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Forecasting the operational efficiency of an existing undergroundmine plays an important role in strategic planning of production.
Degree of Operating Leverage (DOL) is used to express the operational efficiency of production. The forecasting model should be
able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes
in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing
we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the
future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties.
Incorporation of these uncertainties intomultivariable forecastingmodel enablesmining company to survive in today’s competitive
environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion
nature ofmetal price, as a key element of revenues, and production costs, respectively. By simulating a forecastingmodel, we imitate
its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL
for every year of defined time horizon.

1. Introduction

Efficiency is a prerequisite for the survival of every mining
company, especially in high competitive market environment
such as mineral resource industry. Efficiency signifies com-
pany’s ability tomeet its short or long-termgoals. Operational
efficiency is defined as the ratio between the input required
to run production process and the output gained from the
production. In the context of mining business, operational
efficiency refers to the length of time until mineral assets
are transformed tomoney. Peak operational efficiency occurs
when the right combination of mineral deposit character-
istics, human resources, mining technology, and mineral
processing come together to optimize mining performance.

Operational efficiency is related to finding the very
best way of mining to produce a mineral asset. It enables
management of themining company to increase productivity,
increase profitability, improve competitiveness, use freed-up
capacity, and enable company to grow or increase its future
market value.

Mining company’s management uses different strategies
to reach their defined goals. One of the most important
elements of a company’smanagement operations is to forecast
what goals are realistic and capability estimation of the com-
pany in order to achieve them. Planners try to forecast the
behavior of the input variables of production environment
and arrive at desirable states. They create their strategies
on realistic targets drawn from these forecasts. A forecast
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is based on past and current production indicators, that is,
business numbers. In many cases, the forecast might be bur-
dened by some inaccuracies, so it would be a mistake to
base a budget on that. It is very important to emphasize the
forecasting acts serve as a basis for further planning.

The forecasting process is performed in a specific envi-
ronment. If we take into consideration the fact that the
environment is changed over time then it is obvious that
the forecasts and targets are changed as well. Management
must be able to describe environment changes in order to
strategically link the forecasting and planning functions,
improving the performance of both.

Large capital intensive projects, such as those in the
mineral resource industry, are often associated with diverse
sources of both endogenous and exogenous uncertainties.
These uncertainties can greatly influence the operational
efficiency. Having the ability to plan for these uncertainties
is increasingly recognized as critical to long-term mining
company success. In the mining industry in particular, the
relationships between input variables that are controllable
and those that are not and the physical and economic out-
comes are complex and often nonlinear. Operational effi-
ciency forecasting of mine in today’s environment is much
complex than it was just a few years ago. There are typically
many variables, which are directly or indirectly associated
with the forecasting process.

There is a considerable literature dedicated to the opera-
tional efficiency measurement. It includes many approaches,
which take into account various aspects of the problem.

Briciu et al. [1] applied the concept of Cost-Volume-
Profit analysis inmonitoring andmeasuring the performance
of companies in the mining industry in Romania. Zhao
et al. [2] evaluated operating efficiency of Chinese Coal
Mining Companies by Malmqusit Productivity Index. Factor
analysis was employed by Li et al. to evaluate performance
of coal mine companies [3]. Four types of empirical tests
have been performed (parametric mean differences, non-
parametric Wilcoxon rank sum test, static regression panel
estimation, and dynamic regression panel estimation) to
estimate managerial and operational efficiency of privatized
mining companies in Jordan [4]. A stochastic frontier analy-
sis method was used to estimate profit efficiency in the South
African mining sector [5]. The analytic hierarchy process
(AHP) methodology was selected for ranking the efficiency
of selected platinummining methods [6]. Improving the effi-
ciency of truck/shovel operations can increase the total oper-
ational efficiency of mine. To make the truck and shovel fleet
more optimum on the basis of productivity improvements
and associated costs reduction, it was essential to calculate
the bestmatch factors and truck/shovels assignments (or fleet
size) for the system [7].

This paper investigates the relationship between ore pro-
duction rate, fixed costs, revenues, production costs, working
days, and degree of use of production capacity, as input
variables, and Degree of Operating Leverage (DOL) as indi-
cator of operational efficiency of an existing underground

mine. Multivariable grey model is used to establish the time
sequence response formula of DOL. This formula enables us
to predict the future values of DOL time series based only
on a set of the most recent data. To decrease uncertainty of
future values of the operational efficiency we use expert’s
knowledge and simulation processes to find future values of
input variables affecting them. Estimation of future revenues
is based on the application ofmean reversion process, normal
and uniform distribution. Geometric Brownian motion is
used to define future values of production costs. Values of ore
production rate, fixed costs, working days, and degree of use
of production capacity are estimated by expert’s knowledge.

By simulating a forecasting system, we imitate its action
in order to measure its response (output) to different inputs.
The simulation allows analysts to describe the uncertainty
of variables that influence the value of DOL by different
time depending scenarios. The first objective of the use of
simulation in the forecasting is to determine the distribution
of the DOL from the variables that affect his performance,
which results in the average or expected value of DOL for
every year of defined time horizon.

2. Grey Information Systems and
Multivariable Grey Model GM(h,N)

The grey theory established by Dr. Deng includes grey
relational analysis, grey modeling, prediction, and decision
making of a system in which themodel is unsure or the infor-
mation is incomplete [8]. It provides an efficient solution to
the uncertainty, multi-input, and discrete data problem.

Grey models predict the future values of a time series
based only on a set of the most recent data depending on the
window size of the predictor. It is assumed that all data values
to be used in grey models are positive, and the sampling
frequency of the time series is fixed. From the simplest point
of view, greymodels can be viewed as curve fitting approaches
[9].

In grey system theory, multivariable grey model (GM(ℎ,
𝑁)) denotes a grey model, where ℎ is the order of the differ-
ential equation and𝑁 is the number of variables. The GM(ℎ,
𝑁) is defined as follows [10]:

ℎ

∑
𝑖=0

𝑎𝑖
𝑑
(𝑖)
𝑥
(1)

1
(𝑘)

𝑑𝑡(𝑖)
=

𝑁

∑
𝑗=2

𝑏𝑗𝑥
(1)

𝑗
(𝑘) , 𝑘 = 1, 2, . . . , 𝑛, (1)

where 𝑎𝑖 and 𝑏𝑗 are determined coefficients, 𝑥(1)
1
(𝑘) is the

major sequence factor, 𝑥(1)
𝑗
(𝑘) is the influencing sequence fac-

tors, and 𝑘 is the time sequence variable.
In this paper we are applying GM(1,𝑁) [11–15]. First we

separate the data into two sequences: major sequence factor
(it masters the system behaviors) and influencing sequence
factors (it influences the system behaviors).
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The influence sequence factors are
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Assume the original series of data with 𝑘 equal time samples
is represented as 𝑋(0)(𝑘) = [𝑥(0)(1), 𝑥(0)(2), . . . , 𝑥(0)(𝑘)], 𝑘 =
1, 2, . . . , 𝑛. The first-order Accumulating Generation Opera-
tor (AGO) of 𝑋(0) is defined as 𝑋(1)(𝑘) = [𝑥(1)(1), 𝑥(1)(2),
. . . , 𝑥(1)(𝑘)], where 𝑥(1)(𝑘) = ∑𝑛

𝑘=1
𝑥(0)(𝑘) for 𝑘 = 1, 2, . . . , 𝑛.

This operator is used to smooth the randomness of the
data and to weaken the tendency of variation. The average
generation of adjacent sample sequence of 𝑋(1)(𝑘) is as fol-
lows: 𝑍(1)(𝑘) = [𝑧(1)(1), 𝑧(1)(2), . . . , 𝑧(1)(𝑘)], where 𝑧(1)(𝑘) =
(1/2)(𝑥(1)(𝑘) + 𝑥(1)(𝑘 − 1)), for 𝑘 = 1, 2, . . . , 𝑛.

The first-order grey differential equation of the GM(1,𝑁)
is
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According to the GM(1,𝑁), the constructed AGO sequence
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The constructed AGO sequence can be represented by the
following matrix form:
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Factors of the matrix 𝑎 = [𝑎, 𝑏2, . . . , 𝑏𝑁]
𝑇 are obtained by

using the least square method as follows:
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Finally, the GM(1,𝑁) can be expressed as follows:
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The time sequence response formula, that is, the solution of
(9), is
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According to (10), we can obtain 𝑋(1)(𝑘 + 1) = [𝑥(1)
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AGO as follows:
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The predicted values when 𝑘 ≤ 𝑛 can be used to check the
adequacy of the model and predicted value when 𝑘 > 𝑛 can
be used as the forecast value for the data series.

