jiawei Han and so forth [6]. It compresses data sets to
a FP-tree, scans the database twice, does not produce the
candidate item sets in mining process, and greatly improves
the mining efficiency [7]. But FP-Growth algorithm needs to
create a FP-tree which contains all the data sets. This FP-tree
has high requirement on memory space [8]. And scanning

the database twice also makes the efficiency of FP-Growth
algorithm not high.

In this paper, we worked out two kinds of improved algo-
rithms—N Painting-Growth algorithm and Painting-Growth
algorithm. N Painting-Growth algorithm builds two-item
permutation sets to find association sets of all frequent items
and then digs up all the frequent item sets according to
the association sets. Painting-Growth algorithm builds an
association picture based on the two-item permutation sets
to find association sets of all frequent items and then digs
up all the frequent item sets according to the association
sets. Both of the improved algorithms scanning the database
only once, improving the overhead of scanning database
twice in traditional FP-Growth algorithm, and completing
the mining only according to two-item permutation sets,
thus, have the advantages of running faster, taking up small
space in memory, having low complexity, and being easy to
maintain. It is obvious that improved algorithms provide a
reference for next association rules mining research.

2. The System Model of Association
Rules Mining

2.1. Frequent Item Sets. Set I = {i,i,,...,1,} as a collection
of all different items in the database, each transaction T is

https://core.ac.uk/display/208370417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a subset of I, that is, T € I, and database D is a collection
of transactions. For a given transaction database D, the total
number of transactions it contains is N. Define the support
count(X) of item set X(X C I) as the number of transactions
T in D making X < T and the support support(X) of item set
X as count (X)/N [9]. The number of items in an item set is
called dimension or length of this item set, if the length of the
item set is k, called k-item set [1].

Definition 1. For a given minimum support, minsup, if the
item set meets support(X) > minsup, item set X is called
a frequent item set and conversely item set X is called
an infrequent item set. A set shows association between a
frequent item with other items, calling this set a frequent
item association set. The minimum support count, min-
Count, meets minCount = minsup*N. When count(X) >
minCount, one says support(X) > minsup [9].

Definition 2. When the length of the item set X is k and
support(X) > minsup, one calls item set Xk-item frequent
set. If k > 3, one can call item set X multi-item frequent set.

Nature. All nonempty subsets of frequent item sets must be
frequent.

2.2. FP-Growth Algorithm. FP-Growth algorithm [10] com-
presses the database into a frequent pattern tree (FP-tree)
and still maintains the information of associations between
item sets. Then the compressed database is divided into
a set of condition databases (a special type of projection
database). Each condition database is dug, respectively, and
associates with a frequent item. Transaction database is in
Table 1 (support count is 2); mining process using FP-Growth
algorithm is shown in Table 1.

Scanning the database for the first time, we can obtain a
set of frequent items and their support count. The collection
of frequent items is ordered by decreasing sequence of
support count. The result set or list writes for L. In this way,
we have L = [C:4, D:3, E:3, A:2, B:2].

Building FP-Tree. First, the algorithm creates the root
node of the tree, with the tag “null” Then it scans the
database for the second time. Each item in a transac-
tion is ordered by the sequence of L. Later it creates a
branch for each transaction. For example, the first trans-
action “001:A, B, C,D,E” contains five items {C, D, E, A, B}
according to the sequence of L, generating the first branch
((C:1), (D:1), (E:1), (A:1),(B:1)) for building FP-tree. The
branch has five nodes. In it, C is the children link of root,
D links to C, E links to D, A links to E, and B links to
A. The second transaction “002:B, C, E” contains three items
{C,E, B} according to the sequence of L, generating a branch.
In it, C links to the root, E links to C, and B links to E.
This branch shares the prefix (C) with the existing path
of transaction “001” In this way, the algorithm makes the
count of node C increase by 1 and creates two new nodes
((E:1),(B:1)) as a link of (C:2). Generally, the algorithm
considers increasing a branch for a transaction and when
each node follows common prefix, its count increases by 1;
algorithm creates node for the item following the prefix and
linking.

Scientific Programming

TABLE 1: Transaction database.

