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In practice, sometimes the data can be divided into several blocks but only a few of the largest observations within each block are
available to estimate the heavy tail index. To address this problem, we propose a new class of estimators through the Generalized
Jackknife methodology based on Qi’s estimator (2010). These estimators are proved to be asymptotically normal under suitable
conditions. Compared to Hill’s estimator and Qi’s estimator, our new estimator has better asymptotic efficiency in terms of the
minimum mean squared error, for a wide range of the second order shape parameters. For the finite samples, our new estimator
still compares favorably to Hill’s estimator and Qi’s estimator, providing stable sample paths as a function of the number of dividing
the sample into blocks, smaller estimation bias, and MSE.

1. Introduction

The heavy tailed distributions have been applied to many
fields, such as finance, insurance, telecommunications, nat-
ural calamities, and environmental science. The heavy tail
index plays a very important role, with the inherent quality
that larger the tail index, the heavier the distributional tail,
andmore the rare events.Thus, how to estimate the tail index
of a heavy tailed distribution has attracted much attention
in the literature. Since the seventies of last century, [1–7]
proposed various parametric or semiparametric estimators.
These estimators are constructed from the upper order
statistics exceeding a certain threshold.

However, sometimes only the information on the largest
value occurring is recorded or only several largest observa-
tions are available for analysis. Specifically, sometimes the
data can be divided into several blocks but only a few of the
largest observations within each block can be used to infer.
For example, for financial data, it is very common that only
the information on a few largest quoted prices is reported
to the public (see [8, 9]). For meteorology data, only the
highest and lowest temperatures of each day are forecasted.
Inmany athletics games, only the scores for a few best players

are observed and these observations can be considered as
the largest observations within each game. Other actual
situations are also mentioned in [10–12].

Thus, Davydov et al. [13] propose a new estimator for
the tail index. In their approach, observations are divided
into several blocks and the estimator of the tail index is
constructed from the ratios of the first largest and sec-
ond largest terms within blocks. Since Davydov-Paulauskas-
Račkauskas (DPR) approach does not use all the upper order
statistics when it is used to estimate the tail index, it may
not be as efficient as Hill’s estimator (see [1]), the most well-
known estimation of the tail index, in sense of the minimum
mean squared error (MSE). In fact, when only several largest
observations within each block are available for analysis,
DPR’s approach has its advantages over others, since none of
the aforementioned methods is applicable.

A similar idea as DPR’s is used by [14], who study the
limiting distribution of Galton’s ratio computed from each
of the blocks in the entire sample and develop a parallel
procedure to test whether the underlying distribution is from
the external domain of attraction of the Gumbel distribution.
Paulauskas [15] studies the properties of DPR’s estimator and
shows that the large sample performance of the estimator
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is good besides the simplicity of the statistic used for the
estimator. After investigating the asymptotic properties of
the DPR estimator, Paulauskas and Vaičiulis [16], Vaičiulis
[17] propose a class of modifications of the DPR estimator
with better asymptotic properties but a nonnull bias. Qi
[18] proposes a new class of estimators by using a similar
setup to DPR’s, according to the fact that only several largest
observations within each block can be used for the inference.
Qi’s estimator is more efficient than DPR’s in the sense
that it has a smaller asymptotic variance under the second
order regular variation, but with a nonnull asymptotic bias
dependent on the number of the largest random variables
used for inference within each block.

The main purpose of this paper is to propose a new
class of estimators for the tail index, with a null asymptotic
bias and smaller asymptotic variance compared to those
aforementioned methods, through the Generalized Jackknife
methodology.TheGeneralized Jackknife methodology based
on nonparametric resampling techniques is to reduce the
bias of an estimator by means of considering a combination
of two suitable estimators. In addition to the application of
this methodology in this paper, the first estimator obtained
through the Generalized Jackknife methodology is the one
introduced by [19], under a different context. Gomes et al.
[20] propose several Generalized Jackknife estimators, by
the use of suitable Generalized Jackknife methodologies,
associated withVries’ estimator (see [21]) andHill’s estimator.
They find that these statistics could be used to reduce bias,
preferably without increasing the MSE—which seems not to
be an easy goal to achieve for all values of the second order
shape parameter, and their performances in finite sample are
closely related to the sample size. Gomes et al. [22] propose a
class of Generalized Jackknife estimators associated with any
two members of the class of Hill’s estimators and improve
on the well-known, bias-variance, trade-off characteristic of
Hill’s estimator both asymptotically and for finite samples,
when the underlying distribution is in Hall’s class of models.

