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With the onset of Cyber-Physical Systems (CPS), distributed algorithms on Wireless Sensor Networks (WSNs) have been receiving
renewed attention. The distributed consensus problem is a well studied problem having a myriad of applications which can
be accomplished using asynchronous distributed gossip algorithms on Wireless Sensor Networks (WSNs). However, a practical
realization of gossip algorithms for WSNs is found lacking in the current state of the art. In this paper, we propose the design,
development, and analysis of a novel in situ distributed gossip framework called INDIGO. A key aspect of INDIGO is its ability
to perform on a generic system platform as well as on a hardware oriented testbed platform in a seamless manner allowing easy
portability of existing algorithms. We evaluate the performance of INDIGO with respect to the distributed consensus problem
as well as the distributed optimization problem. We also present a data driven analysis of the effect certain operating parameters
like sleep time and wait time have on the performance of the framework and empirically attempt to determine a sweet spot. The
results obtained from various experiments on INDIGO validate its efficacy, reliability, and robustness and demonstrate its utility as

a framework for the evaluation and implementation of asynchronous distributed algorithms.

1. Introduction

Sensor networks are becoming an important part of mon-
itoring activities across various interdisciplinary domains.
They have been successfully applied to solve problems like
seismic activity monitoring and tomography [1], exploratory
geophysics [2], and wildfire and wildlife monitoring [3]
among many things. Extracting optimal performance from
sensors has always been a challenge [4] and it has led to
a flurry of active research in recent times. Sensor networks
come with their own set of constraints which cannot be
overlooked. For instance, sensor networks often come with a
very limited energy source, which makes it imperative to use
system resources judiciously and keep communication costs
as low as possible. It is also quite likely that due to energy
constraints the sensor network might be able to provide only
limited amount of bandwidth for data transfer, which makes
communication a more precious affair.

Therefore, recent state-of-the-art research in the area
of sensor networks suggests that the trends appear to be
focusing on striking a balance between power consumption

attributed to communication and system utilization. With
sensor nodes becoming computationally more powerful and
less resource hungry, the bottleneck of communication as
a barrier for efficient utilization of system resources seems
to persist. Due to the rise of increasingly power efficient
sensor nodes it now makes more sense in some cases to
delegate computation based tasks to the nodes themselves
than to have them use up precious resources to depend
on a central entity for computation. In recent times, the
interleaving of the computational aspect of sensor networks
with that of physical processes such as sensing has opened up
new research avenues like Cyber-Physical Systems [5] and in-
network computing [6].

One such research problem in which the centralized
approach to problem solving is less efficient than an in-
network approach is that of achieving consensus in a sensor
network. Sensor nodes are heavily reliant on batteries. Wire-
less transmission of sensed data requires bandwidth which
consumes considerably more energy than processing data
locally 7, 8]. In some cases, for example, in seismic networks,
the sensed data at a particular node does not vary drastically



in a spatial sense with respect to its neighbors. Therefore,
in case of applications like seismic sensing, one would be
more interested in obtaining the global picture with respect
to the data obtained from the network rather than focusing
on the fine grained nuance of the data pertaining to each
node. This would typically involve the solving of a global
optimization problem as a function of the sensed data. By
adopting a distributed approach, we would also avoid loss of
packets in and around the sink node owing to congestion. In
the light of these observations, by using a decentralized, in-
network approach, we could exploit the spatial corelation of
data among neighbor nodes, avoid redundant transmission
of data to a central entity by pushing the computation to the
end nodes, and in turn hope to save on energy consumption
owing to costly transmissions [9].

The consensus problem in sensor network epitomizes
the abovementioned ideas. It deals with each node arriving
at a consensus of a measured parameter solely on the
basis of exchange of information with its neighbor nodes.
As an extension of the distributed consensus problem, the
distributed consensus optimization problem involves using
consensus to propagate information to other nodes in the
network and then solving a local optimization problem with
constraints local to each particular node.

It is in this regard that the problem of asynchronous
distributed gossip has been proposed for consensus as well as
consensus optimization in sensor networks. The idea is to be
able to solve a computationally intensive problem by mutual
exchange of information among nodes. The very basic case of
distributed gossip is the distributed consensus problem. By
attacking the distributed consensus problem, we can expect
to solve much more computationally intensive problems.

The distributed gossip approach is a very promising one
in the world of Cyber-Physical Systems [10]. In the recent
past, a key implementation of CPS has been in the area of
seismic monitoring [1, 11]. As an extension of the above work,
research is being conducted for performing seismic tomogra-
phy [12] in a distributed fashion. Seismic tomography is the
process of determining, with good accuracy, a profile of the
earth under the surface. It is extremely helpful in the area of
geophysics for disaster planning and preparedness.

Currently, most tomography approaches use a centralized
technique where information is relayed to a sink in order
to solve a global optimization problem. However, with dis-
tributed gossip, one can hope to minimize this cost, make
the system and the network more efficient, and expect it to
be more reactive. In this regard distributed gossip techniques
have an edge over existing algorithms.

