
Research Article
Image Segmentation by Edge Partitioning over a
Nonsubmodular Markov Random Field

Ho Yub Jung1 and Kyoung Mu Lee2

1Division of Computer and Electronic Systems Engineering, Hankuk University of Foreign Studies,
Yongin 449-791, Republic of Korea
2Department of Electrical and Computer Engineering, College of Engineering, Seoul National University,
Seoul 151-744, Republic of Korea

Correspondence should be addressed to Ho Yub Jung; jung.ho.yub@gmail.com

Received 26 July 2015; Revised 16 November 2015; Accepted 3 December 2015

Academic Editor: Costas Panagiotakis

Copyright © 2015 H. Y. Jung and K. M. Lee. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Edge weight-based segmentation methods, such as normalized cut or minimum cut, require a partition number specification for
their energy formulation.The number of partitions plays an important role in the segmentation overall quality. However, finding a
suitable partition number is a nontrivial problem, and the numbers are ordinarilymanually assigned.This is an aspect of the general
partition problem, where finding the partition number is an important and difficult issue. In this paper, the edge weights instead of
the pixels are partitioned to segment the images. By partitioning the edge weights into two disjoints sets, that is, cut and connect,
an image can be partitioned into all possible disjointed segments. The proposed energy function is independent of the number of
segments. The energy is minimized by iterating the QPBO-𝛼-expansion algorithm over the pairwise Markov random field and the
mean estimation of the cut and connected edges. Experiments using the Berkeley database show that the proposed segmentation
method can obtain equivalently accurate segmentation results without designating the segmentation numbers.

1. Introduction

There are numerous approaches and applications for unsu-
pervised image segmentation in computer vision. Many
different theories are proposed for varying the roles of the
unsupervised segmentation. As a low level vision problem, an
image can be simplified by oversegmentation using a number
of different approaches, such as mode-seeking mean shift,
multilevel thresholding, histogram-based neural networks,
superpixel algorithms, and various graph-based methods
[1–4]. Conversely, semantic segmentation is attempted for
simultaneous detection, recognition, and segmentation [5].

Generally, the role of unsupervised segmentation falls
between image simplification and full semantic segmenta-
tion, where semantically meaningful segments are expected
to be found but not necessarily recognized. Segmentation is
posed as an image-coloring problem that minimizes specific
energy functions. Energy functions can be optimized using
stochastic methods such as deterministic annealing and

stochastic clustering [6–10]. For graph theoretic segmenta-
tion approaches, the spectral method and graph cut are effi-
cient deterministic optimization methods [11–13]. Another
traditional segmentation method is the variational method,
which evolves boundary contours in a level set framework
[14, 15].

The edge weight-based segmentation methods have
evolved together with graph partition problems. When edge
weights are all positive, the minimum cut can be found; how-
ever, the minimum cut has bias toward smaller cuts. Adding
negative edge weights can prevent the problem so the graph
becomes nonsubmodular; however, the problem becomes
NP-hard [16]. Different algorithms have been introduced to
estimate the correlation in clustering problem [17, 18]. In
contrast, Shi andMalik normalized nonnegative edgeweights
so the bias toward smaller cuts was eliminated [11].

For the graph theoretic segmentation and level set
methods, the number of segments must be predefined. The
segment number choice greatly influences the quality of

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 683176, 9 pages
http://dx.doi.org/10.1155/2015/683176



2 Mathematical Problems in Engineering

(a) (b) (c)

? ?

? ?

? ?

? ? ? ?

(d)

Figure 1: An image can be segmented by partitioning edges into two sets. Cut (dotted red) and connected (solid black) edge sets can be
translated into a unique segmentation as in (c). However, it is also possible to have edge partitions that contradict the label assignments as
in (d). By finding the image labeling that minimizes the edge partition energy, edge partitions like (d) are prevented, and a consistent image
segmentation becomes possible as shown in (a) and (b).

segmentation, especially for a normalized cut. Nonetheless,
there have been attempts to solve this problem. The number
of segments can be controlled by setting the threshold value
to the recursive normalized cut [11]. For level set approaches,
a four-color theorem was used to segment images with an
arbitrary number of phases with one or two level set functions
[19]. However, these methods are still functions of 𝐾, the
number of segments.