The Jackknife methodology may be easily generalized to
other semiparametric estimators of the tail index. Falk [23]
studies convex combinations of two members of the class of
Pickands’ estimator, showing its superiority over Pickands’
estimator. However, the simulation results presented by [24]
show that the convex combinations of two members of the
class of Hill’s estimators do not improve highly the behavior
of the original Hill’s estimator. Similar studies based on the
Hill estimator are also done in [25, 26], providing a new class
of estimators for 𝛾 ∈ R+ under the second order regular
variation. Thus, motivated by better asymptotic efficiency of
Qi’s estimator and reduced-bias capability of the Generalized
Jackknife methodology, we propose a Jackknife estimator
associated withQi’s estimators at two different levels. Asymp-
totic comparisons and simulation studies are presented to
show that the new estimator presents the existence of some
possible improvement in terms of the minimum MSE for a
wide range of the second order shape parameter compared to
the well-known Hill’s estimator and original Qi’s estimator.

The rest of the paper is organized as follows. Section 2
briefly introduces some necessary preliminaries. In Section 3,
new estimators are introduced and discussed asymptotically.

In Section 4, some asymptotic comparisons of tail index
estimators under study are provided. In Section 5, their
performances for finite samples are illustrated through the
Monte Carlo technique. Finally, in Section 6, some conclu-
sions are given.

2. Preliminaries

To derive the asymptotic properties of our new estimator
and compare its asymptotic efficiencies to other well-known
estimators, some necessary preliminaries on regular variation
behaviors and asymptotic properties of other estimators are
given as follows.

Let 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
be a set of 𝑛 independent and iden-

tically distributed (iid) random variables with a common
distribution function (df) 𝐹:

1 − 𝐹 (𝑥) = 𝑥
−1/𝛾

𝐿 (𝑥) (1)

for large 𝑥, where 𝐿(𝑥) is a slowly varying function; that is,
for every 𝑥 > 0, 𝐿(𝑡𝑥)/𝐿(𝑡) → 1 as 𝑡 → ∞. Consequently,
1−𝐹 ∈ RV

−1/𝛾
, where RV

−1/𝛾
stands for the class of regularly

varying functions at infinity with index of regular variation
equal to −1/𝛾.

Let us denote the associated ascending order statistics
(o.s.) by 𝑋

1,𝑛
≤ 𝑋
2,𝑛

≤ ⋅ ⋅ ⋅ ≤ 𝑋
𝑛,𝑛
, and the maximum

linearly normalized by real constant sequences {𝑎
𝑛
> 0} and

{𝑏
𝑛
∈ R}, such that (𝑋

𝑛,𝑛
− 𝑏
𝑛
)/𝑎
𝑛
converges in distribution

to a nondegenerate limit distribution, that is, the generalized
extreme value (GEV) distribution:

EV
𝛾
(𝑥) = {

exp (−(1 + 𝛾𝑥)
−1/𝛾

) , 1 + 𝛾𝑥 > 0, 𝛾 ̸= 0

exp (− exp (−𝑥)) , 𝑥 ∈ R, 𝛾 = 0;
(2)

𝐹 is thus in the max-domain of attraction of EV
𝛾
, denoted by

𝐹 ∈ DM(EV
𝛾
).

For 𝛾 > 0, it is well known that both the first and second
order behavior of the df ’s are in the domain of attraction of
EV
𝛾
. The first order behavior is introduced that

𝐹 ∈ DM (EV
𝛾
) iff 1 − 𝐹 ∈ RV

−1/𝛾
iff 𝑈 ∈ RV

𝛾
, (3)

where

𝑈 (𝑡) = 𝐹
←

(
1 − 1

𝑡
) , 𝑡 > 1, 𝐹

←

(𝑢) = inf {𝑥 : 𝐹 (𝑥) ≥ 𝑢} .

(4)

The conditions in (3) characterize completely the first
order behavior of 𝐹(⋅). To make an inference about 𝛾, the
second order behavior stronger than the first behavior is
required as in [27]. Throughout this paper, we assume that
there exists a function 𝐴(𝑡) → 0 as 𝑡 → ∞, such that

lim
𝑡→∞

𝑈 (𝑡𝑥) /𝑈 (𝑡) − 𝑥
𝛾

𝐴 (𝑡)
= 𝑥
𝛾 𝑥
𝜌
− 1

𝜌
, (5)

for all 𝑥 > 0, where |𝐴(𝑥)| must then be of regular variation
with index 𝜌, that is, |𝐴(𝑡)| ∈ RV

𝜌
(see [28]), and 𝜌 is a

second order shape parameter, which eventually also needs
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to be properly estimated from the original sample, and whose
estimation will be addressed in another paper. In this paper,
we will assume that (5) holds with 𝜌 < 0 and that we can
choose 𝐴(𝑡) = 𝛾𝛽𝑡

𝜌 with 𝛽 ̸= 0, a second order scale
parameter.