Although asynchronous distributed gossip protocols have
been well studied in theory, there is very little work done
with respect to characterizing the behavior and performance
of distributed gossip protocols on an actual WSN setup.
There is also not much study done in terms of performance
characterization in solving a distributed consensus optimiza-
tion problem over a wireless network. In order to address
these issues, we present INDIGO, a novel in situ distributed
gossip framework aimed at solving distributed consensus
optimization problems using distributed gossip techniques.
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INDIGO is a practical, flexible, and highly versatile frame-
work, which can be seamlessly implemented on a specific
hardware platform as well as on a generic TCP/IP based
network. This feature enables a wide variety of use cases for
INDIGO, from testing and evaluation of novel distributed
approaches to actual field deployment. By incorporating two
diverse gossip protocols, that is, broadcast and random, in
its design, INDIGO also enables users to conduct a rich
set of tests and compare results of distributed consensus
optimization on an actual wireless network. Our results
indicate INDIGO’s strong performance with respect to real-
world case studies in the field of seismic sensing and a strong
corelation to the results as predicted by theory.

The rest of the paper is organized as follows. Section 2
talks about the existing state-of-the-art gossip algorithms
which INDIGO implements. Section 3 presents an overview
of the random and broadcast gossip protocol as implemented
under INDIGO and presents an empirical analysis of the
performance of the framework on the basis of some newly
introduced parameters like sleep time and wait time. Section 4
talks about how we have implemented the aforementioned
algorithms on both system and testbed platforms. Section 5
demonstrates the various results we have obtained using
INDIGO and Section 6 concludes the study by highlighting
the various aspects of the study as well as pointing at the
future direction of research in this area.

2. Related Work

Distributed gossip in sensor networks is a well studied
problem. The types of gossip can be broadly categorized into
three types, that is, broadcast, random, and geographic [13-
15]. Geographic gossip uses geographic routing, which is not
preferable in the case of our sensor network as it is hard to
implement on a proprietary hardware stack such as XBee. In
this study we limit ourselves to the domain of only broadcast
and random gossip and describe the various published works,
which have inspired this study. As already mentioned, the
main aim of this study is to implement established gossip
algorithms on a system level and help in observing their
behavior in different scenarios.

Random gossip was first proposed by Boyd et al. [13]
based on the asynchronous time model. Random gossip
chooses nodes at random from its neighbors to exchange
information and calculate the average. The important thing
about random gossip is that at any time instant there can be
only one exchange taking place between two particular nodes.
This implies that while the process of averaging or gossip is
going on, no other third node can indulge either of the nodes
in gossip. It is only after both the nodes have successfully
performed gossip that they are free to choose other nodes to
perform gossip with at random. The paper also proves that
the algorithm converges to the true average and further goes
on to determine the convergence rate. It also provides upper
bounds with respect to the averaging time of the algorithms.
These conclusively provide sufficient evidence of the robust
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nature of the random gossip algorithm. With respect to
broadcast gossip however, the work done by Aysal et al. in [14]
proves that the algorithm converges only in expectation. The
paper also goes on to provide a comparison between different
approaches (i.e., broadcast, random, and geographic) in
terms of the variance as well as the mean squared error per
node against the number of radio transmissions with respect
to different network sizes. The work done in [16] provides a
very good explanation of the rate of convergence in a more
practical setting by assuming that each link has a fixed delay.

Although both random and broadcast gossip aim to
achieve average consensus among nodes, their style of per-
forming gossip is radically different. While random gossip
chooses to perform gossip with its immediate neighbors, a
node can only perform gossip with only one other particular
node at any given time. Broadcast gossip on the other hand
performs gossip by broadcasting its values to its neighbors.
While random gossip is suited to any type of network
with a static topology, broadcast gossip is more relevant
in case of Wireless Sensor Networks where the underlying
communication pattern is broadcast driven.

The work done by Dimakis et al. [17] presents a broad
overview of the recent developments in the area of gossip pro-
tocols. It describes the convergence rate of gossip protocols
in relation to the number of transmitted messages as well as
energy consumption and also discusses gossip characteristics
over wireless links. Further, the work done by Denantes et
al. [18] presents an interesting evaluation on a mathematical
basis of certain metrics which may be useful in choosing
an apt algorithm for performing distributed gossip. Instead
of focusing on a time-invariant scenario, these metrics are
evaluated on the basis of time-varying networks culminating
in the provision of an upper bound on the convergence speed.

The work done by Braca et al. [19] investigates an
important and crucial problem of when to begin averaging
and when to end sensing. They propose an alternative novel
approach of running consensus where the sensing and aver-
aging happen in a simultaneous fashion. Paper [20] provides
a very novel application of gossip protocols. By investigating
the problem of consensus in a multiagent system, it demon-
strates a practical application of gossip protocols towards a
Distributed Flight Array (DFA). DFA is a set of multiple
agents, which coordinate amongst themselves to arrive at
a consensus and fly in a variety of combinations. While
both works [13, 14] present an astute theoretical analysis of
their respective gossip technique, they make a number of
assumptions which may not hold good in case of a real
implementation.

The work done by Tsianos et al. [21] presents a practical
approach for asynchronous gossip protocols but they do not
use a bidirectional mechanism and opt for a one-directional
variant instead and their evaluations are performed on an
MPI cluster which has different constraints from an actual
WSN.

We now proceed to provide a detailed explanation of the

problem to be solved coupled with an exhaustive overview of
the INDIGO framework design.

