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In wireless energy transfer systems, the energy is transferred from a power source to an electrical load without the need of physical
connections. In this scope, inductive links have been widely studied as a way of implementing these systems. Although high
efficiency can be achieved when the system is operating in a static state, it can drastically decrease if changes in the relative position
and in the coupling coeflicient between the coils occur. In this paper, we analyze the coupling coefficient as a function of the distance
between two planar and coaxial coils in wireless energy transfer systems. A simple equation is derived from Neumann’s equation
for mutual inductance, which is then used to calculate the coupling coefficient. The coupling coeflicient is computed using CST
Microwave Studio and compared to calculation and experimental results for two coils with an excitation signal of up to 10 MHz.
The results showed that the equation presents good accuracy for geometric parameters that do not lead the solution of the elliptic

integral of the first kind to infinity.

1. Introduction

Wireless power systems transfer the energy without wire
connection between a source and a load. This provides several
advantages specially for applications involving implantable
devices [1, 2] or devices that need to be hermetically sealed
during operation [3]. For the first, the use of batteries presents
issues in terms of periodic replacement which may require
complex surgical procedures. For the latter, a connection
through wires becomes unfeasible. Among the many classes
of wireless systems, energy transfer via inductive link has
been widely studied due to high efficiency and high transmis-
sion power capability [4].

In inductive coupled systems, a power amplifier supplies
an alternative current to the primary coil, which produces
a magnetic field at the secondary coil. The produced field
induces a current and voltage at the secondary branch,
which can be rectified and supplied to a load. An important
parameter for inductive links is the coupling coefficient
k, which measures how much power from the generated
electromagnetic (EM) field is induced in the secondary coil.
The coupling coefficient is related to the reflected impedance

from the secondary on the primary side. Therefore, variations
on k change the output impedance of the power amplifier,
removing it from its optimum operation condition and
decreasing its efficiency [5].

Previous studies on the magnetic coupling suggest that
the coupling coefficient can be affected mostly due to vari-
ations in the distance between the coils [6], relative angle
between the coils, and magnetic properties of the material
surrounding the coils. This is particularly important for
systems where the two coils are not in a fixed relative position.
For such systems, the efficiency can be seriously compro-
mised due to inefficient operation of the power amplifier.
Hence, analyzing the behavior of the coupling factor as a
function of these critical parameters can help to maintain
the system efficiency stable as the coupling between the coils
varies.

Numerical simulations provide highly accurate results
but require long computational time and extensive memory
usage. Although the analytical methods based on the closed
form expressions lack high accuracy, they offer fast solutions
and explicit control over the design parameters.
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FIGURE 1: Inductive link schematic.

In this paper, we derive a simple formula for the mutual
inductance as a function of the distance between two planar
and coaxial coils. The equation is obtained from Neumann’s
equation for the mutual inductance, using power series as
approximated solutions of the elliptic integrals, which are
usually computationally expensive to obtain. We also give
theoretical insight about the correlation between magnetic
field distribution and coupling coefficient. The presented
equation is compared to simulation and experimental results
of two designed coils with excitation signals at frequencies of
up to 10 MHz.

2. Inductive Link Systems

In Figure 1, a simple diagram of an inductive link is shown.
A primary coil is excited by a power amplifier (PA), usually
operating in class E due to its high efficiency. Power is
transmitted to the load via magnetic coupling between
inductors L, and L,. The system efficiency is defined as
the ratio between the power dissipated on the load and the
power supplied to the power amplifier. In addition to losses
in the inductors, due to finite resistance of the coils, the PA
efficiency plays a major role in degrading overall efficiency.

In order to design the PA, the impedance seen at its
output (Z,, in Figure 1) must be taken into account. In most
designs, the inductance of the primary coil is used as a
component for the output filter of the power amplifier while
the output resistance is considered the load of the amplifier.
The values of these output components are tightly related
to the amplifier efficiency, once optimum operation state is
achieved for determined component values [5]. Therefore,
variations on the output impedance can significantly decrease
the amplifier efficiency and, as a consequence, the system
efficiency.

For a generic load Z; connected to the secondary coil, the
impedance Z,, can be defined as

w*M?

—_—, ¢y
JwL,Ryg+ Z;

Ziyy = Rig+ jwL, +

where R;g represents the series resistance of L, and M
is mutual inductance, related to the coupling coefficient k
according to

k=, )
VL, L,
where L, and L, are the self-inductance of coils 1 and 2.
Equations (1) and (2) express the dependence of the
output impedance on the coupling coeflicient of the inductive
link. As the mutual inductance varies, the third term of
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FIGURE 2: Two coaxial coils with radii a and b.