As the most popular semiparametric estimation of the
tail index 𝛾, Hill’s estimator has the weak consistency, strong
consistency, and asymptotic normality. Based on 𝑘 largest
order statistics, the Hill estimator (o.s.) is defined by

𝛾
𝐻

𝑛
(𝑘) =

1

𝑘

𝑘

∑

𝑖=1

(log𝑋
𝑛−𝑖+1,𝑛

− log𝑋
𝑛−𝑘,𝑛

) . (6)

For any intermediate sequence 𝑘 = 𝑘(𝑛), that is, a sequence
such that

𝑘 (𝑛) 󳨀→ ∞,
𝑘 (𝑛)

𝑛 → 0
, as 𝑛 󳨀→ ∞, (7)

under the second order condition in (5), the following
distributional representation for the Hill estimator

𝛾
𝐻

𝑛
(𝑘)
𝑑

= 𝛾 +
𝛾

√𝑘
𝑃
(1)

𝑛
+

1

1 − 𝜌
𝐴(

𝑛

𝑘
) + 𝑜
𝑝
(𝐴(

𝑛

𝑘
)) (8)

holds, where𝑃(1)
𝑛

is asymptotically a standard normal r.v., that
is, 𝑃(1)
𝑛

𝑑

= √𝑘((1/𝑘)∑
𝑘

𝑖=1
𝐸
𝑖
− 1), with {𝐸

𝑖
} a sequence of unit

exponential r.v.’s. As proved in [21], if√𝑘𝐴(𝑛/𝑘) → 𝜆, finite,
as 𝑛 → ∞, then

√𝑘 (𝛾
𝐻

𝑛
(𝑘) − 𝛾)

𝑑

󳨀→ 𝑁(
𝜆

1 − 𝜌
, 𝛾
2

) , (9)

and the corresponding asymptotic mean square error
(AMSE) is given by

AMSE (𝛾𝐻
𝑛
(𝑘)) =

𝛾
2

𝑘
+

1

(1 − 𝜌)
2
𝐴
2

(
𝑛

𝑘
) . (10)

Davydov et al. [13] and Paulauskas [15] propose a new
estimator for the tail index as follows. First, divide the
sample𝑋

1
, . . . , 𝑋

𝑛
into 𝑘

𝑛
blocks, 𝑉

1
, . . . , 𝑉

𝑘
𝑛

, and each block
contains 𝑚 = 𝑚(𝑛) = [𝑛/𝑘

𝑛
] observations, where [𝑥]

denotes the integer part of 𝑥 > 0. To be more specific, 𝑉
𝑖
=

{𝑋
(𝑖−1)𝑚+1

, . . . , 𝑋
𝑖𝑚
} for 1 ≤ 𝑖 ≤ 𝑘

𝑛
. Let 𝑋(𝑖)

𝑚,1
≥ ⋅ ⋅ ⋅ ≥ 𝑋

(𝑖)

𝑚,𝑚

denote the order statistics of the 𝑚 observations in the 𝑖th
block. Set

𝑆
𝑘
𝑛

=

𝑘
𝑛

∑

𝑖=1

𝑋
(𝑖)

𝑚,2

𝑋
(𝑖)

𝑚,1

,

𝛾
DPR
𝑛

(𝑘
𝑛
) =

𝑘
𝑛
− 𝑆
𝑘
𝑛

𝑆
𝑘
𝑛

,

(11)

an estimator of 𝛾. Under the second order condition in (5), it
is proved that

√𝑘
𝑛
(𝛾

DPR
𝑛

− 𝛾)
𝑑

󳨀→ 𝑁(0,
𝛾
2
(1 + 𝛾)

2

(1 + 2𝛾)
) . (12)

Qi [18] proposes a new class of estimators by using a
similar setup to DPR’s, which may be dependent on more
information on the largest observations in each block. Let
𝑟 ≥ 1 be an integer and assume that the 𝑟 + 1 largest random
variables within the 𝑘

𝑛
blocks are used to estimate 𝛾:

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) =

1

𝑘
𝑛
𝑟

𝑘
𝑛

∑

𝑖=1

𝑟

∑

𝑗=1

(log𝑋(𝑖)
𝑚,𝑗

− log𝑋(𝑖)
𝑚,𝑟+1

) , (13)

where 𝑘
𝑛
satisfies the intermediate condition as in (7).