3. Problem Formulation and
Framework Design

3.1. Decentralized Consensus Optimization. A seismic tomog-
raphy problem can be modeled as a linear least squares
problem of the following form:

o1
Xg = arg;nmi |Ax — b||§ , 1)

where x € R", A € R™", and b € R™. Equation (1)
represents the global least squares problem that needs to be
solved. If we let F(x) = min, (1/2)[|Ax - b||§, (1) transforms
into an optimization problem of minimizing the objective
function F(x) with respect to x. Given the high-dimensional
nature of seismic tomography, the global system of equations
represented by (1) is very large and as a result the process of
obtaining a good solution to the optimization problem is a
tedious affair. Further, solving such a problem over a loosely
connected and often unreliable Wireless Sensor Network
where each of the nodes holds part of the global optimization
puzzle is a challenge in its own right.

To solve this issue, we construct a decentralized approach
from the above system of equations, by partitioning A and
b row wise over p nodes of the network to yield A =
{ALA,...,A b and b = {b,b,,...,b,}, respectively. The
system of equations represented by A; € R"™*" and b, € R™
form the subsystem at the ith node where each node holds a
part of the input data. This decentralized version in turn leads
to the formation of a relatively smaller, local optimization
problem with the following individual objective function

£,6) = min 4% - b @

at the ith node. The work done in [22] proposes one such
decentralized algorithm which aims to solve this consensus
optimization problem. Hence, we obtain a decentralized
consensus optimization of the following form:

minimize F (x) = %if, (x;), (3)
i1

where x;, y;,and f; are the local estimate of the observed value
and the local objective function on the ith node, respectively.
The individual optimization is solved using Bayesian ART
(Algebraic Reconstruction Technique) [23]. The Bayesian
ART is an iterative technique used to solve a system of
equations like those in (1) or (2) by driving the solution
towards the minima as pointed to by the gradient of the
objective function.

Therefore, we now only have to minimize each node’s
objective function independent of its peers and with the help
of mutual exchange of information, that is, each node’s own
estimate of x, among neighbors we can expect a convergence
among all the nodes to a solution of the global optimization
problem in (1). Mutual exchange of information occurs
among neighboring nodes with the help of the gossip algo-
rithms mentioned in the previous section.
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F1GURE 1: Illustration of random and broadcast gossip with respect to node i and its neighborhood j, € A4/, Vk € {1, |/4/[}.

At the very heart of each gossip algorithm is the intention
to obtain global average of a measured parameter. Therefore,
a gossip algorithm attempts to solve the following averaging
problem in an entirely distributed way:

1 n
x=-)x, (4)
hia

where x, x5, ..., x,, are the individual observations recorded
by each of the n nodes in the network. For instance, a bunch
of temperature sensing nodes measuring the temperature of a
room may do so by relaying their measured values to a central
sink or by exchanging information amongst themselves and
arriving at an average which would be the consensus.

With the help of the INDIGO framework we can now
apply the concepts illustrated above to solve our problem of
seismic tomography. First, we construct a local optimization
problem at each node in the network. Nodes then average
their respective local estimate of x with their neighbors using
the gossip protocols mentioned in the previous section. Once
the averaging has taken place, the local optimization problem
is solved by each individual node to obtain its own next
estimate of x.

3.2. INDIGO Framework Overview and Design. As described
in the previous section, gossip protocols can be broadly cat-
egorized into random and broadcast gossip protocols. In this
section we present a novel and practical framework design
that aims to bring forth the true spirit of the aforementioned
protocols. INDIGO has the capability to be configured to
execute either the broadcast or the random gossip protocol
at run time. The idea is to create a flexible framework design,
which can be extended into a platform on the basis of which
various algorithms can be evaluated upon.

Let us consider a graph G(V, E), with V, E being the vertex
set and edge set, respectively. Since distributed gossip occurs
among neighbors, we denote the neighborhood of any node
i € V as follows:

No={jljev, wy=1}, (5)
where 7' is the adjacency matrix of graph G.

The actual model followed by broadcast and random gos-
sip algorithms is an asynchronous time model, which models
a rate 1 Poisson clock on each node [13, 14]. We introduce
the concepts of exclusivity and stochasticity of the framework
as an approximation to enforce this behavior. Exclusivity
implies that a node when in the process of performing gossip
cannot entertain gossip requests from a third party node,
thereby discarding any other packets until the ongoing gossip
exchange succeeds. An important outcome of exclusivity is
that the node which is soliciting has no way of knowing
whether its destination has received its request or not. In a real
setting it is important to take into account the fact that packets
may get lost and moreover, even if the packet is received,
the destination might be involved in gossip with another of
its neighbor and may simply discard this request. If these
situations are not handled properly, the gossip protocol may
never terminate or worse it may lead to contradictory results.
In order to solve this problem a concept of wait time, denoted
by o, is introduced. It denotes the duration of time any node
waits before it deems the gossip exchange to have failed. Wait
time insulates nodes from the phenomenon of waiting forever
to hear from their solicited neighbors and also handles the
aspect of packet loss. With the wait time concept in place, if
the packet has not been received or has been discarded by the
receiver, the sender can resume gossip afresh.