The relative percentage error (RPE(𝑗, 𝑘)) and the average
relative percentage error (ARPE(𝑗, 𝑘)) are as follows:
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Grey relational (relevance) analysis is part of grey system
theory that gives us information about the relevance degree
of each input variable in the system. It is utilized to ascertain
the primary factors that are needed to make a superiority
comparison in the system [11]. The fundamental principle
is to recognize the relevance degree among many factors,
according to the similarity levels of the geometrical patterns
of sequence curves. We can judge whether they are close or
not according to the similar degree of sequence curve shape.
The more similar the curve is, the higher the correlation
degree between relative series is, and vice versa [11].

Set the major sequence factor variable to be analyzed,
𝑋
0

1
(𝑘), 𝑘 = 1, 2, . . . , 𝑛, as the dependent variable, and the
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(𝑘), 𝑗 = 2, . . . , 𝑁, as the inde-

pendent variables. Because various variables have different
physical significances, that is, dimensions, it is difficult to
obtain accurate conclusion. To eliminate dimensions from
analysis, equalization method is used, and formula is
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The grey relational coefficient is calculated as follows [16]:
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where 𝜃 refers to the discriminating coefficient and 𝜃 ∈ [0, 1];
Δ 𝑗(𝑘) = |𝑥



1
(𝑘) − 𝑥

𝑗
(𝑘)|.

The aggregated value of the grey relational coefficient is
calculated as follows:

𝜌𝑗 (𝑘) =
1

𝑛

𝑛

∑
𝑘=1

𝜉𝑗 (𝑘) , 𝑗 = 2, 3, . . . , 𝑁. (15)

The higher 𝜌𝑗(𝑘) is, the bigger impact the 𝑗th variable has on
the variable to be analyzed; on the contrary, the lower 𝜌𝑗(𝑘)
is, the smaller impact the 𝑗th element has on the variable to
be analyzed. By this way, we can see how contribution of the
input variables to output variable is changed over time.

Finally, the management of the company obtains the
aggregated information vector AIV(𝑗, 𝑘) = [𝑋(0)(𝑗, 𝑘),

RPE(𝑗, 𝑘), ARPE(𝑗, 𝑘), 𝜉𝑗(𝑘), 𝜌(𝑗, 𝑘)] which sublimates the
following important indicators:

(i) The forecasting model.

(ii) The relative percentage error of forecasting model.

(iii) The average relative percentage error of forecasting
model.

(iv) The grey relational coefficient between inputs and
output for the 𝑘th time point.

(v) The aggregated grey relational coefficient between
inputs and output.

3. Forecasting Model

3.1. Concept of the Model. Overall operational efficiency
measures have enjoyed a great deal of interest amongplanners
analyzing the performance of an undergroundmine. Suppose
the production of mine in period 𝑘 can be represented by
mining technology set (MTS):

MTS (𝑘) = {(𝐼 (𝑘) , 𝑂 (𝑘) : 𝐼 (𝑘) ∈ 𝑅𝑔
+
, 𝑂 (𝑘)

∈ 𝑅
𝑙

+
, 𝐼 (𝑘) can realize 𝑂 (𝑘))} ,

(16)

where 𝐼(𝑘) = (𝑖𝑘
1
, 𝑖𝑘
2
, . . . , 𝑖𝑘

𝑔
) is the input mining technology

vector and 𝑂(𝑘) = (𝑜𝑘
1
, 𝑜𝑘
2
, . . . , 𝑜𝑘

𝑙
) is the output vector which

represents the indicators obtained fromproduction.TheMTS
is the space of the feasible combinations of input-output
vectors in period 𝑘.

The input vector of the MTS is composed of many vari-
ables but they can be divided into threemain subspaces: char-
acteristics of mineral deposit, undergroundminingmethods,
andmineral processingmethods.The output vector is usually
composed of the following variables: realized production rate
and quality of produced mineral assets.

Operational efficiency is usually expressed by some kind
of economic indicator. According to required type of oper-
ational efficiency, MTS can be transformed and joined to
economic set (ES). This transformation means that some
variables of 𝐼(𝑘) and𝑂(𝑘) are used to calculate some variables
of ES.

To express the operational efficiency of an existing under-
ground mine we apply the concept of Degree of Operating
Leverage (DOL). The DOL is the leverage ratio that sums
up the effects of an amount of operating leverage on the
company’s earnings (revenues) before interests and taxes
(EBIT).

The DOL during the period 𝑘 can be calculated with
following formula (Weygandt et al.) [17]:

DOL (𝑘) = REV (𝑘) − PC (𝑘)
REV (𝑘) − PC (𝑘) − FC (𝑘)

, (17)

where REV is revenues (USD), PC is production costs (USD),
and FC is fixed costs (USD).

Operating leverage refers to the amount of operating
fixed costs in the cost structure. DOL is the ratio of the
relative change in sales. Implications are related to amplifying
the changes in sales volume into larger changes in EBIT.
Even in a perfectly competitive market, price plays a role
in determining the DOL magnitude. Assume that a firm is
currently operating with a positive profit.Whenmarket equi-
librium price rises, the denominator in (17) rises reducing
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the DOL with no change in output, operating fixed cost, or
unit variable cost. Consequently, breakeven output falls since
the contribution margin is larger. DOL can vary due to
changes in any of the variables appearing in (17). These vari-
ables include management determined choices (operating
fixed cost and output levels); market determined parameters
(price in a competitive market as time passes); and economic
and engineering realities (unit variable costs, given operating
fixed cost increases due to new capital acquisition) [18].

The higher value of DOL indicates that the business of
mining company is exposed to the greater risk.

The input vector 𝑋(𝑘) = 𝐴(𝑘) ∪ 𝐵(𝑘) ∪ 𝐶(𝑘) that is used
to evaluate operational efficiency is represented as the union
of three following sets:
𝐴(𝑘) is a subset of the input mining technology variables.
𝐵(𝑘) is a subset of the output mining technology variables.
𝐶(𝑘) is a set of the external variables.

According to our problem, we create the vector space of input
variables as follows:

𝑋 (𝑘) = [𝑋𝑗 (𝑘)] = [𝑥6,𝑘] =

[
[
[
[
[
[
[
[
[
[
[
[
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𝑥3,1 𝑥3,2 ⋅ ⋅ ⋅ 𝑥3,𝑘

𝑥4,1 𝑥4,2 ⋅ ⋅ ⋅ 𝑥4,𝑘

𝑥5,1 𝑥5,2 ⋅ ⋅ ⋅ 𝑥5,𝑘

𝑥6,1 𝑥6,2 ⋅ ⋅ ⋅ 𝑥6,𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (18)

where 𝑥1,𝑘 is ore production rate (t/year), 𝑥2,𝑘 is fixed costs
(USD),𝑥3,𝑘 is revenues (USD),𝑥4,𝑘 is production costs (USD),
𝑥5,𝑘 is working days (days/year), and 𝑥6,𝑘 is degree of use of
production capacity (%).

Let 𝑦(1), 𝑦(2), . . . , 𝑦(𝑘) be a sequence of observed DOL
values on an annual basis, that is, the major sequence factor.
Equation (9) will be used for expressing the forecast model of
DOL of an existing underground mine as follows:

𝑑𝑦(1)

𝑑𝑘
+ 𝑎𝑦
(1)
= 𝑏1𝑥
(1)

1
+ 𝑏2𝑥
(1)

2
+ ⋅ ⋅ ⋅ + 𝑏𝑁𝑥

(1)

𝑁
. (19)

The time sequence response formula of DOL is

𝑦
(1)
(𝑘 + 1) =

{

{

{

𝑦
(0)
(1) −

6

∑
𝑗=1

𝑏𝑗

𝑎
⋅ 𝑥
(1)

𝑗
(𝑘 + 1)

}

}

}

𝑒
−𝑎𝑘

+

6

∑
𝑗=1

𝑏𝑗

𝑎
⋅ 𝑥
(1)

𝑗
(𝑘 + 1) ,

𝑘 = 0, 1, 2, . . . , 𝑛 − 1.

(20)

Thefitting forecast value of𝑦(0)
𝑘

can be obtained by the inverse
AGO as follows:

𝑦
(0)
(𝑘) = 𝑦

(1)
(𝑘) − 𝑦

(1)
(𝑘 − 1) , 𝑘 = 2, 3, . . . , 𝑛,

𝑦
(0)
(1) = 𝑦

(0)
(1) , 𝑘 = 0.