If √𝑘
𝑛
𝐴(𝑛/𝑘

𝑛
) → 𝜆, finite, as 𝑛 → ∞, for which

under the second order condition in (5), the distributional
representation

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟)
𝑑

= 𝛾 +
𝛾

√𝑘
𝑛
𝑟
𝑍
(1)

𝑛
+ 𝑏
𝑟
𝐴(

𝑛

𝑘
𝑛

) + 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

))

(14)

holds, where

𝑏
𝑟
=

1

𝑟𝜌
(

𝑟

∑

𝑗=1

Γ (𝑗 − 𝜌)

(𝑗 − 1)!
−
Γ (𝑟 + 1 − 𝜌)

(𝑟 − 1)!
) , (15)

and Γ(𝑥) = ∫
∞

0
𝑡
𝑥−1

𝑒
−𝑡
𝑑𝑡 is the Gamma function; then

√𝑘
𝑛
(𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) − 𝛾)

𝑑

󳨀→ 𝑁(
𝜆𝑏
𝑟
, 𝛾
2

𝑟
) , (16)

and the asymptotic mean square error is given by

AMSE (𝛾𝑄
𝑛
(𝑘
𝑛
, 𝑟)) =

𝛾
2

𝑘
𝑛
𝑟
+ 𝐴
2

(
𝑛

𝑘
𝑛

) 𝑏
2

𝑟
. (17)

3. Our New Estimators

Themain objective of the Jackknife methodology (see [29]) is
to reduce the bias of an estimator constructed by two different
estimators with similar asymptotic properties. Specifically, as
a particular case of the Jackknife theory, if there exist two
different biased consistent estimators 𝜂1

𝑛
and 𝜂

2

𝑛
of 𝜂, with

asymptotic bias of 𝑏1
𝑛
and 𝑏
2

𝑛
. Put a weight

𝑞
𝑛
:=

𝑏
1

𝑛

𝑏2
𝑛

(18)

between 𝜂
1

𝑛
and 𝜂

2

𝑛
that provides the elimination of the

asymptotic bias for 𝜂. The Generalized Jackknife statistic
associated with (𝜂

1

𝑛
, 𝜂
2

𝑛
) is

𝜂
𝐺
=
𝜂
1

𝑛
− 𝑞
𝑛
𝜂
2

𝑛

1 − 𝑞
𝑛

, (19)

an unbiased consistent estimator of 𝜂, provided 𝑞
𝑛

̸= 1, for
every 𝑛.

It is not difficult to acquire the information about asymp-
totic bias of the estimators in extreme value theory (EVT),
so one can use this information to build new estimators
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with a reduced asymptotic bias. In this paper, we intend to
deal with the estimator 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟) proposed by [18] and build

the associated Generalized Jackknife estimator, which may
provide stable sample paths as functions of implied param-
eters and a flatter mean square error. The estimator 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟)

includes two different parameters, that is, the number of the
blocks 𝑘

𝑛
and the number of largest random variables 𝑟 used

for inference within each block, which will generate three
classes of different Generalized Jackknife statistics.

The first class is associated with (𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)),

0 < 𝜃 < 1, dealingwith the estimator 𝛾𝑄
𝑛
(𝑘
𝑛
, 𝑟) by dividing the

samples in two different ways into 𝑘
𝑛
blocks and 𝜃𝑘

𝑛
blocks.

The second class is associated with (𝛾𝑄
𝑛
(𝑘
𝑛
, 𝑟), 𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝜃𝑟)), 0 <

𝜃 < 1, dealing with the estimator 𝛾𝑄
𝑛
(𝑘
𝑛
, 𝑟) at two different

levels 𝑟 and 𝜃𝑟, the largest randomvariables used for inference
within each block.The third class is (𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾
𝑄

𝑛
(𝜃
1
𝑘
𝑛
, 𝜃
2
𝑟)),

0 < 𝜃
1

< 1, 0 < 𝜃
2

< 1, the combination of the
two formers. The Generalized Jackknife statistic associated
with (𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝜃𝑟)) is difficult to calculate; thus, a

general discussion for the second and third classes will not be
executed temporarily in this paper. In subsequent simulation
studies, we take the integer part of 𝜃𝑘

𝑛
for finite sample.

Let us consider the first class associated with 𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟)

and 𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟), that is, the Generalized Jackknife statistic

associated with the estimator 𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) with two different

ways to divide the samples into blocks denoted by

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) =

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) − 𝑞

𝑛
𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)

1 − 𝑞
𝑛

, 0 < 𝜃 < 1, (20)

with

𝑞
𝑛
=

Bias (𝛾𝑄
𝑛
(𝑘
𝑛
, 𝑟))

Bias (𝛾𝑄𝑛 (𝜃𝑘𝑛, 𝑟))
= 𝜃
𝜌

. (21)

That is,

𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) =

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) − 𝜃

𝜌
𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)

1 − 𝜃𝜌
, (22)

dependent on the second order parameter 𝜌, which needs
eventually to be estimated by any of consistent estimators 𝜌;
then

𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) =

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) − 𝜃

𝜌
𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)

1 − 𝜃𝜌
. (23)

Remark 1. We may also estimate 𝜌 adequately, either inter-
nally as in [30, 31], or externally as done successfully in [32],
through any of the 𝜌-estimators available in the literature, like
the ones in [33, 34].