Another important feature that needs to be preserved
is the stochastic nature of the gossip process. There has to
be a degree of randomness associated when a particular
node begins gossip. Failure to maintain this feature would
lead to a deterministic output. Absence of this feature may
also cause deadlock among nodes or cause a heavy rate of
failure of gossip exchanges. To maintain stochastic behavior a
parameter known as maximum sleep time, denoted by p, has
been introduced which is nothing but an upper bound on the
random interval of time a node sleeps before attempting a
gossip exchange.

We now describe the various terminologies related to
both random and broadcast gossip and proceed to give a
detailed description of the sequence of events in each. Figure 1
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function RANDOM-GOSSIP (o, p, M, xq)
while updates < ./Z do
sleep for time t,s.t.0 <t < p
if solicited by j € 4 ¢ with value x; then
_ (X j + Xgelf )
Xeelf = f
send(j, Xq)
updates « updates + 1
else
pick random neighbor j € A ¢
send(j, X.¢) and start timer for o
if recv(j,x j)&!timer.expire() then
Xself = X Jj
updates « updates + 1
end if
end if
end while
return x
end function

sell

AvrGoriTHM I: Random gossip algorithm.

provides the pictorial representation of both random and
broadcast gossip protocols:

(i) x4 the estimate of a node’s measurement where
c Cnxl
Xself .

(ii) o: the maximum duration of time after which a gossip
exchange is deemed a failure.

(iii) p: the upper bound on the random interval of time a
node sleeps before initiating gossip.

(iv) #: the maximum number of gossip updates to be
performed by all nodes.

(v) A;: the neighborhood of node i.
(vi) recv(k, x;): an estimate x;. received from node k.

(vii) send(k, x¢): @ node’s self-estimate unicasted to node

k.

(Vi) Xeerr = [X)- -
m nodes to be averaged where y € C"™".

» X jm]: matrix of values received from

(ix) broadcast(x): a node’s self-estimate broadcasted to
all neighbors.

3.3. Random Gossip. Based on the above features and using
aforementioned terminologies we have Algorithm 1 which
describes the random gossip protocol encapsulated as a func-
tion. In the beginning of each batch of gossip each node goes
to sleep for a random interval of time ¢t < p. A node wakes
up from sleep and chooses a random peer from its routing
table and solicits an average. It starts a timer for t < ¢ in
order to wait for the solicited node to respond. If a node is in
solicitation mode, it will discard any other solicitation request
by a third party node. The ¢ timer expires with the solicited
node failing to respond. In such a case the node again goes to
sleep for a random interval of time ¢ < p. The solicited node
responds before timer expires. It updates its current value

function BROADCAST-GOSSIP (o, p, M, X i¢)
while updates < .# do
broadcast(x;)
sleep for time ¢,s8.t.0 <t < p
X < null
no_of_msgs < 0
start timer for o
while !timer.expire() do
recv(f,x;),3j € N e
x[no_of _msgs] = x;
no_of_msgs < no_of_msgs + 1
end while

(Z?:O{ijnsgs X [l]) + Xgelf
no-of_msgs + 1
updates « updates + 1
end while
return x
end function

Xself =

ALGORITHM 2: Broadcast gossip algorithm.

with the newly received value and goes to sleep for time t < p.
A node wakes up from sleep and finds that there is already a
request for average by one of its peers. In such a case the node
performs the average and sends back the result to the solicitor
node. This process is summarized in Figure 2(b) which
summarizes the sequence of events discussed in Algorithm 1.

3.4. Broadcast Gossip. Broadcast gossip varies from random
gossip in its demand for exclusivity. Since broadcast gossip
exploits the underlying broadcast nature of the network, there
is no explicit requirement for exclusivity. However, in broad-
cast gossip, a node still needs to maintain the stochastic nature
and for this purpose the concept of maximum sleep time is
maintained. Also, in broadcast gossip, a node is expected
to wait for receiving values from its neighbors. During this
process, there should be a way to determine when to stop
accepting the values and perform the average. This can be
done in two ways, either wait for a fixed number of neighbors
to respond and then do the average or wait for a fixed amount
of time and do the average with whatever values have been
received until then. Logically, the latter is a better way due to
many reasons. Firstly, this technique does not depend on the
node degree. Secondly, it does not go into an indefinite wait
on not receiving anything from a fixed set of neighbors. Lastly,
it preserves the stochastic and asynchronous nature of the
algorithm. Therefore, we incorporate the concept of wait time
to mark the cutoff time for performing the average. While
the average is being computed any received requests will be
dropped. Based on the above features Algorithm 2 presents
the algorithm for the broadcast gossip protocol encapsulated
as a function. In broadcast gossip too each node goes to sleep
for a random interval of time t < p. A node that has just
woken up from sleep broadcasts its value to neighbors. It
then waits for interval of time ¢ < o. It performs the average
with whatever values have been received in the interim period
and again goes to sleep for random interval of time t < o.
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Broadcast gossip (0, p, #, Xgq)

Broadcast (x,r)
x = null, no_of_messages = 0
if updates < ./

(i) Sleep for time t,s.t.0 <t < p

N\

else

(ii) Return x ¢

(i) Start timer for o and while timer active
(ii) Receive x;, 3j € N gp
(iii) y[no_of_msgs] = x ;

(iv) no_of_msgs++

/

(i) After timer expires

i

X[l]) + Xgelf

(ii) Xself =

(iii) Increment updates

no_of_msgs + 1

(a) Broadcast gossip

Random gossip (0, p, M, Xif)

Neighbor solicits average

(i) Solicited by j € W ¢ with value x;

(‘xj + xself)

(i) xgerf = 2

(i) Send x ¢ to j

(ii) Increment updates

if updates <

(i) Sleep for time ¢, s.t. 0 < t < p
else

(ii) Return xg¢

(i) Pick random neighbor j € W ¢

(i) If j sends back average before timer expires

(ii) Send x to j; start timer for o

Average solicited by self

(i) xel = X;

(iii) Increment updates

(b) Random gossip

FIGURE 2: Flow diagram depicting broadcast and random gossip algorithm.