(21)

For 𝑘 > 𝑛 we can make forecasts of DOL as follows:

𝑦
(1)
(𝑛 + ℎ + 1)

=
{

{

{

𝑦
(0)
(1) −

6

∑
𝑗=1

𝑏𝑗

𝑎
⋅ 𝑥
(1)

𝑗
(𝑛 + ℎ + 1)

}

}

}

𝑒
−𝑎(𝑛+ℎ)

+

6

∑
𝑗=1

𝑏𝑗

𝑎
⋅ 𝑥
(1)

𝑗
(𝑛 + ℎ + 1) ,

ℎ = 0, 1, 2, . . . , 𝑇 − 1,

𝑦
(0)
(𝑛 + ℎ) = 𝑦

(1)
(𝑛 + ℎ) − 𝑦

(1)
(𝑛 + ℎ − 1) ,

ℎ = 1, 2, . . . , 𝑇,

(22)

where 𝑇 is future time horizon.
The forecasting model should be able to involve a com-

mon time horizon, taking the characteristics of the input
variables that directly affect the value of DOL. In this sec-
tion, the proposed method of forecasting of DOL under
multiple uncertainty and nonuniformity of input variables is
outlined.Themethod is based mainly on simulating multiple
realizations of the uncertain variables and making forecasts
using value expectations.

According to the valuation function defined by (22), the
expected value of DOL over future time is defined as follows:

𝐸 (𝑦
(0)
| 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑛 + ℎ) . (23)

Before we start to create forecasting process, it is necessary to
divide the set of input variables into two subsets; 𝑋(𝑛 + ℎ) =
EXP(𝑛 + ℎ) ∪ SIM(𝑛 + ℎ), where EXP(𝑛 + ℎ) denotes the set
composed of variables defined by experts, while SIM(𝑛 + ℎ)
denotes the set composed of variables defined by some kind
of stochastic law. In our case these subsets are

EXP (𝑛 + ℎ) = [𝑥1, 𝑥2, 𝑥5, 𝑥6] ,

SIM (𝑛 + ℎ) = [𝑥3, 𝑥4] .
(24)

Values of 𝑥1, 𝑥2, 𝑥5, and 𝑥6 are of deterministic nature while
the others are stochastic.

3.2. Volatility of the Input Variables

3.2.1. Volatility of Revenues. Mining companies not having
smelting facilities realize their revenues by selling their
metal concentrates as a final product. Estimating revenues is,
indeed, a difficult and risky activity. Annual mine revenue is
calculated by multiplying the number of units produced and
sold during the year by the sales price per unit. The annual
mine revenue (𝑥3) is calculated according to the following
equation:

REVyear = 𝑄year ⋅
𝑛

∑
𝑗=1

𝑉
con
𝑗
⋅
𝐺𝑗 ⋅ 𝑀𝑗

𝑚con
𝑗

, (25)
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where 𝑄year is the annual production of ore (𝑥1), 𝑉
con is

the value of the metal concentrate, 𝐺 is the grade of ore
mined (%),𝑀 is the mill recovery rate (%),𝑚con is the metal
content of the concentrate (%), and 𝑛 is the number of metal
concentrates derived from the ore (𝑛 > 1 for polymetallic
deposits).

The first major component of the mine revenue calcu-
lation is annual production of concentrate. One of the key
variables associated with annual concentrate production is
the tonnage of oremined. Annual ore tonnage is derived from
the mining project schedule and is denoted 𝑄.

The second key variable associated with determining the
annual production of saleable units is the grade of the ore
mined.The concept of the ore grade (𝐺) is defined as the ratio
of useful mass of metal to the total mass of ore and its critical
value fluctuates over space and can be estimated by normal
probability density function. The use of normal distribution
is based on geostatistical methods developed for evaluation
of grades in mineral deposits. The deposit is sampled by
means of drill-holes. Each sample gives us the information
about mass of metal (grade) and we can create histogram of
grades values. According to the obtained histogram adequate
probability distribution function is selected. In most cases of
mineral deposits normal distribution is used as representative
function:

𝐺 ∼ 𝑁(𝜇, 𝜎
2
) . (26)

At first sight, it seems that 𝐺 does not change its value over
time, but if we take into consideration the mining front
advances over time through different parts of deposit, then
it is also time depending. For simplicity, we adopt the values
of 𝐺 which belong to the same interval, defined by 𝜇 ± 2𝜎,
over future time horizon.

Most ores require beneficiation before saleable product
can be produced. The resulting milling losses must be
estimated and appropriate recovery percentages established.
These recoveries are commonly estimated from a metal-
lurgical testing program. Percentage recovery is the third
basic variable which must be estimated to arrive at a final
estimate of the annual production of saleable units extracted
from the mine and is denoted 𝑀. A specific stochastic
behavior that is used to quantify uncertainty related to mill
recovery rate (𝑀) is uniform probability density function.
Perhaps it is virtually certain that mill recovery will lie in
interval [𝑎, 𝑏] but it is possible to achieve it by mineral
processing control. For example, flotation is the most widely
used method for the concentration of fine grained minerals.
It takes advantage of the different physicochemical surface
properties of minerals in particular their wettability, which
can be a natural property or artificially changed by chemical
reagents. By altering the hydrophobic (water repelling) or
hydrophilic (water attracting) conditions of their surfaces,
mineral particles suspended in water can be induced to
adhere to air bubbles passing through a flotation cell or
to remain in the pulp. The air bubbles pass to the upper

surface of the pulp and form a froth, which, together with the
attached hydrophobicminerals, can be removed.The tailings,
containing the hydrophilic minerals, can be removed from
the bottom of the cell. According to that, within interval [𝑎, 𝑏]
no value is more likely than any other. This gives rise to a
uniform distribution:

𝑀 ∼ unif (𝑎, 𝑏) . (27)

It seems that𝑀 does not change its value over time, but if we
take into consideration the fact that the flotation is influenced
by many parameters and fact that it is very difficult to keep
them constantly over time, then it is also time depending. For
simplicity, we adopt the values of𝑀which belong to the same
interval [𝑎, 𝑏] but𝑀 takes the stochastic values for every year
of the time horizon.

The second major component of the mine revenue calcu-
lation is unit sales price or unit metal concentrate sales price
(𝑉con). It directly depends on mineral asset price, metal con-
tent of the concentrate, and metal recovery rate. Estimating
future mineral prices is an exercise for which a high error
of estimation invariably exists. The characteristically long
preproduction periods of mining projects mean that their
success will be determined by mineral prices five to ten years
in the future.

The market risks related to mineral asset price (𝑃) are
modeled with a special stochastic process, a mean reversion
process. The mean reversion process has economic logic; for
example, although the commodity prices have sensible short-
term oscillations, they tend to revert back to a “normal” long-
term equilibrium level. The past values of the changes in this
uncertain factor help predict the future. We will use a model
where themetal spot price is assumed to follow the stochastic
process [19]:

𝑑𝑃 = 𝛼 (ln𝑃 − ln𝑃)𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑊. (28)

Let 𝑥 = ln𝑃; applying Ito’s lemma allows the characterization
of the log price by an Ornstein-Uhlenbeck stochastic mean
reverting process:

𝑑𝑥 = 𝛼 (𝑥 − 𝑥) 𝑑𝑡 + 𝜎𝑑𝑊 (29)

with

𝑥 = ln (𝑃) − 𝜎
2

2𝛼
, (30)

where 𝑃 is the long-run equilibrium metal price, 𝛼measures
the speed of mean reversion to the long-run mean log price
𝑃, 𝑑𝑊 is an increment to a standard Brownian motion,
and 𝜎 refers to the price volatility rate. The metal price
adjustmentmechanism is accounted for bymarket forces.The
correct discrete-time format for the continuous-time process
of mean reversion is the stationary first-order autoregressive
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Figure 1: One simulated lead price path on a yearly time resolution.

process [20], so the sample path simulation equation for 𝑥𝑡 is
performed by using exact discrete-time expression:

𝑥𝑡 = 𝑥𝑡−1𝑒
−𝛼Δ𝑡

+ 𝑥 (1 − 𝑒
−𝛼Δ𝑡
)

+ 𝑁 (0, 1) 𝜎√
(1 − 𝑒−2𝛼Δ𝑡)

2𝛼
,

(31)

where Δ𝑡 is the fixed time interval from time 𝑡 to 𝑡 + 1 and
𝑁(0, 1) is the normally distributed random variable.