Theorem 2. Under the second order condition in (5), 𝑘
𝑛

→

∞, 𝑘
𝑛
/𝑛 → 0, and √𝑘

𝑛
𝐴(𝑛/𝑘

𝑛
) → 𝜆, finite, as 𝑛 → ∞;

then

√𝑘
𝑛
(𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) − 𝛾)

𝑑

󳨀→ 𝑁(0, (
1 + 𝜃
2𝜌−1

− 2𝜃
𝜌

𝑟(1 − 𝜃𝜌)
2

)𝛾
2

) .

(24)

Proof. This asymptotic normality can be interpreted briefly as
follows.

Under the second order condition in (5), 𝑘
𝑛
satisfies

the intermediate condition as in (7), and √𝑘
𝑛
𝐴(𝑛/𝑘

𝑛
) →

𝜆, finite, as 𝑛 → ∞, and we have the distributional
representations:

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟)
𝑑

= 𝛾 +
𝑍
(1)

𝑛

√𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝑘
𝑛

) 𝑏
𝑟
+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)) ,

𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)
𝑑

= 𝛾 +
𝑍
(2)

𝑛

√𝜃𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝜃𝑘
𝑛

) 𝑏
𝑟
+ 𝑜
𝑝
(𝐴(

𝑛

𝜃𝑘
𝑛

)) ,

(25)

where (𝑍
(1)

𝑛
, 𝑍
(2)

𝑛
) is asymptotically Bivariate Normal with

null mean and covariance matrix ∑
1,2

= [𝜎
𝑖𝑗
], where 𝜎

11
=

𝜎
22

= 1 and 𝜎
12

= 𝜎
21

= √𝜃, which comes from the
fact that if we consider the Hill’s estimator computed at two
different levels 𝑘

1
and 𝑘
2
, that is, 𝛾𝐻

𝑛,1
(𝑘
1
) and 𝛾𝐻

𝑛,2
(𝑘
2
), 𝑘
1
< 𝑘
2
,

𝑘
1
/𝑛 → 0, 𝑘

2
/𝑛 → 0, 𝑘

2
− 𝑘
1
→ ∞, as 𝑛 → ∞, we have

the asymptotic representations:

𝛾
𝐻

𝑛,𝑗
(𝑘
𝑗
)
𝑑

= 𝛾 +
𝛾

√𝑘
𝑗

𝑃
(1)

𝑛,𝑗
+

1

1 − 𝜌
𝐴(

𝑛

𝑘
𝑗

) + 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑗

)) ,

𝑗 = 1, 2,

(26)

where (𝑃(1)
𝑛,1
, 𝑃
(1)

𝑛,2
) is asymptotically BivariateNormal with null

mean and covariance matrix∑
1,2

= []
𝑖𝑗
], where ]

11
= ]
22

= 1

and ]
12

= ]
21

= √𝑘
1
/𝑘
2
. Then,

𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) =

1

1 − 𝜃𝜌
𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) −

𝜃
𝜌

1 − 𝜃𝜌
𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)

𝑑

=
1

1 − 𝜃𝜌
(𝛾 +

𝑍
(1)

𝑛

√𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝑘
𝑛

) 𝑏
𝑟

+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)))

−
𝜃
𝜌

1 − 𝜃𝜌
(𝛾 +

𝑍
(2)

𝑛

√𝜃𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝜃𝑘
𝑛

) 𝑏
𝑟

+ 𝑜
𝑝
(𝐴(

𝑛

𝜃𝑘
𝑛

)))

𝑑

= 𝛾 +
√1 + 𝜃2𝜌−1 − 2𝜃𝜌

√𝑘
𝑛
𝑟 (1 − 𝜃𝜌)

𝑍
𝐺

𝑛
+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)) ,

(27)

where 𝑍𝐺
𝑛
is asymptotically normal (0, 1).

The estimator 𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) provides asymptotic unbiased

results, with an asymptotic variance inverse proportional to
𝑟; that is,

Var
∞
(𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟)) = (

1 + 𝜃
2𝜌−1

− 2𝜃
𝜌

𝑟(1 − 𝜃𝜌)
2

)
𝛾
2

𝑘
𝑛

, (28)
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with Cov
∞
(𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾
𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)) = 𝛾

2
/𝑟; what is more, the

term of the coefficient of 𝛾2 is both depending on 𝜌 and 𝜃:

𝜃
0
:= argmin

𝜃

AMSE
∞
(𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟))

= argmin
𝜃

Var
∞
(𝛾
𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟)) .