TID Items
001 A,B,C,D,E
002 B,C, E
003 G E D
004 A,C D

Support count

TID Node link
CT4 al //// E:1
D 3 -F-" jEZZ B:1
A2 ---= -
B|l2]| -5 B1

FIGURE 1: Generating FP-tree.

For convenience of tree traversal, the algorithm creates
an item header table. Each item through a node link points
to itself in FP-tree. After scanning all transactions, we get the
FP-tree displayed in Figure 1.

FP-tree Mining Processing. The algorithm starts by the
frequent patterns’ length of 1 (initial suffix pattern) and builds
its conditional pattern base (a “subdatabase,” consisting of the
prefix path set which appears with the suffix pattern). Then,
algorithm builds a (conditional) FP-tree for the conditional
pattern base and recursively digs the tree. The achievement
of pattern growth gets through the link between frequent
patterns generating by conditional FP-tree and suffix pattern.
The mining of FP-tree is summarized in Table 2.

2.3. System Model. Algorithms of frequent patterns mining
have been applied in many fields. Researching their system
model can facilitate a better understanding of them. Figure 2
is a system model of the improved algorithms in this paper.

The user can get needed knowledge which passes data
mining through the data mining platform. Data mining plat-
form includes data definition, mining designer, and pattern
filter. Through the data definition, we can do a pretreatment
for data and make incomplete data usable; through the
mining designer, we can use the improved algorithms to dig
data and get useful patterns (here are frequent item sets);
through the pattern filter, we can select interesting patterns
from obtained patterns.

3. Improved Algorithms Based on the
FP-Growth Algorithm

FP-Growth algorithm requires scanning database twice. Its
algorithm efliciency is not high. This paper puts forward
two improved algorithms—Painting-Growth algorithm and
N Painting-Growth algorithm—which use two-item permu-
tation sets to dig. Both algorithms scan database only once to
obtain the results of mining.

Scientific Programming

TaBLE 2: Dig FP-tree through creating conditional subpattern base.

Item Conditional pattern base Conditional FP-tree Frequent pattern

B {(CDE A1), (CE:1)} (C:2,E:2) CB:2,EB:2, CEB:2

A {(CDE:1), (CD:i)} (C:2,D:2) CA:2,DA2,CD A2
E {(CD:2), (C1)} (C:2,D:2) CE:2,DE:2,CDE:2
D {(C:2)} (C:2) CD:2

L

User
l Knowledge
Data mining platform

e 1
I I
I
| Data definition Mining designer Pattern filter
i i

Data preprocessing

Mining core
(improved algorithm)

Patterns expression and
interpretation

Original data Valid data

Obtain two-item permutation sets
Association’s count and pruning
Two-item frequent sets

All frequent item sets

Pattern sets

FIGURE 2: Association rules mining system model.

3.1. Painting-Growth Algorithm. Taking the transaction
database in Table1 as an example, the mining process with
Painting-Growth algorithm is as follows.

(1) The algorithm scans the database once, obtains two-
item permutation sets of all transactions, and paints peak
set (the peak set is a set of all different items in transaction
database). Here we take the first transaction as an example.

The first transaction is {A, B, C, D, E}.

Two-item permutation sets after scanning the first
transaction are {(A,B),(A, C),(A,D), (A,E),(B,A),(C, A),
(D, A),(E, A),(B, C), (B, D), (B, E),(C, B),(D, B),(E, B),(C, D),
(G, E),(D, O),(E, C), (D, E),(E, D)}

Other transactions are similar to the first transaction. The
peak set after scanning database is {A, B, C, D, E}.

(2) After obtaining the peak set and two-item per-
mutation sets of all transactions, the algorithm paints the
association picture according to two-item permutation sets
and peak set. It links the two items appearing in each two-
item permutation. When the permutation appears again, the
link count increases by 1. The association picture is shown in
Figure 3.

(3) According to the association picture, algorithm
exploits the support count to remove unfrequented asso-
ciations. We can get the frequent item association sets as fol-
lows: {A(C:2,D:2);B(C:2,E:2); C(A:2,B:2,D:3,E:3); D(A:2,C:3,
E:2); E(B:2,C:3,D:2)}.