By substituting (31) to𝑃 = 𝑒𝑥, we have exact discrete-time
equation for 𝑃𝑡, given by

𝑃𝑡

= 𝑒
{ln(𝑃
𝑡−1
)𝑒
−𝛼Δ𝑡
+[ln(𝑃)−𝜎2/2𝛼](1−𝑒−𝛼Δ𝑡)+𝑁(0,1)𝜎√(1−𝑒−2𝛼Δ𝑡)/2𝛼}

.

(32)

In order to estimate the parameters of the mean reversion
process, we run the following regression:

𝑑𝑥𝑡+1 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀, (33)

where 𝛽0 = 𝛼𝑥𝑑𝑡 and 𝛽1 = −𝛼𝑑𝑡. Hence, if we regress obser-
vation 𝑑𝑥 against 𝑥, we can obtain estimates of 𝛽0 and 𝛽1. 𝜎
is the standard deviation obtained from the regression. The
speed of mean reversion (𝛼) is the negative of the slope, while
the long-run equilibrium (𝑃) is the intercept estimate of that
regression divided by the speed of mean reversion.

Let 𝑃 = {𝑃𝑡, 𝑡 = 0, 1, . . . , 𝑇} denote a price scenario with
spot prices 𝑃𝑡, where 𝑃𝑡 is determined by (32). Figure 1
presents a sample path of themetal price (e.g., lead) simulated
using the above equation.

In the purpose of 𝑃 simulation, we apply a metal price
scenario for the time interval, [𝑛, 𝑛 + 𝑇], with increment
Δ𝑡 = 1.

The unit value of metal concentrate sales price can be
expressed as follows:

𝑉
con
(𝑡) = 𝑓 (𝑃 (𝑡) , 𝑚

con
, 𝑚

mr
) , (34)

where𝑚mr is the metal recovery rate (%).The value of𝑉con is
calculated in different ways with respect to type of metal.

3.2.2. Volatility of Production Costs. Production costs (PC)
are incurred directly in the production process. These costs
include the ore and waste development of individual stopes,
the actual stoping activities, the mine services providing
logistical support to the miners, and the milling and pro-
cessing of the ore at the plant. The uncertainties related to
the future states of unit production costs are modeled with
a special stochastic process, the geometric Brownian motion.
Certain stochastic processes are functions of a Brownian
motion process and these have many applications in finance,
engineering, and the sciences. Some special processes are
solutions of Itô-Doob type stochastic differential equations
(Ladde, Sambandham) [21].

In this model, we apply a continuous time process using
the Itô-Doob type stochastic differential equation to describe
movement of unit production costs. A general stochastic
differential equation takes the following form:

𝑑CO𝑡 = 𝜌 ⋅ (CO𝑡, 𝑡) 𝑑𝑡 + 𝜎 ⋅ (CO𝑡, 𝑡) ⋅ 𝑑𝑊𝑡,

CO𝑡
0

= CO0.
(35)

Here, 𝑡 ≥ 𝑡0,𝑊𝑡 is a Brownian motion, and CO𝑡 > 0; this is
the cost process.

CO𝑡 is called the geometric Brownian motion, which
is solution of the following linear Itô-Doob type stochastic
differential equation:

𝑑CO𝑡 = 𝜌 ⋅ CO𝑡𝑑𝑡 + 𝜎 ⋅ CO𝑡 ⋅ 𝑑𝑊𝑡, (36)

where 𝜌 is the drift, 𝜎 is the volatility, and𝑊𝑡 is normalized
Brownian motion.

Using the Itô-Doob formula applied to (CO𝑡) = ln(CO𝑡),
we can solve this equation:

CO𝑡 = CO𝑡−1 ⋅ 𝑒
{(𝜌−𝜎

2
/2)Δ𝑡+𝑁(0,1)𝜎√Δ𝑡}

. (37)

Equation (37) describes an operating cost scenario with spot
costs CO𝑡.

Let CO = {CO𝑡, 𝑡 = 0, 1, . . . , 𝑇} denote a cost scenario
with spot costs CO𝑡, where CO𝑡 is determined by (37).
Figure 2 presents a sample paths (𝑠 = 1, 2, . . . , 𝑆) of the unit
production cost simulated using (37) 𝑆 times.

In the purpose of CO simulation, we apply a cost scenario
for the time interval, [𝑛, 𝑛 + 𝑇], with increment Δ𝑡 = 1.
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Table 1: Expert estimation of the variables.

Expert Value
𝐸1 𝐸2 ⋅ ⋅ ⋅ 𝐸𝑝

x1,1 x1,2 ⋅ ⋅ ⋅ x1,𝑝 𝐸(𝑥1) =
𝑥1,1 + 𝑥1,2 + ⋅ ⋅ ⋅ + 𝑥1,𝑝

𝑝

x2,1 x2,2 ⋅ ⋅ ⋅ x2,𝑝 𝐸(𝑥2) =
𝑥2,1 + 𝑥2,2 + ⋅ ⋅ ⋅ + 𝑥2,𝑝

𝑝

x5,1 x5,2 ⋅ ⋅ ⋅ x5,𝑝 𝐸(𝑥5) =
𝑥5,1 + 𝑥5,2 + ⋅ ⋅ ⋅ + 𝑥5,𝑝

𝑝

x6,1 x6,2 ⋅ ⋅ ⋅ x6,𝑝 𝐸(𝑥6) =
𝑥6,1 + 𝑥6,2 + ⋅ ⋅ ⋅ + 𝑥6,𝑝

𝑝

0 1 2 3 4 5 6 7 8 9 10
Year

Figure 2: Simulated cost paths on a yearly time resolution.

The annual production costs are expressed as follows:

PCyear = 𝑄year ⋅ CO (𝑡) . (38)

3.3. Variables Based on Expert’s Knowledge. To estimate an
adequate value of these variables, it is necessary to get opin-
ions of experts dealing with them. Suppose we have 𝑝 experts
and each of them has given his/her opinion. The final value
is expressed by averaging the opinions of experts. Table 1
presents the expert estimation process.

3.4. DOL Forecasting Model Based on Expert’s Knowledge and
Simulation. The model is developed on the basis of expert’s
knowledge and simulation of DOL changing over defined
time horizon and takes into account the variability of input
parameters. By simulating a forecasting system, we imitate its
action in order to measure its response (output) to different
inputs.The advantage of simulating a system is the possibility
of replicating its evolution as many times as necessary in
independent conditions. The simulation allows analysts to
describe the uncertainty of variables that influence the value
of DOL by different time depending scenarios. The values of
DOL are usually forecasted on an annual basis.

The first objective of the use of simulation in the fore-
casting is to determine the distribution of the DOL from the
variables that affect his performance, which results in the
average or expected value of DOL for every year of defined
time horizon.The relation between uncertain variables affect-
ing the value of DOL is described by (22).

For each simulation, the input values and DOL result
represent one possible state of nature. Simulated values of
DOL are obtained by performing the following calculations:

𝑦
(1)𝑠
(𝑛 + ℎ + 1)

= 𝑦
(1)
(𝑥1,𝑛+ℎ, 𝑥

𝑠

2,𝑛+ℎ
, 𝑥
𝑠

3,𝑛+ℎ
, 𝑥
𝑠

4,𝑛+ℎ
, 𝑥5,𝑛+ℎ, 𝑥

𝑠

6,𝑛+ℎ
) ,

ℎ = 0, 1, 2, . . . , 𝑇 − 1,

𝑦
(0)𝑠
(𝑛 + ℎ) = 𝑦

(1)𝑠
(𝑛 + ℎ) − 𝑦

(1)𝑠
(𝑛 + ℎ − 1) ,

ℎ = 1, 2, . . . , 𝑇,

𝑠 = 1, 2, . . . , 𝑆,

(39)

where 𝑆 denotes the number of simulations.
Space of simulation for 𝑠 = 1 and 𝑘 > 𝑛, where the first

six rows concern the evolution path of the input variables
while the last one concerns evolution path of the DOL, can
be represented as follows:
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DOL𝑠=1
𝑇
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑠 = 1 𝑠 = 1 ⋅ ⋅ ⋅ 𝑠 = 1