In this paper, transforming the pixel clustering problem
into an edge partition problem circumvents the segment
number selection problem. Edges among adjacent pixels can
represent dissimilarity or similarity weights. Two edge par-
titions are always sufficient for pixel-partitioning problems.
An edge can be in a cut set or connected set, which can then
be translated into a unique segmentation, as in Figure 1(c).
The cut edges indicate that the two node labels are different,
whereas the connected edges indicate that two nodes have
the same labels. In most cases, however, the cut or connect
assignments on the edges are not enough to define a specific
segmentation configuration, as in Figure 1(d). Random cut
and connect assignments on the edges may result in contra-
diction of the node labels. However, under the pixel coloring
framework, cut and connect assignments on the edges are
defined concurrently with pixel labels, and inconsistencies,
such as those in Figure 1(d), are prevented.

Under the pixel-labeling framework, a label number
selection problem arises. Although the label number selec-
tion might seem similar to the segment number selection
problem, there are subtle differences. First, pixels do not need
to use all label assignments; thus, low numbers of segments
are possible with large numbers of labels. Second, under the
four-color map theorem, the maximum number of labels for
two-dimensional (2D) segmentation can be as low as four.
The four-color map theorem states that any 2D map can
be colored with intact borders using a maximum of four
colors [26]. This theorem can be translated directly to the
segmentation problem; any 2D image segmentation can be
represented using four labels [19].

In the following sections, a new energy function is intro-
duced for image segmentation through the edge partition.
The edge partitions can uniquely define the image segmen-
tation with the hard constraints enforced by the image-
labeling framework. Next, an energyminimization algorithm
is proposed for the edge partitioning. The experimental

section discusses tests of the proposed algorithm using the
Berkeley image segmentation database.

2. Pixel Clustering

Image segmentation can be viewed as a pixel-partitioning
problem. Many image segmentation methods borrow their
ideas from the general partitioning techniques.The𝐾-means
algorithm minimizes the following function and segments
the image into𝐾 regions. Consider
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where 𝑤𝑗 is the pixel feature value and 𝜇𝑖 is the mean
values of the respective partition 𝑆𝑖. The 𝐾-means algorithm
minimizes the sum of the squared distance from the mean
of each partition. The energy function must have a fixed
segmentation number. However, estimating the number of
segments is a difficult task, and the number of partitions is
often designated by human discretion.

3. Edge Partitions

An image can be represented as a set of nodes and edges by a
graph𝐺 = (V,E). An edge (𝑢, V) ∈ E is assigned with weight
𝑤 between nodes 𝑢, V ∈V. For each node V ∈V, a label from
𝑥V ∈ {1, 2 ⋅ ⋅ ⋅ } is assigned to define a segmentation.

3.1. Energy Function. The segmentation problem is formu-
lated in terms of edge partitions.The edges can be partitioned
into two sets 𝐶off (cut) and 𝐶on (connect), such that 𝐶off ∪
𝐶on = E and 𝐶off ∩ 𝐶on = 0. If an edge is in 𝐶on, the pixel
nodes connected by the edge have the same label. Otherwise,
if an edge is in 𝐶off , the pixel nodes connected by the edge
have a different label

𝐶off = {𝑤 (𝑢, V) ∈ E s.t𝑥𝑢 ̸= 𝑥V} ,

𝐶on = {𝑤 (𝑢, V) ∈ E s.t𝑥𝑢 = 𝑥V} .
(2)