Figure 2(a) summarizes the sequence of events discussed in
Algorithm 2. We will now turn our attention to the effects that
p and o have on the gossip performance.

3.5. Sweet Spot Analysis. Itis of primary interest to determine
whether these parameters have any bearing on the success of a
gossip exchange. Moreover, it is also of importance to find out
whether there exists a sweet spot, that is, a range of values of p
and o which could yield a near optimal probability of success.
To accomplish this, numerous experiments were conducted
with 0 < p < 10 on a 3 x 3 simulation setup configured for
random gossip. We varied the value of o with respect to p
and plotted the average probability of success of each gossip
exchange. The result is presented in Figure 3. Figure 3 depicts

D> the probability of success on the y-axis, and the p values
on the x-axis, respectively. The probability of success p; is
determined by the following relation:

n NSi
ps = ,:ZlN_t)
where N is the total number of successful gossip attempts
and N, is the total number of attempts obtained on the ith
node. Each curve in Figure 3 represents a particular relation
between p and 0. With ¢ being the dependent variable and
p being the independent variable, we collect values for a

variety of combinations of p and o. From the figure, it can
be observed that there indeed exists a sweet spot for the set

(6)



International Journal of Distributed Sensor Networks

1 T T T T T T T T
0.8 —
0.6 — —
nr
04 —
. _ﬁ
0 I I I I I I I I
1 2 3 4 6 7 8 9 10
p(s)
— p=20 — p=1/20
— p=0 — p=1/30

FIGURE 3: Sweet spot analysis.

of relations p = ko where 0 < k < 1 while for the relation
p = 20, the value of p, turns out to be suboptimal. Although
this experiment is in no way exhaustive and further trends
may emerge on detailed analysis with other values of p, o, we
can draw a number of inferences from this figure. Firstly, the
trends follow the intuitive notion that if the maximum time
anode can sleep is less than the maximum time it is ready to
wait then the probability of success increases and vice versa.
Secondly, with further reduction in the ratio p : o, there
appears to be a saturation point and further decrease will
not yield greater improvement. Lastly, for this network setup,
the region around p > 6 seems to be a favorable position
because, in all relations, there is a noticeable improvement of
performance. From this analysis it becomes quite clear that
p, 0 do have an effect on the probability of success of gossip
exchanges and there does exist a sweet spot for these values.

The sweet spot value depends quite heavily on the under-
lying graph characteristics. With the use of linear regression
and hypothesis testing methods, one could determine the
optimum value based on empirical data pertaining to a given
network graph.

In the following sections, we discuss the implementation
details and a testbed setup description of INDIGO before
proceeding forward to analyze the results in the form of
various case studies.

4. System Implementation and Testbed Design

In this section, we describe, in greater detail, the technical
aspects of two evaluation platforms, that is, a system platform
and a testbed platform. System platform is intended to pro-
vide a generic evaluation platform using the standard TCP/IP
stack based wireless mesh network. Although, for evaluation
purposes, such a robust system platform should be sufficient,
we also require a testbed platform to emulate on-field
environments using the very same hardware, which would
be used for deployment. Hence we propose and eventually

describe a testbed platform as well comprising BeagleBone
Black coupled with XBee radios. Since the testbed platform is
an indoor setup, the nodes form a network, which resembles a
complete graph due to close radio proximity. A unique feature
of INDIGO is its platform agnostic way of functioning which
provides a flexible, rich, and diverse testing environment.
We draw a comparison between the two before proceeding
towards evaluation with the help of case studies. Figure 4
depicts a schematic comparing the design of the testbed and
the system platforms.

4.1. System Design. We utilize a mesh network model for
implementing INDIGO. Mesh networks are those in which
each node not only communicates with its peers but also
serves as a relay point by facilitating the transfer of messages
between two different nodes. Since maintaining proper end-
to-end connectivity in a mesh network is a costly affair
due to low link reliability, we employ a mechanism known
as the Bundle Layer which is a delay tolerant technique of
transmission. The key objective behind the Bundle Layer is
to improve reliable transmission over wireless media over
the TCP/IP stack. To accomplish this the Bundle Layer
breaks down the notion of end-to-end connectivity among
the various hops in between which would significantly reduce
retransmission of packets. Under the Bundle Layer lies the
actual transport layer which uses normal TCP and beneath
which runs a distance vector routing protocol known as
BATMAN (Better Approach to Mobile Ad hoc Networking)
[24]. The advantage of BATMAN lies in the fact that routing
overhead is minimized by maintaining only the next hop
neighbor entry to forward messages to instead of maintaining
the full route to the destination. The Bundle Layer along with
BATMAN ensures reliable transmission of messages between
source and destination.