𝑥1,1 𝑥1,2 ⋅ ⋅ ⋅ 𝑥1,𝑇

𝑥2,1 𝑥2,2 ⋅ ⋅ ⋅ 𝑥2,𝑇

𝑥3,1 𝑥3,2 ⋅ ⋅ ⋅ 𝑥3,𝑇

𝑥4,1 𝑥4,2 ⋅ ⋅ ⋅ 𝑥4,𝑇

𝑥5,1 𝑥5,2 ⋅ ⋅ ⋅ 𝑥5,𝑇

𝑥6,1 𝑥6,2 ⋅ ⋅ ⋅ 𝑥6,𝑇

↓ ↓ ↓ ↓

equation (22) equation (22) equation (22) equation (22)
↓ ↓ ↓ ↓

𝑦
(1)𝑠=1

1
𝑦
(1)𝑠=1

2
⋅ ⋅ ⋅ 𝑦

(1)𝑠=1

𝑇

↓ ↓ ↓ ↓

𝑦
(0)𝑠=1

1
𝑦
(0)𝑠=1

2
⋅ ⋅ ⋅ 𝑦

(0)𝑠=1

𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (40)

Once the simulations DOL𝑠
𝑇
, 𝑠 = 1, 2, . . . , 𝑆, have been

obtained, they can be used to estimate the distribution of the
DOL for every year of the defined time horizon.The expected
values of the DOL can be expressed by the following vector
space:

𝐸 (DOL𝑆
𝑇
) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑦
(0)𝑠=1

1
𝑦
(0)𝑠=1

2
⋅ ⋅ ⋅ 𝑦

(0)𝑠=1

𝑇

𝑦
(0)𝑠=2

1
𝑦
(0)𝑠=2

2
⋅ ⋅ ⋅ 𝑦

(0)𝑠=2

𝑇

...
... d

...

𝑦
(0)𝑠=𝑆

1
𝑦
(0)𝑠=𝑆

2
⋅ ⋅ ⋅ 𝑦

(0)𝑠=𝑆

𝑇

↓ ↓ ↓ ↓

𝐸 (𝑦
(0)

1
) 𝐸 (𝑦

(0)

2
) ⋅ ⋅ ⋅ 𝐸 (𝑦

(0)

𝑇
)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (41)

According to (41), the management of the company obtains
the forecasting information vector of DOL:

FIV (𝑗, 𝑇) = 𝐸 (DOL)

= [𝐸 (DOL1) 𝐸 (DOL2) ⋅ ⋅ ⋅ 𝐸 (DOL𝑇)] .
(42)

This vector concerns the information of the possible future
states of the Degree of Operating Leverage over defined time
horizon.

Space of simulation for 𝑠 = 1 and 𝑘 > 𝑛, where the first
seven rows concern the evolution paths of the DOL and input
variables while the rest concern evolution paths of the grey
relational coefficient, can be represented as follows:

𝜉
𝑠=1

𝑗,𝑇
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑠 = 1 𝑠 = 1 ⋅ ⋅ ⋅ 𝑠 = 1

𝑦
(0)

1
𝑦
(0)

2
⋅ ⋅ ⋅ 𝑦

(0)

𝑇

𝑥1,1 𝑥1,2 ⋅ ⋅ ⋅ 𝑥1,𝑇

𝑥2,1 𝑥2,2 ⋅ ⋅ ⋅ 𝑥2,𝑇

𝑥3,1 𝑥3,2 ⋅ ⋅ ⋅ 𝑥3,𝑇

𝑥4,1 𝑥4,2 ⋅ ⋅ ⋅ 𝑥4,𝑇

𝑥5,1 𝑥5,2 ⋅ ⋅ ⋅ 𝑥5,𝑇

𝑥6,1 𝑥6,2 ⋅ ⋅ ⋅ 𝑥6,𝑇

↓ ↓ ↓ ↓

equation (14) equation (14) equation (14) equation (14)
↓ ↓ ↓ ↓

𝜉
𝑠=1

1,1
𝜉𝑠=1
1,2

⋅ ⋅ ⋅ 𝜉𝑠=1
1,𝑇

...
... d

...

𝜉𝑠=1
6,1

𝜉𝑠=1
6,2

⋅ ⋅ ⋅ 𝜉𝑠=1
6,𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (43)
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Once the simulations 𝜉𝑠
𝑗,𝑇
, 𝑠 = 1, 2, . . . , 𝑆, have been obtained,

they can be used to estimate the distribution of the 𝜉𝑗 for every
year of the defined time horizon. The expected values of the
𝜉𝑗 can be expressed by the following vector space:

𝐸 (𝜉
𝑆

𝑗,𝑇
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐸 (𝜉
𝑆

1,1
) 𝐸 (𝜉𝑆

1,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

1,𝑇
)

𝐸 (𝜉𝑆
2,1
) 𝐸 (𝜉𝑆

2,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

2,𝑇
)

𝐸 (𝜉𝑆
3,1
) 𝐸 (𝜉𝑆

3,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

3,𝑇
)

𝐸 (𝜉𝑆
4,1
) 𝐸 (𝜉𝑆

4,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

4,𝑇
)

𝐸 (𝜉𝑆
5,1
) 𝐸 (𝜉𝑆

5,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

5,𝑇
)

𝐸 (𝜉𝑆
6,1
) 𝐸 (𝜉𝑆

6,2
) ⋅ ⋅ ⋅ 𝐸 (𝜉𝑆

6,𝑇
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (44)

The expected values of the aggregated grey relational coeffi-
cient are calculated as follows:

𝜌𝑗 =
1

ℎ

𝑇

∑
ℎ=1

{𝐸 (𝜉
𝑆

𝑗,ℎ
)} , 𝑗 = 1, 2, . . . , 6. (45)

According to (45), the management of the company obtains
the forecasting information vector of the aggregated grey
relational coefficient:

𝜌 (𝑗) =

[
[
[
[
[
[

[

𝜌 (1)

𝜌 (2)

...

𝜌 (6)

]
]
]
]
]
]

]

. (46)

4. Application of the Procedure

4.1. A Numerical Example Statement. A management of an
operating underground zinc mine is trying to forecast the
future states of operational efficiency for five years ahead.
For this problem, the input parameters that are required
for the forecasting are given in Tables 2 and 3. In order to
define values of production rate, fixed costs, working days,
and degree of use of production capacity, three experts are
included into process of estimation. Note that the situation
is hypothetical and numbers used are to permit calculation.

Values of the input parameters are similar to the real environ-
ment of mining.

4.2. A Numerical Example Solution

Step 1 (forecasting model). Transformations of the original
data sequences by AGO are as follows:

𝑌
(0)
= [1.219 1.421 1.333 1.676 1.437] ,

𝑌
(1)
= [1.219 2.640 3.973 5.649 7.086] ,

𝑋
(0)

1
= [100000 95000 100000 100000 100000] ,

𝑋
(1)

1
= [100000 195000 295000 395000 495000] ,

𝑋
(0)

2
= [1200000 1500000 1100000 1400000 1600000] ,

𝑋
(1)

2
= [1200000 2700000 3800000 5200000 6800000] ,

𝑋
(0)

3

= [11065884 10773877 10137834 9145279 10823137] ,

𝑋
(1)

3

= [11065884 21839761 31977595 41122874 51946011] ,

𝑋
(0)

4
= [4387000 5714000 5740000 5676000 5564000] ,

𝑋
(1)

4

= [4387000 10101000 15841000 21517000 27081000] ,

𝑋
(0)

5
= [330 310 340 300 320] ,

𝑋
(1)

5
= [330 640 980 1280 1600] ,

𝑋
(0)

6
= [90 85 93 82 88] ,

𝑋
(1)

6
= [90 175 268 350 438] .

(47)

Calculation of the average generation of adjacent sample
sequence of 𝑌(1)(𝑘) is as follows:

𝑌
(1)
= [1.219 2.640 3.973 5.649 7.086] ,

𝑍
(1)
(𝑌
(1)
) = [1.929 3.307 4.812 6.369] .

(48)

Construction of the matrix 𝐵 and matrix 𝑌 is as follows:

𝐵 =

[
[
[
[
[
[

[

−1.219 195000 2700000 21839761 10101000 640 175

−3.307 295000 3800000 31977595 15841000 980 268

−4.812 395000 5200000 41122874 21517000 1280 350

−6.369 495000 6800000 51946011 27081000 1600 438

]
]
]
]
]
]

]

,

𝑌 =

[
[
[
[
[

[

1.421

1.333

1.676

1.437

]
]
]
]
]

]

.

(49)
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Table 2: Input parameters of observed period.