In (2), 𝑤(𝑢, V) is an edge between pixel nodes 𝑢 and V. The
pixel labels for pixels 𝑢 and V are denoted by 𝑥𝑢 and 𝑥V,
respectively. 𝑤(𝑢, V) is a positive edge weight between pixel
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nodes 𝑢 and V. 𝑤(𝑢, V) can be a similar or dissimilar measure
between the two pixel nodes. A simple example of 𝑤(𝑢, V)
is the absolute difference between two pixel colors. Thus, if
the colors between the two pixels have a large difference, the
edge will likely be in 𝐶off . If the two pixel colors have a small
difference, the edge should be in 𝐶on. The mean edge weight
values of the𝐶on and𝐶off edge sets are found in the following
equation:

𝜇𝐶off
=
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and then the energy function associated with the edge
partitions can be defined by following equation:

𝐸 = ∑

(𝑢,V)∈𝐶off

(𝑤 (𝑢, V) − 𝜇𝐶off )
2
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| ⋅ | is the cardinality of the set. The energy function (4) is the
same as the𝐾-means algorithm in (1) except that the number
of partitions is set to 𝐾 = 2. The proposed energy function
has two mean centers, but it also has hard constraints in (2).
Regardless of the segmentation number, there can only be
two partitions for the edges, cut 𝐶off and connected edges
𝐶on.

The proposed energy function breaks down into an
image-labeling problem in order to maintain the label
consistency conditions of (2). The image label state x =
(𝑥1, 𝑥2, . . . , 𝑥|V|) that minimizes (4) under (3) and (2) con-
straints is the proposed segmentation state. The number of
labels must be at least two to avoid division by zero in
(3). Under the well-known four-color map theorem, four
labels {1, 2, 3, 4} are sufficient to define all possible segment
configurations for 2D images [19].

3.2. Optimization. Given the image label state x, the mean
values 𝜇𝐶off , 𝜇𝐶on can be estimated as in (3). Otherwise, if 𝜇𝐶off
and 𝜇𝐶on are kept constant, the image label state x can be
found by optimizing the following pairwise energy function:

𝐸𝐿 = ∑

(𝑢,V)∈E
𝜃𝑢V (𝑥𝑢, 𝑥V) , (5)
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2

if 𝑥𝑢 = 𝑥V.
(6)

If the labels between edges are not the same, the edge is
considered to be in the𝐶off cut set; otherwise, it belongs to the
𝐶on connected set. With 𝜇𝐶off and 𝜇𝐶on constants, minimizing
(5) is equivalent to minimizing the edge partition function
(4).

Themultilabel pairwise energy function (5) can be solved
by QPBO-𝛼-expansion. QPBO-𝛼-expansion optimizes the
multilabel MRFs by iteratively expanding a single label using
graph cut [27]. Graph cut can find the optimal expansion if
the expansion is submodular. In this problem, the expansions
are nonsubmodular. The pairwise potentials for QPBO-𝛼-
expansion, where 𝑥𝑢, 𝑥V ∈ x is the current label state, can be
defined as follows:
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This nonsubmodular binary labeling problem can be
approached using the QPBO algorithm [28] with the
possibility of a large number of unlabeled nodes. Recently
introduced, QPBO improve (QPBOI) algorithm can cope
with unlabeled regions [28]; however, this algorithm is not as
efficient as the graph cut which minimizes the submodular
potentials. The QPBOI algorithm can randomly improve
the solution, but iterations of the improved steps can be
time-consuming for large numbers of nodes.

Similar to the original 𝐾-means algorithm, good initial-
ization is helpful to the optimization. The initial estimation
of the means, 𝜇𝐶off and 𝜇𝐶on , can be found by a 𝐾-means
algorithm minimization of edge partitions (4) without the
labeling constraint of (2). To estimate the initial state x, the
pixel clustering 𝐾-means algorithm (1) can be used. The
general framework is illustrated in Algorithm 1.

3.3. Edge Weights. Various examples of the edge partition
segmentation results using the color distance edge weights
are shown in Figure 2 for the MSRC image database [29].
The color distance from the neighboring pixels is sufficient
for some image segmentation problems, but more rigorous
weight calculations are often suited for semantic segmen-
tation. Instead of proposing new edge weight calculations,
an existing state-of-the-art contour detection algorithm is
incorporated.