4.2. Testbed Design. Our testbed setup comprises the Bea-
gleBone Black (BBB) interfaced with the XBee radio. The
BBB is an inexpensive small palm sized computer which
runs the Angstrom operating system which is a flavor of
embedded Linux. The BBB has a memory of 512 MB and
has a single core CPU with clock rate of 1 GHz. For radio
communication we use the XBee PRO S3B 900 MHz ver-
sion which is mesh network capable. The module comes
with an onboard flash memory of 512 bytes and has a
Freescale MC9S08QE32 microcontroller which allows for
programmable control. Various network functionalities have
been abstracted by XBee including routing and mesh network
capability. The programmable control allows us to operate
the XBee in a variety of modes, which makes it application
flexible. Among the most important features, we could set
the Power Level (PL) parameter which indicates the amount
of power consumed during transmission. During run time,
we can issue commands encapsulated in a predecided frame
and pass it on to the device and expect to get encapsulated
replies. Through programmable control one can even choose
from a variety of sleep patterns already offered by the
device. This greatly simplifies the process of deployment by
having a robust network maintenance framework. Figure 5(a)
presents a blowup of the different components which go into
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(i) Distributed consensus
(ii) Distributed optimization
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Random gossip logic

Broadcast gossip logic

| neighbor info.
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sendBndl (dest, val) | recvBndl (src, val) |
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=
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Serial port layer
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making one node on our testbed platform, while Figure 5(b)
shows how the various hardware components fit together.
For interfacing the BBB with the XBee it is configured
as a peripheral UART (Universal Asynchronous Receiver
Transmitter). Using the device tree overlay we are able to

testbed design: a comparison.

__ XBee radio

+s BBB-XBee cape

XBee antenna ——
Ethernet port

(b) Interfacing of BBB with XBee

setup involving BBB and XBee.

bring up a serial port for communication with the XBee. This
serial port is memory mapped to the on-board memory of
the underlying XBee. Once this configuration is in place, we
can communicate with the XBee and its peers through this
serial port. For accomplishing this we have developed a host
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of XBee specific functions for sending and receiving informa-
tion. The hallmark of these functions is that they allow for a
flexible operation of the XBee with varying message types and
message lengths. Figure 6 provides an overview of the XBee
message structure for conducting distributed gossip. Another
interesting point to note is that, through a configuration
of the serial port through the POSIX compliant serial port
libraries in Linux, we can man this serial port with the effect
of achieving simultaneous receiving and transmitting of data.

5. Case Studies

This section focuses on the application based evaluation of
INDIGO. We focus on two forms of evaluations:

(i) TYPE L: distributed consensus gathering of the form
_ 1
X = —Zx,-. 7)

(ii) TYPE 2: distributed consensus optimization of the
form

minimize F (x) = %if, (x;) ®
i=1

subject to  x; € x;.

We start with the simple case of distributed consensus
gathering, which is of TYPE 1 in both the system and the
testbed platform. Then we move to more complex cases
like distributed event location on the testbed and finally to
distributed tomography computation on a simulation setup
which are problems of TYPE 2. For the system evaluation
platform we employ a network emulator named CORE [25].
CORE creates virtual Network Interface Cards (NICs) for a
specific network on a single host machine allowing emulation
of actual network settings. The advantage of CORE is that
traditional Unix-like environment can be obtained on each of
the nodes in the network which makes porting code to actual
physical devices from the virtual nodes straightforward.
For the testbed evaluation platform, we use the testbed
consisting of 6 BBBs each connected to an XBee. The BBBs are
connected to an Ethernet switch which is in turn connected to
a host machine. While the distributed gossip occurs amongst

the BBBs using the XBee radio, the Ethernet interface helps
maintain control of the gossip process with a rich set of scripts
via the host machine.

5.1. Simple Consensual Average. Distributed gossip protocols
are evaluated [26] on the basis of their ability to converge to
consensus based on two different types of initializations of
data, that is, slope and spike initialization. We plot the values
on each node in the experiment at each iteration to track
and demonstrate convergence. Since there are two setups, the
system and the testbed, we conduct experiments relating to
each of the initializations on each of the setups leading to a
total of 8 combinations as depicted in Figures 7 and 8. All the
experiments were performed on the testbed platform using
6 BeagleBone Blacks and XBees and on system emulation
platform comprising 9 nodes with p = 3 and o = 3.

5.11 Slope Initialization. All nodes in the network are initial-
ized with a scalar value x = k * nodeld, where k is constant
for all the nodes. The resultant set of values form a slope on
a network of nodes. It is expected that, on termination of
the gossip protocol, the slope will have given way to a flat
surface tending to average of the initial set. Figure 7 depicts
the gossip trends arising out of slope initialization on the
testbed platform and the system platform. As can be seen
from the figure, the gossip yields very good results, with the
protocol converging to a consensus which falls under a very
close margin of the actual average.

5.1.2. Spike Initialization. All but one of the nodes are
initialized to a very high scalar value and the rest are set to
0. With this initialization it is expected that all the nodes
will have the average of the spike value on termination.
Figure 8 depicts the gossip trends using a spike initialization
on. While the random gossip scheme performs well and
converges to consensus within a close margin of average, the
broadcast gossip converges to a consensus but is not close to
the actual average. This is expected behavior as it has been
anticipated in [14] that broadcast gossip only converges to
average consensus in expectation.