Parameter
Observed period

Year
1 2 3 4 5

DOL 1.219 1.421 1.333 1.676 1.437

Production rate (t/year) 100000 95000 100000 100000 100000

Fixed costs (USD) 1200000 1500000 1100000 1400000 1600000

Revenues (USD)
Ore grade (%) 4.11 3.96 4.04 3.82 3.87

Mill recovery rate (%) 78.52 78.01 81.05 79.02 81.56

Metal content of the concentrate (%) 53.8 53.8 53.8 53.8 53.8
Metal recovery rate (%)

𝑚mr =

{{{{

{{{{

{

(𝑚
con% − 8) ⋅ 100
𝑚con%

≤ 85%; 𝑚con% − 8

(𝑚
con% − 8) ⋅ 100
𝑚con%

> 85%; 85%

𝑚mr =
(53.8 − 8) ⋅ 100

53.8
= 85.13; 85%

85 85 85 85 85

Zinc metal price (USD/t) 2160 2195 1950 1910 2160
Unit value of metal concentrate sales price (USD/t)
𝑉con = 𝑃(𝑚con − 𝑚mr) = 𝑃 ⋅ 0.85

1836 1866 1658 1624 1836

Revenues (USD) 11065884 10773877 10137834 9145279 10823137

Production costs (USD)
Unit production costs (USD/t) 43.87 60.11 57.40 56.76 55.64

Production costs (USD) 4387000 5714000 5740000 5676000 5564000

Working days (day/year) 330 310 340 300 320

Degree of use of production capacity (%) 90 85 93 82 88

Table 3: Input parameters required for simulation of DOL.

Parameter
Value
Year

6 7 8 9 10
Production rate (t/year) 100000 105000 97000 100000 110000
Fixed costs (USD) 1600000 1800000 1500000 1700000 2000000
Revenues (USD)

Ore grade (%)-normal distribution Min. 3.45; medium 4.06; max. 4.68; volatility 0.205
Mill recovery rate (%)-uniform distribution Min. 77; medium 78.5; max. 80; volatility 0.866
Metal content of the concentrate (%) 53.8
Metal recovery rate (%) 85

Zinc metal price (USD/t)-mean reversion process Spot value 2113; equilibrium metal price 2277; speed of
mean reversion 0.9221; price volatility rate 0.2734

Production costs (USD)
Unit production costs (USD/t)-geometric Brownian motion Spot value 65; drift 0.02382; cost volatility 0.09351

Working days (day/year) 330 330 340 340 340
Degree of use of production capacity (%) 86 90 92 85 93
Number of simulations 500
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Table 4: Fitted values of DOL.

Error Year
1 2 3 4 5

DOL-AGO values 2.292 3.642 5.291 6.546
DOL-inverse AGO values 1.219 1.073 1.350 1.649 1.255

Table 5: Error estimation of the model.

Error Year
1 2 3 4 5

DOL-observed values 1.219 1.421 1.333 1.676 1.437
DOL-fitted values 1.219 1.073 1.350 1.649 1.255
RPE (%) 0 24.47 1.28 1.63 12.70
ARPE (%) 10.02

The constructedAGOsequence of our problem is represented
by the following matrix form:

[
[
[
[
[

[

1.421

1.333

1.676

1.437

]
]
]
]
]

]

=

[
[
[
[
[

[

−1.219 195000 2700000 21839761 10101000 640 175

−3.307 295000 3800000 31977595 15841000 980 268

−4.812 395000 5200000 41122874 21517000 1280 350

−6.369 495000 6800000 51946011 27081000 1600 438

]
]
]
]
]

]

[
[
[
[
[
[

[

𝑎

𝑏2

...

𝑏N

]
]
]
]
]
]

]

. (50)

According to 𝑎 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌we obtain the following factors
of the matrix 𝑎 = [1.5379; 0.0001129; −1.03377 ⋅ 10−6; 1.304 ⋅
10−7; −1.4598 ⋅ 10−7; −0.0042024; −0.0796303]𝑇. Values of the
determined coefficients are 𝑎 = 1.5379; 𝑏1 = 0.0001129; 𝑏2 =
−1.03377 ⋅ 10−6; 𝑏3 = 1.304 ⋅ 10

−7; 𝑏4 = −1.4598 ⋅ 10
−7; 𝑏5 =

−0.0042024; 𝑏6 = −0.0796303.

The AGO time sequence response formula of DOL is

𝑦
(1)
(𝑘 + 1) = {1.219 − 7.3462 ⋅ 10

−5
𝑥
(1)

1
(𝑘 + 1)

+ 6.748 ⋅ 10
−7
𝑥
(1)

2
(𝑘 + 1) − 8.479 ⋅ 10

−8
𝑥
(1)

3
(𝑘 + 1)

+ 9.492 ⋅ 10
−8
𝑥
(1)

4
(𝑘 + 1) + 0.0027325𝑥

(1)

5
(𝑘 + 1)

+ 0.0517784𝑥
(1)

6
(𝑘 + 1)} 𝑒

−1.5379𝑘

+ 7.3462 ⋅ 10
−5
𝑥
(1)

1
(𝑘 + 1) − 6.748 ⋅ 10

−7
𝑥
(1)

2
(𝑘

+ 1) + 8.479 ⋅ 10
−8
𝑥
(1)

3
(𝑘 + 1) − 9.492 ⋅ 10

−8
𝑥
(1)

4
(𝑘

+ 1) − 0.0027325𝑥
(1)

5
(𝑘 + 1) − 0.0517784𝑥

(1)

6
(𝑘

+ 1) ; 𝑘 = 0, 1, 2, 3, 4.

(51)

AGO and inverse AGO values of the time sequence response
formula of DOL are represented by Table 4.

The adequacy of the obtained time sequence response
formula is obtained by using (12) and summarized in Table 5.

Step 2 (grey relevance analysis). Applying (13) we obtain the
following results of equalization (see Tables 6 and 7).

Absolute values of Δ 𝑗(𝑘) = |DOL(𝑘) − 𝑥
𝑗
(𝑘)| are repre-

sented by Table 8.
Extreme values of Δ 𝑗(𝑘) are represented by Table 9.
Grey relational (relevance) analysis of GM(1, 6) is repre-

sented by Table 10.
According to Table 10, we obtain the rank order of

relevancy of the influencing variables over observed time as
follows:

Year 1:𝑋4 > 𝑋2 > 𝑋1 > 𝑋6 > 𝑋5 > 𝑋3.

Year 2: (𝑋1 = 𝑋5 = 𝑋6) > 𝑋3 > 𝑋4 > 𝑋2.

Year 3:𝑋2 > 𝑋3 > 𝑋1 > 𝑋6 > 𝑋5 > 𝑋4.

Year 4:𝑋3 > 𝑋6 > 𝑋5 > 𝑋1 > 𝑋2 > 𝑋4.

Year 5:𝑋5 > 𝑋6 > 𝑋1 > 𝑋3 > 𝑋4 > 𝑋2.

According to aggregated values, we obtain the final rank order
of relevancy of the influencing variables as follows: 𝑋3 >
𝑋6 > 𝑋5 > 𝑋1 > 𝑋4 > 𝑋2.

Step 3 (simulation of the influencing sequence variables and
DOL). Scenario of zinc price is represented by Table 11.
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Table 6: Sum of the major and influencing sequence variables.

DOL(k) 1.219 1.421 1.334 1.677 1.437
X1(k) 100000 95000 100000 100000 100000
X2(k) 1200000 1500000 1100000 1400000 1600000
X3(k) 11065884 10773876 10137834 9145278 10823136
X4(k) 4387000 5714000 5740000 5676000 5564000
X5(k) 330 310 340 300 320
X6(k) 90 85 93 82 88
Sum 16753305 18083273 17078268 16321662 18087545

Table 7: Equalized values of the major and influencing sequence variables.

DOL(k) 7.28E − 08 7.86E − 08 7.81E − 08 1.03E − 07 7.95E − 08
𝑋
1
(𝑘) 0.005969 0.005253 0.005855 0.006127 0.005529

𝑋


2
(𝑘) 0.071628 0.08295 0.064409 0.085776 0.088459

𝑋


3
(𝑘) 0.660519 0.595792 0.59361 0.560315 0.598375

𝑋


4
(𝑘) 0.261859 0.315983 0.3361 0.347759 0.307615

𝑋


5
(𝑘) 1.97E − 05 1.71E − 05 1.99E − 05 1.84E − 05 1.77E − 05

𝑋


6
(𝑘) 5.37E − 06 4.7E − 06 5.45E − 06 5.02E − 06 4.87E − 06

Table 8: Absolute values of Δ 𝑗(𝑘).