The global probability of the boundary (GPB) edge
detectionmethod [25, 30], which scored best for the Berkeley
database (http://www.cs.berkeley.edu/projects/vision/bsds),
is employed as the edge weights. The edge weights can be
connected between the pixel nodes, and the proposed edge
partitioning algorithm can be implemented. Figure 3 shows
the other segmentation results under the pixel-to-pixel edge
connections. Although Figures 3(a) and 3(b) show a good
segmentation result, the QPBOI algorithm cannot obtain
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(1) Estimate image label state x with the𝐾-means algorithm on pixels, 𝐾𝑝 = 4.
(2) Estimate 𝜇𝐶off and 𝜇𝐶on by the𝐾-means algorithm minimization of (4)

without the labeling constraint of (2).
(3) Estimate the image label state x using the QPBOI-𝛼-expansion.

(keep 𝜇𝐶off and 𝜇𝐶on constant)
(4) Estimate 𝜇𝐶off and 𝜇𝐶on from the image label state x.
(5) If 𝜇𝐶off and 𝜇𝐶on are unchanged, terminate.

Else, repeat steps 3 and 4.

Algorithm 1: Minimizing Edge Partition.

Figure 2: Even with the simple color distance weight, the edge partitions can produce adequate segmentation results. Some of the
segmentation results from the MSRC database are shown.

(a) (b) (c) (d)

Figure 3: The QPBOI optimization scheme can be efficient for (a) and (b). However, for many cases, the nonsubmodular potentials are too
strong, and the QPBOI optimization fails in (c) and (d). More iterations of QPBOI can improve the result; however, iterations are time-
consuming without improvement guarantees. Superpixel images are used in this study to reduce the computation time and increase the
QPBOI iterations.

a good segmentation in Figures 3(c) and 3(d). The QPBOI
algorithm often fails in the presence of a large number of
nodes. Thus, to reduce both the computational time and the
chance of failure in the QPBOI algorithm, the oversegmen-
tation process is adopted from [25] in this segmentation.The
edges are connected between the superpixels instead of the
pixels.The number of oversegments is between 400 and 1000.

The edge partitioning algorithm segments a BSDS image
average in under 5 seconds.

4. Evaluation

The proposed edge partition approach is evaluated using
the popular Berkeley image database. The set contains 300
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(a) Image

(b) CtoR

(c) EPartition

Figure 4: The segmentation results from Table 1 are shown for CtoR and the proposed EPartition.

images with at least four human segment annotations per
image. The three quantitative evaluation methods used are
as follows: Probabilistic Rand Index (PRI) [31], Variation of
Information (VoI) [32], and Boundary Displacement Error
(BDE) [33]. Global Consistency Error (GCE) [34] is not
included in this evaluation. GCE measures the extent to
which one segmentation can be viewed as a refinement of
another. However, one pixel per segment and one segment
for an entire image can give zero error for GCE [31]. GCE
favors extremely oversegmented or undersegmented results,
and both cases are unwanted for a semantic segmentation.
GCE is deemed to be an inconsistent evaluation method.

The evaluation methods used in this study are PRI, VoI,
and BDE. PRI counts the number of consistent labels between
the segmentation and the ground truth. VoI measures the
segmentation randomness that cannot be explained by the
ground truth. BDE is the average displacement error or
the boundary pixels between two segmentation results. PRI
counts the correctness in segmentation, while VoI and BDE
measure the errors between the segmentation and ground
truth. In the first subsection, the proposed method is eval-
uated against various segmentation methods. In the second
subsection, the comparison between the proposed and the
merge-threshold methods is demonstrated using the same
edge weights.