The results obtained in this section demonstrate the
robustness of the INDIGO framework in successfully realiz-
ing the gossip algorithms with respect to a real-world scenario
and are commensurate with what was expected in theory.
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FIGURE 7: Results of slope initialization.

5.2. Distributed Event Location. Distributed event location is
a process of localizing a seismic event. This is done through
a process known as Geigers method [27] wherein a system of
equations of the form represented in (8) is solved. Therefore,
distributed event location falls under TYPE 2. We can solve
this system of equations using any least squares technique like
Bayesian ART [23]. The whole idea behind this experiment
is to make the process of event location as mentioned in [27]
distributed. We are primarily interested in the rate of decrease
of error of the location vector as an indication of success in
localizing the seismic event. Therefore, we plot the relative

error against the iterations to demonstrate effective event
location. The relative error # is calculated as

| — 7|
Ll 9)
CATPY

where i is the iteration number and x” is the ground truth
and || - || is the 2-norm of the vector. For performing this
experiment we used the system testbed which comprised 6
BeagleBone Blacks communicating with each other using the
XBee radio.



International Journal of Distributed Sensor Networks

120 T T T
100 —
80 —
]
§ 60 — —
40 — —
20 —
okl — | I I
0 5 10 15 20
Iteration number
—— Node 1 Node 5
—— Node 2 Node 6
—— Node 3 —— Average
—— Node 4
(a) Broadcast gossip spike initialization on testbed
140 T T T
120 —
100 —
. 80 .
=
<
= 60| -
40 .
20 — / —
0 / y I I I
0 5 10 15 20

Iteration number

—— Node 1 Node 6
—— Node 2 —— Node 7
—— Node 3 —— Node 8
—— Node 4 —— Node 9

Node 5 —— Average

(c) Broadcast gossip spike initialization on system emulation

1

120 T T T
100 —
80 — —
E
60 — —
S
40 —
20 e . -
0 %\ / 1 1 1
0 5 10 15 20
Iteration number
—— Node 1 Node 5
—— Node 2 Node 6
—— Node 3 —— Average
—— Node 4
(b) Random gossip spike initialization on testbed
140 | | | | | | |
120 — —
100 — —
o 801 .
c
=

1 1 1 1 1
0 5 10 15 20 25 30 35 40

Iteration number

—— Node 1 Node 6
—— Node 2 —— Node 7
—— Node 3 —— Node 8
—— Node 4 —— Node 9

Node 5 —— Average

(d) Random gossip spike initialization on system emulation

FIGURE 8: Results of spike initialization.

Figure 9 represents the experiment involving random
and broadcast gossip while performing distributed event
location for one particular event where the y-axis represents
the relative error. We observe a monotonously decreasing
error trend in Figures 9(a) and 9(b) before reaching an
acceptable error margin in both the random and broadcast
gossip case. Figure 10 shows the number of packets lost while
performing distributed event location among the different
nodes in both cases. From Figures 9 and 10, we can safely
assert that the framework can tolerate packet losses observed

in the network. As a result, each node solves its local system
of equations referred to by (8) by using an initial guess.
Next, it generates the new x value and performs gossip with
another of its neighbor node. After the completion of this
gossip exchange, it uses the obtained x value as basis to
again generate a new estimate of x and the process continues
till a given tolerance is reached or the maximum number
of iterations is reached. This technique embodies a true
asynchronous gossip approach as the objective function being
solved is directly coupled with exactly one gossip update.



International Journal of Distributed Sensor Networks

0.115 | | | | |
0.11 |- _
0.105
0.1
0.095

0.09

Relative error

0.085

0.08

0.075

0.07

0 20 40 60 80 100 120

Iteration number

—— Node 1 —— Node 4
—— Node 2 Node 5
—— Node 3 Node 6

(b) Broadcast gossip trends

FIGURE 9: Results of distributed event location using random and broadcast gossip performed on the testbed.

12
0.12 | | | | |
0.11 _
0.1 _
—
I
3
£ 009 .
=
L
o~
0.08 —
0.07 —
0.06
120
Iteration number
—— Node 1 —— Node 4
—— Node 2 Node 5
—— Node 3 Node 6
(a) Random gossip trends
70
g
2
3
[=%}

1 2 3 4 5 6

Node number

mmm Random
mmm Broadcast

FIGURE 10: Packet loss of random and broadcast gossip while
performing distributed event location with 100 iterations.

With this result, it becomes apparent that INDIGO can
be fruitfully applied to solve the event location problem in a
distributed way.

5.3. Distributed Seismic Tomography. Another application
of INDIGO is to perform distributed seismic tomography
[28] which is a TYPE 2 problem and can be modeled as
a distributed consensus optimization problem. Centralized
seismic tomography involves solving an objective function of

the type

minimize |x|
(10)
subject to  Ax =b,

where x ¢ C', A ¢ C™ b ¢ C" andi € {0,n}.
In distributed seismic tomography, kth node has its own
b* and AF and an initial xk . which it uses to solve a local
optimization problem (LOP), referred to by (10). However,
in the distributed scenario, the kth node performs a gossip
update with its neighbor(s) to obtain a new estimate of
its value x*. This value is in turn used to solve the local
optimization problem and the process repeats till a threshold
is reached. In other words, the distributed gossip and the LOP
are tightly coupled leading to true asynchronous behavior.