Δ 1(𝑘) 0.005969 0.005253 0.005855 0.006127 0.005529
Δ 2(𝑘) 0.071628 0.08295 0.064409 0.085775 0.088459
Δ
3
(𝑘) 0.660519 0.595792 0.59361 0.560315 0.598375

Δ
4
(𝑘) 0.261859 0.315983 0.3361 0.347759 0.307615

Δ
5
(𝑘) 1.96E − 05 1.71E − 05 1.98E − 05 1.83E − 05 1.76E − 05

Δ 6(𝑘) 5.30E − 06 4.62E − 06 5.37E − 06 4.92E − 06 4.79E − 06

Table 9: Min. and max. of Δ 𝑗(𝑘).

Min. Max.
Δ 1(𝑘) 0.005253 0.006127
Δ 2(𝑘) 0.064409 0.088459
Δ
3
(𝑘) 0.560315 0.660519

Δ 4(𝑘) 0.261859 0.347759
Δ 5(𝑘) 1.71E − 05 1.98E − 05
Δ 6(𝑘) 4.62E − 06 5.37E − 06

Table 10: Correlation matrix.

DOL(𝑘)/𝑋𝑗
𝜃 = 0.5

DOL(1) DOL(2) DOL(3) DOL(4) DOL(5) Aggregated value

X
1

0.92078 1 0.93251 0.90497 0.96797 0.94524
X2 0.93769 0.85421 1 0.83565 0.81875 0.88926
X3 0.89886 0.96169 0.96396 1 0.95901 0.95670
X4 1 0.88951 0.85442 0.83532 0.90497 0.89684
X5 0.91331 1 0.90701 0.95695 0.98009 0.95147
X6 0.91514 1 0.90739 0.96063 0.97805 0.95224
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Table 11: Mean reversion process of zinc price.

Year 6 𝑃
6
= 𝑒{ln(2113)⋅𝑒

−0.9221
+[ln(2277)−0.27342/(2⋅0.9221)](1−𝑒−0.9221)+𝑁(0,1)⋅0.2734⋅√(1−𝑒−2⋅0.9221)/2⋅0.9221}

Year 7 𝑃7 = 𝑒
{ln(𝑃6)⋅𝑒−0.9221+[ln(2277)−0.27342/(2⋅0.9221)](1−𝑒−0.9221)+𝑁(0,1)⋅0.2734⋅√(1−𝑒−2⋅0.9221)/2⋅0.9221}

Year 8 𝑃8 = 𝑒
{ln(𝑃7)⋅𝑒−0.9221+[ln(2277)−0.27342/(2⋅0.9221)](1−𝑒−0.9221)+𝑁(0,1)⋅0.2734⋅√(1−𝑒−2⋅0.9221)/2⋅0.9221}

Year 9 𝑃9 = 𝑒
{ln(𝑃8)⋅𝑒−0.9221+[ln(2277)−0.27342/(2⋅0.9221)](1−𝑒−0.9221)+𝑁(0,1)⋅0.2734⋅√(1−𝑒−2⋅0.9221)/2⋅0.9221}

Year 10 𝑃10 = 𝑒
{ln(𝑃9)⋅𝑒−0.9221+[ln(2277)−0.27342/(2⋅0.9221)](1−𝑒−0.9221)+𝑁(0,1)⋅0.2734⋅√(1−𝑒−2⋅0.9221)/2⋅0.9221}

Table 12: Geometric Brownian motion of unit production costs.

Year 6 CO6 = 65 ⋅ 𝑒
{(0.02382−0.09351

2
/2)+𝑁(0,1)⋅0.09351}

Year 7 CO7 = CO6 ⋅ 𝑒
{(0.02382−0.09351

2
/2)+𝑁(0,1)⋅0.09351}

Year 8 CO8 = CO7 ⋅ 𝑒
{(0.02382−0.09351

2
/2)+𝑁(0,1)⋅0.09351}

Year 9 CO
9
= CO

8
⋅ 𝑒{(0.02382−0.09351

2
/2)+𝑁(0,1)⋅0.09351}

Year 10 CO10 = CO9 ⋅ 𝑒
{(0.02382−0.09351

2
/2)+𝑁(0,1)⋅0.09351}

Table 13: One simulation path of DOL.

Parameter
Value
Year

6 7 8 9 10
Production rate (t/year) 100000 105000 97000 100000 110000
Fixed costs (USD) 1600000 1800000 1500000 1700000 2000000
Revenues (USD)

Ore grade (%)-normal distribution 4.07 3.78 4.31 4.01 3.86
Mill recovery rate (%)-uniform distribution 79.27 78.54 78.62 77.71 78.32
Metal content of the concentrate (%) 53.8 53.8 53.8 53.8 53.8
Metal recovery rate (%) 85 85 85 85 85
Zinc metal price (USD/t)-mean reversion process 2025 1936 2064 2409 2120
Revenues (USD) 13040642 12152559 13638024 15254913 14228955

Production costs (USD)
Unit production costs (USD/t)-geometric Brownian motion 71.56 88.33 90.77 98.01 95.87
Production costs (USD) 7156388 9274793 8805646 9801869 10546252

Working days (day/year) 330 330 340 340 340
Degree of use of production capacity (%) 86 90 92 85 93

𝑦(1)(𝑘 + 1) = {1.219 − 7.3462 ⋅ 10−5𝑥
(1)

1
(𝑘 + 1) + 6.748 ⋅ 10−7𝑥

(1)

2
(𝑘 + 1) − 8.479 ⋅ 10−8𝑥

(1)

3
(𝑘 + 1) + 9.492 ⋅ 10−8𝑥

(1)

4
(𝑘 + 1)

+ 0.0027325𝑥
(1)

5
(𝑘 + 1) + 0.0517784𝑥

(1)

6
(𝑘 + 1)}𝑒

−1.5379𝑘
+ 7.3462 ⋅ 10

−5
𝑥
(1)

1
(𝑘 + 1) − 6.748 ⋅ 10

−7
𝑥
(1)

2
(𝑘 + 1)

+ 8.479 ⋅ 10−8𝑥
(1)

3
(𝑘 + 1) − 9.492 ⋅ 10−8𝑥

(1)

4
(𝑘 + 1) − 0.0027325𝑥(1)

5
(𝑘 + 1) − 0.0517784𝑥

(1)

6
(𝑘 + 1);

𝑘 = 5 + ℎ; ℎ = 0, 1, 2, 3, 4
DOL-AGO 7.892 8.981 9.723 10.955 12.147
DOL-inverse AGO 1.346 1.089 0.742 1.232 1.192

Scenario of unit production costs is represented by
Table 12.

Results of forecasting of DOL generated by the GM(1,6)
(see (51)) for a single simulation are represented by Table 13.

This act is repeated five hundred times and set of five
hundred possible states of nature is obtained for every year
of the time horizon. The expected DOL values,
𝐸(DOL(6)), 𝐸(DOL(7)), . . . , 𝐸(DOL(10)), are calculated

from the simulation results, that is, from the sets of possible
states of nature. The forecasting of the DOL is represented by
Figure 3 and summary Table 14.

Probability and cumulative density function of forecasted
DOL for 6th year are represented by Figure 4.

Step 4 (grey relevance analysis of results obtained by sim-
ulation). Applying (13) we obtain the following results of
equalization (see Tables 15 and 16).
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Table 14: Summary statistics.

Statistic parameter
Value
Year

6 7 8 9 10
Sample 500 500 500 500 500
Mean (expected) value of DOL 1.491 1.525 0.951 1.403 1.574
Median 1.469 1.494 0.945 1.397 1.571
Standard deviation 0.2512 0.2745 0.2631 0.2740 0.3163
Max. 2.470 2.543 1.766 2.471 2.940
Min. 0.9073 0.8394 0.2065 0.5978 0.5828
Range 1.562 1.703 1.559 1.872 2.357
Q (75%) 1.646 1.698 1.105 1.573 1.752
Q (25%) 1.293 1.340 0.761 1.227 1.379
Q (75%)–Q (25%) 0.352 0.358 0.344 0.346 0.373
Asymmetry (Skewness) 0.6235 0.5085 0.4129 0.3726 0.2453
Kurtosis 0.3917 0.3205 0.2378 0.7502 1.1323
Standard error 0.01123 0.01227 0.01176 0.01225 0.01414
Reliability coefficient (1 − 𝛼) 0.95 0.95 0.95 0.95 0.95
Reliability factor 1.96 1.96 1.96 1.96 1.96
Reliability interval-upper limit 1.513 1.549 0.973 1.427 1.601
Reliability interval-lower limit 1.469 1.501 0.927 1.378 1.545
Mean (expected) value (%) 52.90 53.80 51.40 50.20 50.70
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Figure 3:Original, fitting, one path forecasting, and expected values
of DOL after 500 simulations.