(1), which can have an imaginary and real part, varies and
modifies the impedance Z;, shown in Figure 1.

3. Coupling Coefficient Calculation

The mutual inductance between two circular loops separated
by a distance d and with radii a and b, as depicted in Figure 2,
can be calculated using Neumann’s equation [7]:

M=t ” COS€ 15 ds', 3)
r

T an

where ds and ds' are the incremental sections of the circular
filaments and r is the distance between these two sections,
which are defined as

r= \/a2+b2+d2—2acos(¢—¢>’),

(4)
e=¢p-¢', ds=adp, ds=>bd¢.
The substitution of (4) in (3) results in
2m abcos (¢ —¢'
- ﬁ” (¢-¢) dpde’.  (5)
4m))o a*+b? +d? - 2acos(¢—¢')

The integral in (5) can be rewritten using elliptic integrals,
yielding

2
M(m)z%%K z

1—7>K(m)—E(M)], (6)

where K(m) and E(m) are the elliptic integrals of first and
second kind, respectively, and m is defined as

4
m= b 7)
(a+b) +d?
assuming values between 0 and 1.

3.1. Solution of the Elliptic Integrals. The solutions of the ellip-
tic integrals of the first and second kind can be approximated
[8] using (8) and (9). The approximation and the solution
obtained through numeric integration are depicted in Figures
3 and 4. For low values of m, the power series representation
shows reasonable accuracy. However, m increases both curves
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FIGURE 3: Comparison between numerical integration and power
series approximation for elliptic integral of the first kind.

diverge from the numeric integration values. For the elliptic
integral of the first kind, as m approaches the unity, the
solution asymptotically tends to infinity much faster than the
solution calculated by numeric integration:

T om
K == 4+= , 8
(m) =~ + ST o (8)
T T 3
E(m) == - —m".
(m) 5 g™ 9)
The second term of (8) tends to infinity as m tends to 1:
4
me=—b___, (10)
(a+b) +d?

which leads to the following relation between the coils radius
and the distance between the coils:

d* = (a-b)*. (11)

Hence, (8) is not valid when the distance between the
two coils approaches the value expressed by (11). In order
to avoid this limitation, a high number of terms would
be required for the series approximation (8), making the
final expression of the mutual inductance too complex and
extensive. Alternatively, the solution of the elliptic integral of
the first kind can be approximated by a logarithm function
[8]. However, the logarithm approximation leads to issues
related to the signal of (6) and to an extensive resultant
expression for the mutual inductance. Therefore, in this
paper, we only use approximations (8) and (9), analyzing its
limitations.

3.2. Mutual Inductance Calculation. The substitution of (8)
and (9) in (6) yields

(12)

E(m)
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FIGURE 4: Comparison between numerical integration and power
series approximation for elliptic integral of the second kind.
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F1GURE 5: Circuit schematic of the inductive link.

Next, substituting (7) in the expression above results in the
expression for the mutual inductance as a function of the
distance between two circular coaxial loops:

una’b’
: 13
\V(@+b) +d?[(a-b) +d?] w

For two coils with #,, turns, the expression can be
adjusted [6], yielding

M =

umn, nya’b’

14
@+ b)? +d?[(a-b)* +d?] o

which express the mutual inductance of two coils with 7, ,
as a function of distance d, the magnetic permeability of the
material surrounding the coils ¢ and the inner radius of the
two coils.

M =

4. Coupling Coefficient
Measurement Technique

In this section, we discuss the methodology used to infer the
coupling coefficient in simulations. The circuit schematic of
the inductive link is shown in Figure 5 and its equations can
be written as

Vi = jw(LL, + ML), (15)

Vy = jw(LL, + MI,). (16)
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Assuming the secondary coil is shorted, (16) becomes
MI
L =-—L 1
=L 17)
Substituting (17) in (15) yields
M
V, = jwl, (L1 - —). (18)
L,
Assuming
M
L = L - T 1
s 1 L2 ( 9)

equation (18) becomes
V, = jwI,L.. (20)

Hence, the inductance L, is the inductance measured when
the secondary coil is shorted. Rearrange (19) in terms of the
mutual inductance:

M=1L,(L, -L,). (1)

Finally, combining (21) and (2) results in the expression of
the coupling coefficient in terms of the self-inductance L, and
the inductance measured when the secondary coil is shorted,
L

N

k=\j1—£—j. (22)

5. Results

Simulation results were used to check the accuracy of (14).
In addition, experimental results were analyzed for two coils
with geometries that lead the coefficient m close to unity for
short separation distances between the coils.