To execute this problem on INDIGO, we used a synthetic
data model. Our resolution was 16 x 16, which meant that
our x matrix was of size 256. Our setup was simulated on a
network comprising 49 nodes, arranged in a grid topology.
The key idea is that a node initially generates an estimate of
vector x using Bayesian ART to solve the LOP. It performs
gossip with neighbor(s) and obtains a new value of x. This
value is then used as a basis for computing the next estimate
of x and the process repeats.

Our objective is to show that, by using distributed gossip
algorithms, the system converges to a solution obtained by
solving the centralized form of the same problem. For this
reason, we use the least squares solution of the centralized
form of Ax = b, denoted by x®, as our ground truth. We
evaluate our results based on two parameters, # being the
relative residual and f3 being the relative error with respect
to the ground truth:

Jax -y
CN TR
< ==

flc&l

(11)
.Bi =
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Relative residual at each iteration helps in determining how
close the system is to the actual observed parameters denoted
by the vector b. The relative error helps determine how close
we are to the actual ground truth. In order to depict the
uniformity in convergence among all nodes, we employ an
error bar technique of plotting the results. The points on
the curve denote the mean relative residual and the mean
relative error in Figures 11 and 12, respectively, among the
49 nodes in the network while the vertical bars denote the
standard deviation observed at each iteration. We are able
to assert with certainty that the behavior of all the nodes is
monotonously decreasing, consistent with theory, and there
were no rapid deviations in any node at any point of time.
The figures therefore provide a holistic picture in relation
to convergence to the centralized solution without loss or
underrepresentation of any facet of the experiment.

Figure 11 depicts the error bar of the relative residual value
n for both the random and broadcast gossip experiments
each of which has performed 100 successful gossip updates.
Figure 12 depicts the error bar of the relative error value f3
for both types of gossip, comprising 100 successful gossip
updates.

Observing both figures, one can instantly notice a healthy
converging trend with respect to relative residual norm and

13

the relative error norm. There is a slight jitter in case of
random gossip as against broadcast gossip due to the fact that
random gossip needs to maintain exclusivity with respect to
averaging. The standard deviation of broadcast gossip seems
to reduce much more drastically owing to a higher degree of
mixing among neighbors leading to a higher flow of infor-
mation through the network. This experiment conclusively
demonstrates a real-world working implementation of the
INDIGO framework for solving the decentralized consensus
optimization problem with the help of distributed gossip
protocols.

Lastly we examine the communication cost in terms of the
number of messages sent and received, depicted in Figure 13.
The number of messages is plotted as a function of the
grid points on the XY plane representing the nodes. These
messages include the total number of incoming and outgoing
messages handled by the wireless radio. While random gossip
exhibits a relatively uneven surface in Figure 13(a), broadcast
gossip has a highly consistent communication cost among
nodes as depicted in Figure 13(b). This fact can be attributed
to the relatively higher stochastic nature of random gossip as
compared to broadcast gossip.

From the above discussions on the various applications
and investigations into the behavior of gossip protocols in
each, it becomes apparent that INDIGO is indeed a versatile
framework capable of providing an evaluation platform for a
myriad of algorithms and problems.

6. Conclusion

This work focuses on the design, development, and evaluation
of INDIGO, a distributed gossip framework design for sensor
networks. Distributed gossip has been proposed as a more
efficient way for solving a global optimization problem with
respect to spatially corelated data. Distributed consensus
optimization employs gossip techniques to solve local opti-
mization problems as a precursor to solving the global one.
We incorporate the random and broadcast gossip models in
our framework owing to their high suitability to our applica-
tion domain of seismic sensing. We present a practical frame-
work design which realizes the true nature of asynchronous
gossip and serves as a highly versatile setup for testing and
evaluation for distributed algorithms. We show that, using
INDIGO, we could perform distributed consensus optimiza-
tion to solve real-world practical problems in seismic domain.
We characterize the effect of our framework parameters on
the chance of success of gossip attempts before moving on to
evaluation of INDIGO in the domain of seismic sensing.

We apply INDIGO to solve two significant problems in
seismic sensing, event location, and distributed tomography.
We demonstrate the flexibility of INDIGO by yielding con-
current results on both the system implementation and the
testbed setup. The results indicate a strong performance of
INDIGO even on a testbed comprising low-powered devices
like the BBB and XBee. The results obtained on the system
implementation go on to show that INDIGO has the capabil-
ity to perform well even on a standard TCP/IP stack based
wireless network. By ensuring seamless portability of algo-
rithm between the two setups, INDIGO can be used in a wide
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FIGURE 13: Distributed seismic tomography communication cost.

variety of ways starting from testing and evaluation of differ-
ent seismic algorithms all the way to actual field deployment.

Future work in this domain involves deeper analysis of
the effect of framework parameters on the convergence of
the optimization algorithms. We are also investigating the
extension of INDIGO to construct an asynchronous and
purely decentralized MPI like version for sensor network.

In conclusion it can be said that INDIGO is indeed an
efficient and robust gossip framework and can be applied
practically to any scenario which warrants asynchronous
distributed consensus or distributed consensus optimization
and gets reliable results.
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