(29)

The Hill estimator as well as many other semiparametric
estimators of the tail index is consistent for intermediate
ranks, but with high bias for large value of 𝑘 and high variance
for small value of 𝑘. The estimator 𝛾𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) proposed by us

as the function of 𝑘
𝑛
and 𝑟 whether has a similar behavior to

Hill estimator? We will give the answer in the following parts
of this paper.

Remark 3. Since the estimation of the second order shape
parameter 𝜌 is still problematic, it is useful to analyze the
behavior of 𝛾𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) for a nonoptimal choice of 𝑞

𝑛
. However,

due to the high bias and variance of those existing estimators
of 𝜌, we will not estimate the value of 𝜌 for 𝛾𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟) in this

paper.
Without loss of generality, we put 𝜌 = −1 as done in [20,

22, 31, 35–37], and so on; then 𝑞
𝑛
= 1/𝜃, and

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) =

𝜃𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟) − 𝛾

𝑄

𝑛
(𝜃𝑘
𝑛
, 𝑟)

𝜃 − 1
.

Var
∞
(𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟)) =

𝜃
2
− 𝜃 − 1

𝜃 (𝜃 − 1)

𝛾
2

𝑘
𝑛
𝑟
,

𝜃
0
:= argmin

𝜃

Var
∞
(𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟)) =

1

2
,

(30)

as an argument, which will lead us to consider the General-
ized Jackknife estimator as follows:

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) = 2𝛾

𝑄

𝑛
(
𝑘
𝑛

2
, 𝑟) − 𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟) . (31)

Theorem 4. Under the second order condition in (5), and 𝑘
𝑛

satisfies the intermediate condition as in (7), √𝑘
𝑛
𝐴(𝑛/𝑘

𝑛
) →

𝜆, finite, as 𝑛 → ∞, we have the distributional representation
for 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟)

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟)
𝑑

= 𝛾 +
√5𝛾

√𝑘
𝑛
𝑟
𝑍
𝐺

𝑛
+ (2
𝜌+1

− 1)𝐴(
𝑛

𝑘
𝑛

) 𝑏
𝑟

+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)) ,

(32)

where 𝑍𝐺
𝑛
= [2√2𝑍

(2)

𝑛
− 𝑍
(1)

𝑛
]/√5 is asymptotically standard

normal:

𝑏
𝑟
=

1

𝑟𝜌
(

𝑟

∑

𝑗=1

Γ (𝑗 − 𝜌)

(𝑗 − 1)!
−
Γ (𝑟 + 1 − 𝜌)

(𝑟 − 1)!
) , (33)

and Γ(𝑥) is the Gamma function; then

√𝑘
𝑛
(𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) − 𝛾)

𝑑

󳨀→ 𝑁((2
𝜌+1

− 1) 𝜆𝑏
𝑟
,
5𝛾
2

𝑟
) . (34)

Proof. The proof is similar to that of Theorem 2.
Under the second order condition in (5), 𝑘

𝑛
satisfies

the intermediate condition as in (7), and √𝑘
𝑛
𝐴(𝑛/𝑘

𝑛
) →

𝜆, finite, as 𝑛 → ∞, and we have the distributional
representations

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟)
𝑑

= 𝛾 +
𝑍
(1)

𝑛

√𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝑘
𝑛

) 𝑏
𝑟
+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)) ,

𝛾
𝑄

𝑛
(
𝑘
𝑛

2
, 𝑟)
𝑑

= 𝛾 +
𝑍
(2)

𝑛

√𝑘
𝑛
𝑟

√2𝛾 + 𝐴(
2𝑛

𝑘
𝑛

) 𝑏
𝑟
+ 𝑜
𝑝
(𝐴(

2𝑛

𝑘
𝑛

)) ,

(35)

where (𝑍
(1)

𝑛
, 𝑍
(2)

𝑛
) is asymptotically Bivariate Normal with

null mean and covariance matrix ∑
1,2

= [𝜎
𝑖𝑗
], where 𝜎

11
=

𝜎
22

= 1 and 𝜎
12

= 𝜎
21

= √2/2. Then,

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) = 2𝛾

𝑄

𝑛
(
𝑘
𝑛

2
, 𝑟) − 𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟)

𝑑

= 2(𝛾 +
𝑍
(2)

𝑛

√𝑘
𝑛
𝑟

√2𝛾 + 𝐴(
2𝑛

𝑘
𝑛

) 𝑏
𝑟

+ 𝑜
𝑝
(𝐴(

2𝑛

𝑘
𝑛

)))