2

FIGURE 3: The association picture.

Here we take the item A as an example. A(C:2,D:2) shows
that the support count of two-item set (A C) is 2 and the
support count of two-item set (A D) is 2. Other items are
similar to item A.

(4) According to the frequent item association sets, we
can get all two-item frequent sets of this transaction database:
{(A,C):2;(A,D):2;(B,C):2;(B,E):2;(C,D):3;(C,E):3;(D,E):2}.

(5) According to the frequent item association sets
{A(C:2,D:2);C(A:2,B:2,D:3,E:3);D(A:2,C:3,E:2)}, we can get a
three-item frequent set {(A,C,D):2}.

And according to the frequent item association sets
{A(C:2,D:2);C(A:2,B:2,D:3,E:3);D(A:2,C:3,E:2)}, we also can
get a three-item frequent set {(B,C,E):2}.

Similarly, according to the frequent item association sets
{C(A:2,B:2,D:3,E:3);D(A:2,C:3,E:2);E(B:2,C:3,D:2)}, we get a
three-item frequent set {(C,D,E):2}.

(6) At this point, we get all frequent item sets.

The algorithm pseudocode is as follows.

Algorithm 3 (Painting-Growth).
Input. Transaction database, minimum support count: 2

Output. All frequent item sets

(1) HashMap(String, integer) hm0; //define

a HashMap set hmoO
(2) List(String) list,list0;

(3) List(String) permutation(); //scan the transaction
database, execute two-item arranging to each trans-
action, return list

//define the List set list,list0

//painting method
//define String[] s, x

(4) paint(Graphics g)
(5) String[] s=null, x=null;
(6) String z,y;

(7) HashMap(String, HashMap(String, integer))

hm=null; //define a HashMap set hm
(8) For (int i=0; i<list. size(); i++)
9 {

(10) s = list.get(i).split(‘?);

(11) drawLine(s[0].x, s[0].y, s[1].x, s[1].y);
a line between s[0] and s[1]

(12) HashMap(String, HashMap(String, integer))

/et list.get(i) to a String|[]
//draw

count(drawLine()); //count the drawing line and
return the item associations to hm
(13) }

(14) Iterator it = hm.keySet().iterator;
iterator of hm
(15) z = it.next();
(16) Iterator it0 = hm.get(z). keySet(). iterator;
the key sets iterator in value sets of hm
(17) y = it0.next();
ofhmtoy
(18) if(hm.get(z).get(y)<minsup*N) //if the value in
value sets of hm less than minimum support count
(19) {it0.remove();}

(20) List(String) combination(hm.get(z).keySet());
//combination the key sets in value sets based on key
z of hm, return list0

(21) for(int j=0; j<list0.size();j++)

(22) {

(23) x = list0.get(j).split(7);

(24) if(count(hm.contain(z+ +list0.get(j))==1+x.
length)) //if the count of item sets in hm equal with
the length of the item sets(first consider the key of hm
in the item sets or not)

//define key set

//let the key in key set of hm to z
//define

//let the key in key sets of value sets

/Iremove the unfrequented item sets

Scientific Programming

(25) {hmO.put(z+ +list0.get(j),value)};//save the item sets
and its support count in hmo0

(26) }
(27) return hmo;//gain all frequent item sets

(28) super.paintComponents(g);
method.

/lexecute painting

3.2. N Painting-Growth Algorithm. The thought of N Paint-
ing-Growth algorithm is similar to the Painting-Growth
algorithm, but with different implementation method. N
Painting-Growth algorithm removes the painting steps. The
mining process of N Painting-Growth is as follows.

(1) The algorithm scans the database once and gets two-
item permutation sets of all transactions.

(2) Then, the algorithm counts each permutation in two-
item permutation sets getting all item association sets.

(3) Later, the algorithm removes infrequent associations
according to the support count and gets frequent item
association sets.

(4) Finally, it gets all frequent item sets according to the
frequent item association sets. Mining ends.