4.1. Comparison to the Previous Segmentation Methods. Gen-
erally, the parameters are constant for the entire database
and test methods. This evaluation includes mean shift

(MShift) [1], graph-based segmentation (GBIS) [21], JSEG
[20], Normalized Tree Partitioning (NTP) [22], saliency-
based segmentation (Saliency) [23], Boundary Encoding
Based Segmentation (TBES) [24], normalized cut (Ncut) [11],
and fully connected spectral segmentation (SpecSeg) [13].
Additionally, contour to region (CtoR) [25] uses the same
edge weights. Table 1 summarizes the performance of these
methods. Many of the evaluation results are obtained from
[13].

For PRI measurements, the merge-threshold method of
CtoR ranks first. The proposed segmentation ranks first for
VoI and BDE. The CtoR method is available to the public by
the authors. The threshold value for the CtoR method was
chosen to be 80 for its highest average ranking. A number of
segmentation results of CtoR and of the proposed EPartition
are shown in Figure 4. For the normalized cut and fully
connected spectral segmentation, the segmentation number
is chosen for each image and is excluded from the rankings.

CtoR and EPartition use the same edge weights; thus,
their performances are similar. However, in CtoR, a merge-
threshold algorithm is used for segmentation. Different
thresholds among integer intervals {1, . . . , 255} are shown
for the PRI, VoI, and BDE evaluation methods in Figure 5.
Generally, PRI and BDE favor oversegmentation and VoI
favors undersegmentation. The optimal threshold value is
generally smaller for PRI and BDE than VoI.

In contrast, the edge partitioning segmentation is inde-
pendent of a threshold value. Figure 5 shows the performance
of the CtoR merge-threshold method in terms of threshold
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Figure 5: The segmentation evaluation (PRI, VoI, and BDE) versus threshold values is plotted for CtoR. Different threshold values give an
optimal score for each segmentation evaluation approach. In contrast, the proposed EPartition is independent of the threshold values and
finds the approximate optimal segmentation for all evaluation approaches.

values. The proposed EPartition segmentation evaluation
scores for PRI, BDE, and VoI are very close to the highest
evaluation score of CtoR. However, the merge-threshold
method in CtoR requires a specific threshold value for
each segmentation evaluation method. The advantage of
EPartition is that correct segmentation is possible without the
designation of segmentation number or a threshold value.

4.2. Comparison to Trained Threshold. In previous experi-
ments, EPartition was shown to have competitive perfor-
mance with CtoR when the optimal threshold value is hand-
picked for CtoR. In this section, the threshold value is
trained from the Berkeley 300 set and the segmentation
performances are compared to the Weizmann segmentation
set [35]. The Weizmann set contains 100 images with three
human segmentation annotations.

In Table 2, the segmentation evaluations of the CtoR
and EPartition methods are compared. There is a minus-
cule difference for PRI and small differences in the VoI
evaluation methods. For BDE evaluation, EPartition clearly
outperforms CtoR method. The trained threshold value was
not robust for different segmentation evaluation approaches.
By partitioning the edges through minimizing the mean
squared distance, the proposed EPartition shows adaptive
performance among the three evaluation methods. Various
comparative segmentation results are shown in Figure 6.

5. Conclusion and Future Works

In this paper, image segmentation by edge partitioning
is proposed. In contrast with previous edge weight-based
segmentationmethods, such as normalized cut, the proposed
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(a) CtoR

(b) EPartition

(c) CtoR

(d) EPartition

Figure 6: The segmentation results from Table 2 are shown for CtoR and the proposed EPartition.

method is independent of the number of segments. Fur-
thermore, compared with the previous segmentation tech-
niques, edge partitioning remains competitive without the
need for the segmentation number selection. Segmentation
by edge partitioning has shown to be competitive with
previous segmentation techniques in the Berkeley database.
The advantage of the proposed method lies in its adaptive
nature for handling edge weights without threshold values or
segment number assignments.

The proposed algorithm can be extended to general
partitioning problems. Four labels are sufficient when seg-
menting 2D images. However, for fully connected graphs,
the number of labels can be arbitrarily large. If a maximum
number of labels are chosen, the edge partitioning method

can be incorporated into a general partition problem without
designating the specific number of partitions among nodes.
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