− (𝛾 +
𝑍
(1)

𝑛

√𝑘
𝑛
𝑟
𝛾 + 𝐴(

𝑛

𝑘
𝑛

) 𝑏
𝑟
+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)))

𝑑

= 𝛾 +
√5𝛾

√𝑘
𝑛
𝑟
𝑍
𝐺

𝑛
+ (2
𝜌+1

− 1)𝐴(
𝑛

𝑘
𝑛

) 𝑏
𝑟

+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
𝑛

)) ,

(36)

where 𝑍𝐺
𝑛
= [2√2𝑍

(2)

𝑛
− 𝑍
(1)

𝑛
]/√5 is asymptotically standard

normal.

For the new estimator 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟), increasing the value of

𝑟 decreases the asymptotic variance of the estimator and,
meanwhile, costs an increase of the asymptotic bias if the bias
is not negligible, which is similar to Qi’s estimator 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟).

Therefore, one has to be cautious in selecting the value of 𝑟
in practice for the optimal mean squared error criterion. The
new estimator 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟) proposed by us is a particular case

of the Generalized Jackknife estimator 𝛾𝐺
𝑛,𝜌
(𝑘
𝑛
, 𝑟), assuming

a known value 𝜌 = −1. Tailored for the specification of
the second order shape parameter instead of a consistency
estimation, the new estimator 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟) provides a nonnull

asymptotic bias as presented in (34), which is different from
the asymptotic unbiased results of 𝛾𝐺

𝑛,𝜌
(𝑘
𝑛
, 𝑟). Even so, the

asymptotic bias of our new estimator 𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟) is always

smaller than the asymptotic bias of Qi’s estimator, due to
2
𝜌+1

− 1 < 1 with 𝜌 < 0, when selecting the same value of
𝑟 in the two estimators. However, compared to Qi’s estimator,
our new estimator 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟) increases the asymptotic variance

5 times.
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4. Asymptotic Comparison of the Estimators
at Optimal Levels

If the asymptotic bias of the estimator 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟) is not neg-

ligible, we should compare asymptotically the efficiencies of
the new estimator to other estimators. The well-known Hill’s
estimator and original Qi’s estimator are under consideration
because of outstanding asymptotic properties.

Under the second order condition in (5), for 𝛾
𝐻

𝑛
(𝑘),

𝛾
𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟), that is, these semiparametric estimators

of the tail index 𝛾, we have the following general distribu-
tional representation:

𝛾
∙

𝑛
(𝑘)
𝑑

= 𝛾 +
𝜎
∙

√𝑘
𝑍
∙

𝑛
+ 𝐴(

𝑛

𝑘
) 𝑏
∙
+ 𝑜
𝑝
(𝐴(

𝑛

𝑘
)) , (37)

where 𝑍∙
𝑛
is asymptotically standard normal and eventually

𝑏
∙

̸= 0; that is, the estimator 𝛾∙
𝑛
(𝑘) has a nonnull asymptotic

bias, whenever 𝑏
∙

̸= 0 and the level 𝑘 is chosen in such a way
that√𝑘𝐴(𝑛/𝑘) converges to a finite 𝜆 ̸= 0, “∙” denoting𝐻,𝑄,
and 𝐺, respectively. Thus, the asymptotic mean square error
(AMSE) of 𝛾∙

𝑛
(𝑘) is given by

AMSE [𝛾∙
𝑛
(𝑘)] = 𝑏

2

∙
𝐴
2

(
𝑛

𝑘
) +

𝜎
2

∙

𝑘
. (38)

Generally, whenever we have, as 𝑛 → ∞, an AMSE of
the type 𝑏2

∙
𝐴
2
(𝑛/𝑘) + 𝜎

2

∙
/𝑘, since there exists a function 𝑠 ∈

RV
2𝜌−1

, which is positive, decreasing, and regularly varying
with index 2𝜌 − 1, such that 𝐴2(𝑡) = ∫

+∞

𝑡
𝑠(𝑢)𝑑𝑢(1 + 𝑜(1)), as

𝑡 → ∞ (e.g., [20]), and we have

𝑘
∙

0
:= arg inf

𝑘

AMSE [𝛾∙
𝑛
(𝑘)] =

𝑛

𝑠← (𝜎2
∙
/ (𝑛𝑏2
∙
))

(1 + 𝑜 (1))

= (
𝑏
2

∙

𝜎2
∙

)

1/(2𝜌−1)

𝑛

𝑠← (1/𝑛)
(1 + 𝑜 (1)) .