Grey relational (relevance) analysis of GM(1,6) for one
path of simulation is represented by Table 17.

According to Table 17, we obtain the simulated rank order
of relevancy of the influencing variables over time as follows:

Year 1:𝑋4 > 𝑋3 > 𝑋2 > 𝑋5 > 𝑋1 > 𝑋6.
Year 2:𝑋3 > 𝑋5 > 𝑋1 > 𝑋4 > 𝑋6 > 𝑋2.
Year 3:𝑋2 > 𝑋1 > 𝑋3 > 𝑋4 > 𝑋5 > 𝑋6.
Year 4: (𝑋1 = 𝑋6) > 𝑋5 > 𝑋2 > 𝑋3 > 𝑋4.
Year 5:𝑋5 > 𝑋3 > 𝑋6 > 𝑋1 > 𝑋2 > 𝑋4.
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Figure 4: Distribution of forecasted DOL for the 6th year.

According to aggregated values, we obtain the final simulated
rank order of relevancy of the influencing variables as follows:
𝑋3 > 𝑋5 > 𝑋2 > 𝑋1 > 𝑋4 > 𝑋6.

Since 500 simulations are performed, we obtain the
correlation matrix as in Table 18.

According to Table 18, we obtain the expected rank order
of relevancy of the influencing variables over time and final
expected rank order as follows:

Year 1:𝑋3 > 𝑋2 > 𝑋4 > 𝑋1 > 𝑋6 > 𝑋5.
Year 2:𝑋3 > 𝑋5 > 𝑋6 > 𝑋4 > 𝑋1 > 𝑋2.
Year 3:𝑋2 > 𝑋3 > 𝑋1 > 𝑋4 > 𝑋5 > 𝑋6.



16 Mathematical Problems in Engineering

Table 15: Sum of the major and influencing sequence variables for 𝑠 = 1.

DOL(k) 1.346 1.089 0.742 1.232 1.192
X
1
(k) 100000 105000 97000 100000 110000

X2(k) 1600000 1800000 1500000 1700000 2000000
X3(k) 13040642 12152559 13638024 15254913 14228955
X4(k) 7156388 9274793 8805646 9801869 10546252
X5(k) 330 330 340 340 340
X6(k) 86 90 92 85 93
Sum 21897447 23332773 24041102 26857208 26885641

Table 16: Equalized values of the major and influencing sequence variables for 𝑠 = 1.

DOL(k) 6.15E − 08 4.67E − 08 3.09E − 08 4.59E − 08 4.43E − 08
𝑋


1
(𝑘) 0.004567 0.0045 0.004035 0.003723 0.004091

𝑋


2
(𝑘) 0.073068 0.077145 0.062393 0.063298 0.074389

𝑋


3
(𝑘) 0.595533 0.520836 0.567279 0.568001 0.52924

𝑋


4
(𝑘) 0.326814 0.397501 0.366275 0.364962 0.392263

𝑋


5
(𝑘) 1.51E − 05 1.41E − 05 1.41E − 05 1.27E − 05 1.26E − 05

𝑋


6
(𝑘) 3.93E − 06 3.86E − 06 3.83E − 06 3.16E − 06 3.46E − 06

Table 17: Correlation matrix for 𝑠 = 1.

DOL(𝑘)/𝑋𝑗
𝜃 = 0.5

DOL(1) DOL(2) DOL(3) DOL(4) DOL(5) Aggregated value

𝑋1 0.876886 0.885498 0.950716 1 0.94227 0.931074
𝑋2 0.904383 0.87252 1 0.99112 0.893805 0.932366
𝑋3 0.916382 1 0.946311 0.945523 0.989839 0.959611
𝑋4 1 0.881448 0.930161 0.932326 0.889259 0.926639
𝑋5 0.893087 0.930804 0.930155 0.999411 1 0.950691
𝑋
6

0.871197 0.879595 0.881844 1 0.944697 0.915467

Table 18: Expected correlation matrix obtained after 500 simulations.

DOL(𝑘)/𝑋𝑗
𝜃 = 0.5

DOL(1) DOL(2) DOL(3) DOL(4) DOL(5) Aggregated value

X
1

0.912041 0.921771 0.925088 0.925480 0.939693 0.924814
X2 0.928070 0.896937 0.957765 0.913864 0.876159 0.914559
X3 0.934076 0.940820 0.935899 0.950123 0.953475 0.942879
X4 0.922037 0.922130 0.911800 0.901827 0.905551 0.912669
X5 0.890792 0.938745 0.870543 0.895710 0.958414 0.910841
X6 0.909324 0.925922 0.851819 0.933881 0.937900 0.911769

Year 4:𝑋3 > 𝑋6 > 𝑋1 > 𝑋2 > 𝑋4 > 𝑋5.
Year 5:𝑋5 > 𝑋3 > 𝑋1 > 𝑋6 > 𝑋4 > 𝑋2.
Final:𝑋3 > 𝑋1 > 𝑋2 > 𝑋4 > 𝑋6 > 𝑋5.

If we compare the final rank order of relevancy of the influ-
encing variables obtained by observation to the final expected
rank order of influencing variables obtained by simulation, it
can be seen that the revenues retain the greatest relevance.

Level of relevancy of the influencing variable related to
working days is significantly changed from the second level in
the past to the sixth in the future. Influencing variable related
to the production rate is increased its relevance from the
fourth level in the past to the second in the future, while the
rest variables retain approximately the same level of relevancy.

Key information obtained from the values of DOL can be
summarized in Table 19.
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Table 19: DOL’s indications.

Parameter DOL value
High Low

Variable costs (revenues
and fixed costs are fixed) High Low

Fixed costs (revenues and
variable costs are fixed) Low High

Revenues up (variable and
fixed costs are fixed) Greater profits Lower profits

Revenues down (variable
and fixed costs are fixed) Greater losses Lower losses

FromTable 19, we can seewhy itmatters if value ofDOL is
high or low. When DOL is high, a change in revenues results
in large change in profit or loss. On the other hand, when
DOL is low, a change in revenues results in small change in
profit or loss.

5. Conclusion

Multivariable grey model is used to establish the sequence
time response formula which defines the relationship
between ore production rate, fixed costs, revenues, produc-
tion costs, working days, and degree of use of production
capacity, as input variables, andDegree ofOperating Leverage
as indicator of operational efficiency of an existing under-
ground mine. The management of the company obtains the
aggregated information vector which sublimates the follow-
ing important indicators: forecasting model, relative percent-
age error of forecasting model, average relative percentage
error of forecasting model, the grey relational coefficient
between inputs and output for defined time interval, and
aggregated grey relational coefficient between inputs and
output.

Large capital intensive projects, such as those in the
mineral resource industry, are often associated with diverse
sources of both endogenous and exogenous uncertainties.
These uncertainties can greatly influence the operational
efficiency. Having the ability to plan for these uncertainties
is increasingly recognized as critical to long-term mining
company success. To decrease uncertainty of future values
of the operational efficiency we use expert’s knowledge and
simulation processes to find future values of input variables
affecting them. Estimation of future revenues is based on
the application of mean reversion process, normal and
uniform distribution. Geometric Brownian motion is used
to define future values of production costs. Values of ore
production rate, fixed costs, working days, and degree of use
of production capacity are estimated by expert’s knowledge.
Simulation results in the average or expected value of Degree
of Operating Leverage for every year of defined time horizon.
Degree of Operating Leverage is very important indicator to
the management of the mining company because it can be
used as a good base for Cost-Volume-Profit analysis.

The limitation of the developed model is related to
the expert’s estimation of the production rate, fixed costs,
working days, and degree of use of production capacity

as deterministic or crisp values. In order to overcome this
problem, we concern the possibility of application of interval
or fuzzy numbers as a way to decrease uncertainty of
these variables. It increases the complexity of the calculation
but makes the model much more realistic. Another one
approach of further exploration can be directed to developing
submodels finding the future states of these variables and
incorporation of them into main forecasting model.
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