From the above processes it can be seen that the N
Painting-Growth algorithm is the removing of painting steps
version of Painting-Growth. The implementation methods
are different: Painting-Growth algorithm imports java.awt
and javax.swing, implementing mining through calling
super.paintComponents(g); N Painting-Growth algorithm
only passes instantiation of a class in main function to
implement.

4. Experimental Results Analysis

To improved algorithms—Painting-Growth and N Painting-
Growth algorithm—the biggest advantage is reducing data-
base scanning to once. Comparing with scanning database
twice of FP-Growth algorithm, it has improved time effi-
ciency.

Another advantage is that improved algorithms are sim-
ple, completing all mining only needing transactions’ two-
item permutation sets. Although the FP-Growth algorithm is
also getting FP-tree to complete mining, the FP-tree builds
complexly and requires memory overhead largely. Relatively,
the two-item permutation sets can be obtained easily.

Of course, improved algorithms have disadvantages. In
Painting-Growth algorithm, the algorithm needs to build the
association picture, leading to a large memory overhead. In
N Painting-Growth algorithm, the implementation method
is less vivid than Painting-Growth algorithm. When using the
two improved algorithms to dig multi-item frequent sets, they
scan the frequent item association sets repeatedly for count.
This reduces the time efficiency.

In order to verify the two kinds of improved algorithms
relative to the FP-Growth algorithm existing superiority,
we use the Java language, in eclipse development environ-
ment, Windows 7 64-bit operating system, implementing the
Painting-Growth algorithm, N Painting-Growth algorithm,

Scientific Programming

and FP-Growth algorithm. The data in experiments come
from Data Tang—research sharing platform. Transactions in
database, respectively, are 1050, 5250, 10500, 21000, 31500,
42000, and 52500.

In experiments, three kinds of algorithms accept the same
original data input and support parameter. The algorithms
run 20 times in each bout, calculating the mean as a result.

Figure 4 is an execution time comparison figure for
Painting-Growth algorithm, N Painting-Growth algorithm,
and FP-Growth algorithm under the condition of different
transactions. From the figure, on the one hand, starting from
1050 transactions, the execution time of N Painting-Growth
algorithm is less than FP-Growth algorithm; at 31500 trans-
actions, the execution time of N Painting-Growth algorithm
and FP-Growth algorithm is very close. Afterwards, the time
efficiency is not as good as FP-Growth algorithm.

On the other hand, from 1050 transactions, the execution
time of Painting-Growth algorithm is a little bit more than
FP-Growth algorithm. But with the increase in number
of transactions, the execution time is less than the FP-
Growth algorithm significantly. Thus it can be seen, from
the transactions-execution time comparing, that Painting-
Growth algorithm is more stable and efficient than FP-
Growth algorithm.

Another, the implementation method of Painting-
Growth algorithm and N Painting-Growth is different. The
performance is also different. Although N Painting-Growth
algorithm omits the painting steps, only around 1050 trans-
actions to 10500 transactions, the execution time of N
Painting-Growth algorithm is a little less than Painting-
Growth algorithm. Then, with the increase of transaction
amount, the performance of Painting-Growth algorithm is
far better than N Painting-Growth algorithm. This shows
that the implementation method of N Painting-Growth has
large memory consumption which leading the execution
time of N Painting-Growth grows faster.

Figure 5 is execution time’s increase rate comparing of
different transaction stages for Painting-Growth algorithm,
N Painting-Growth algorithm, and FP-Growth algorithm.
There are seven transaction stages; stage 1:0-1050 trans-
actions, stage 2: 1050-5250 transactions, stage 3: 5250-
10500 transactions, stage 4: 10500-21000 transactions, stage
5: 21000-31500 transactions, stage 6: 31500-42000 transac-
tions, and stage 7: 42000-52500 transactions.

From Figure 5, firstly, to Painting-Growth algorithm at
initial stage 1, the execution time’s increase rate of Painting-
Growth algorithm is high. But then, from stage 2 to stage 7, the
fluctuation of execution time’s increase rate is gentle, stable
performance. And at stage 2 to stage 6, the execution time’s
increase rate of Painting-Growth algorithm is lower than FP-
Growth algorithm, superior performance.