5.1. Mesh Properties. To evaluate the coil impedance, it is
necessary to take into account the geometry and curvature
of the coils, as well as the interaction between the traces of
each turn. Thus, circular coils are computational expensive
since a very fine mesh is required to precisely create the EM
model for the circular shapes of the coils. In order to achieve
reasonable accuracy and reliable results, the mesh cell size
was decreased to a point where no further variation in the
results was observed. In addition, the accuracy of curvature
elements in CST was also increased until stable results were
achieved.

5.2. Simulation. In order to analyze the accuracy of (14), the
coupling coeflicient between two coils, with dimensions given
by Table 1, was computed using CST. Parameters s and w are
the spacing between traces and trace width, respectively; h is
the trace height and n is the number of turns. The coupling
coefficient was measured according to the method explained
in Section 4, for an excitation signal at 1, 6, and 10 MHz. The
results are shown in Figure 6.
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TABLE 1: Dimensions of simulated coils (in mm).

a h w s
Coil 1 11.5 0.035 0.5 0.5 7
Coil 2 11.5 0.035 0.5 0.5 4

TABLE 2: Dimensions of coils used for measurements (in mm).

a h w s n
235 0.035 0.5 0.5 18

Equation (14) presented a reasonable accuracy compared
to simulation results, specially for large separation distance
between the coils (d > 20 mm). Also, as (14) predicts, the
coupling coeflicient is not dependent on the operation fre-
quency, presenting small variations at different frequencies.
These small variations can be explained by proximity and
skin effects, which are responsible for slightly changing the
impedance of the primary and secondary coils. The skin effect
increases proportionally to the square root of the operation
frequency, increasing the impedance of the coil.

5.3. EM Field Distribution. Figure 7 shows the magnetic field
distribution surrounding the coils at 6 MHz. The field lines
are normal to the XY plane. The coupling coeflicient is
dependent on how much of the magnetic field flux is encircled
by the secondary coil, being higher if a high density of
lines is projected through the secondary coil. The amount of
magnetic field lines diverging from the secondary coil can be
seen as a field leakage, reducing the coupling between the two
coils.

As the two coils are separated apart in the Z direction,
more field leakage is observed as the concentration of field
lines reaching the secondary coil becomes lower.

5.4. Measurements. The limitation of (14) was also tested
through experiments. We measured the coupling coeflicient
of two identical coils with dimensions given in Table 2. The
setup for the measurement is shown in Figure 8. The primary
coil was connected to a port of a vector network analyzer
and the S parameters were measured. The Z matrix was
calculated, yielding the input impedance and, therefore, the
inductance seen at the primary coil when the secondary coil
is shorted (L in (22)).

The measured and calculated results are depicted in
Figure 9. The measurements were performed at an operation
frequency of 1 MHz. For distances above 10 mm, the calcu-
lated results are reasonable close to the experimental ones.
Since the radii of both coils are the same, (11) can be written
as

=0 (23)

which means that for distances close to 0, (14) is no longer
valid and good accuracy is no longer obtained, as shown in
Figure 9 for small distances (d < 10 mm).

As previously mentioned, as the distance becomes
closer to the condition given by (23), the second term of



Active and Passive Electronic Components

0.3

0.25

0.2

k 0.15

0.1 4

0.05 1

d (mm)

wsx f = 6MHz
—— f=10MHz

—— Calculated
—— f=1MHz

FIGURE 6: Coupling coefficient as a function of distance for different
frequencies.
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FIGURE 7: Magnetic field distribution surrounding the coils, in YZ
plane.

the approximation of the elliptic integral of the first kind (8)
asymptotically tends to infinity, resulting in high values of the
coupling coeflicient.

6. Conclusions

In this paper, the coupling coefficient between two coplanar
and coaxial coils was analyzed as a function of the separation
distance. We derived an equation for the mutual inductance
from Neumanns equation which can be used to estimate
the coupling coeflicient between the coils. In order to derive
the equation, we used a power series approximation for the
solution of the elliptic integrals, which is usually calculated
by numerical integration. The derived equation presented
good accuracy when compared to simulation results. The
experimental results demonstrated the limitation of the
presented equation, as it can only be used for coil geometries
and properties that do not lead the solution of the elliptic
integral of the first kind to infinity.
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FIGURE 9: Measured coupling coefficient at 1 MHz.

The analysis presented here is useful for inductive link
systems where the distance between the coils is not constant.
By predicting the behavior of the coupling coefficient as a
function of the variable distance, it is possible to devise a
simple mechanism capable of locking the system efficiency
at a desired level despite variations in the relative position of
the source and load.
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