Secondly, to N Painting-Growth algorithm at the first
three stages, the execution time’s increase rate of N Painting-
Growth algorithm is lower than FP-Growth algorithm, per-
forming well. But later, the increase rate of N Painting-
Growth algorithm is almost higher than FP-Growth algo-
rithm and Painting-Growth algorithm. It also explains why
the execution time of N Painting-Growth is rising rapidly.

Execution time (ms

20000 30000 40000 50000

Transaction (count)

0 10000 60000

—e— Painting-Growth
—=— N Painting-Growth
FP-Growth

FIGURE 4: Three-algorithm transactions-execution time compari-
son.

Increase rate
(=] [=} (=)
O U= U1 U1 W

0 1 2 3 4 5 6 7 8
Transaction stage
—e— Painting-Growth

—=— N Painting-Growth
FP-Growth

FIGURE 5: The increase rate of three algorithms in different transac-
tion stages.

Finally, to FP-Growth algorithm, although the whole
change trend of increase rate is similar to improved algo-
rithms, it has more clear change than improved algorithms in
stage 2 and stage 5. So, the FP-Growth algorithm is less stable
than improved algorithms.

From what is above it can be concluded that our Painting-
Growth algorithm has an obvious breakthrough in data
analysis. Unhesitatingly, when the data size is suitable, we can
consider adopting improved algorithms to achieve further
performance. Carefully, the transactions are less than 10000
and we can consider N Painting-Growth algorithm. In other
cases, the Painting-Growth algorithm performs better and we
can consider adopting it.

5. Conclusions

In this paper, we put forward improved algorithms—
Painting-Growth algorithm and N Painting-Growth algo-
rithm. Both algorithms get all frequent item sets only through
the two-item permutation sets of transactions, being simple
in principle and easy to implement and only scanning
the database once. So, at appropriate transactions, we can
consider using the improved algorithms. But we also see
the problems of improved algorithm: in large data, the
performance of the N Painting-Growth is disappointing.
Considering how to make the performance of the improved
algorithms more stable, make the removal of unfrequented
item associations efficient, and make the mining of multi-
item frequent sets quick will be our future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the Fundamental Research Funds
for the Central Universities (XDJK2009C027) and Science &
Technology Project (2013001287).

References

[1] P.Yangand Z.Song, “An improvement to FP-growth algorithm,”
Journal of Anhui Institute of Mechanical & Electrical Engineering:
Natural Science, vol. 17, no. 3, pp. 8-13, 2005.

[2] D. Fengyi and L. Zhenyu, “An ameliorating FP-growth algo-
rithm based on patterns-matrix;” Journal of Xiamen University
(Natural Science), vol. 44, no. 5, pp. 629-633, 2005.

[3] Y. Yang and Y. Luo, “Improved algorithm based on FP-Growth,”
Computer Engineering and Design, no. 7, pp. 15061509, 2010.

[4] Q. Ruan, Y. Li, and X. Liu, “A hash table and linear based
improved FP-Tree algorithm,” Journal of Yangtze University
(Natural Science Edition): Science & Engineering, vol. 1, pp. 76—
79, 2010.

[5] X.Luoand]. Chen, “An improvement algorithm for FP-growth,”
Journal of Xian University of Science and Technology, vol. 29, no.
4, pp. 491-494, 2000.

[6] L. Zhichun and Y. Fengxin, “An improved frequent pattern tree
growth algorithm,” Applied Science and Technology, vol. 35, no.
6, pp. 47-51, 2008.

[7] C.Jun and G. Li, “An improved FP-growth algorithm based on
item head table node,” Information Technology, vol. 12, pp. 34—
35, 2013.

[8] B. Zheng and J. Li, “An improved algorithm based on FP-
growth,” Journal of Pingdingshan Institute of Technology, vol. 17,
no. 4, pp. 9-12, 2008.

[9] N. Xinzheng and S. Kun, “Mining maximal frequent item sets
with improved algorithm of FPMAX,” Computer Science, vol.
40, no. 12, pp. 223-228, 2013.

[10] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
China Machine Press, Beijing, China, 2001, translated by: E
Ming, M. Xiaofeng.

Scientific Programming

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