(39)

This result in (39) comes from Lemma 2.8 of [29].
Following closely the results in [15], for the estimator

𝛾
∙

𝑛
(𝑘), whenever 𝑏

∙
̸= 0, there exists a function

𝜓 (𝑛, 𝜌) = (
𝑠
←

(1/𝑛)

𝑛
(
2𝜌 − 1

2𝜌
))

−1/2

, (40)

such that

AMSE [𝜓 (𝑛, 𝜌) 𝛾
∙

𝑛
(𝑘
∙

0
)] = (𝜎

2

∙
)
−2𝜌/(1−2𝜌)

(𝑏
2

∙
)
1/(1−2𝜌)

:= 𝜔
∙
(𝛾, 𝜌) .

(41)

Given two biased estimators 𝛾(1)
𝑛
(𝑘) and 𝛾(2)

𝑛
(𝑘) for the tail

index with the same asymptotic distributional representation
as in (37), computed at the optimal levels 𝑘

(1)

0
and 𝑘

(2)

0
,

respectively, define the asymptotic efficiency of 𝛾
(1)

𝑛
(𝑘
(1)

0
)

relatively to 𝛾(2)
𝑛
(𝑘
(2)

0
) as

AEFF
1|2

=
AMSE [𝛾(1)

𝑛
(𝑘
(1)

0
)]

AMSE [𝛾(2)𝑛 (𝑘
(2)

0
)]

:=
𝜔
1
(𝛾, 𝜌)

𝜔
2
(𝛾, 𝜌)

, (42)

the ratio between the asymptotic mean squared error of
𝛾
(1)

𝑛
(𝑘) and the asymptotic mean squared error of 𝛾(2)

𝑛
(𝑘),

computed at the optimal levels. We say in the sense that
the estimator 𝛾(1)

𝑛
(𝑘
(1)

0
) is more efficient than the estimator

𝛾
(2)

𝑛
(𝑘
(2)

0
) if AEFF

1|2
< 1; in other words, the estimator

𝛾
(1)

𝑛
(𝑘
(1)

0
) has a smaller AMSE than the estimator 𝛾(2)

𝑛
(𝑘
(2)

0
), if

not the estimator 𝛾(1)
𝑛
(𝑘
(1)

0
) is less efficient than the estimator

𝛾
(2)

𝑛
(𝑘
(2)

0
).

For 𝛾
𝐻

𝑛
(𝑘), 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟), 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟), we have the following

results about the asymptotic efficiency at the optimal levels,
for a suitable range of 𝜌, independently of 𝛾. The comparison
between 𝛾

𝐻

𝑛
(𝑘) and 𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟) is given by

AEFF
𝐻|𝑄

= (
1

(1 − 𝜌) 𝑏
𝑟
𝑟𝜌
)

2/(1−2𝜌)

< 1 ⇐⇒ 𝜌 < 0, 𝑟 > 0.

(43)

We also have the asymptotic efficiency of 𝛾𝐻
𝑛
(𝑘) relatively to

𝛾
𝐺

𝑛
(𝑘
𝑛
, 𝑟),

AEFF
𝐻|𝐺

= (
5
𝜌

(1 − 𝜌) 𝑏
𝑟
𝑟𝜌 (2𝜌+1 − 1)

)

2/(1−2𝜌)

> 1 ⇐⇒

{{

{{

{

𝜌 < −0.76, 𝜌 ̸= −1, 𝑟 = 1

𝜌 < −0.63, 𝜌 ̸= −1, 𝑟 = 2

𝜌 < −0.90, 𝜌 ̸= −1, 𝑟 = 3,

(44)

considering particular cases for 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟), that is, putting the

value of 𝑟 equal to 1, 2, and 3, respectively. Besides, the
asymptotic efficiency of 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟) relatively to 𝛾

𝐺

𝑛
(𝑘
𝑛
, 𝑟) is

given by

AEFF
𝑄|𝐺

= (
5
𝜌

2𝜌+1 − 1
)

2/(1−2𝜌)

> 1 ⇐⇒ 𝜌 < −0.35, 𝜌 ̸= −1, 𝑟 > 0.

(45)

Among these estimators considered, there is not a dom-
inant one over all (𝑟, 𝜌)-plane from the asymptotic point of
view.The asymptotic efficiency of 𝛾𝐻

𝑛
(𝑘) relatively to 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟)

indicates that the optimal mean squared error for Hill’s
estimator is smaller thanQi’s estimator, in the whole available
(𝑟, 𝜌)-plane. For selecting several reasonable values of 𝑟, the
new estimator 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟) in (31) proposed by us can compare

favorably asymptotically to Hill’s estimator for a reasonable
wide range of 𝜌 values. When the data can be divided into
several blocks but only a few of largest observations within
blocks are available for analysis, our new estimator 𝛾𝐺

𝑛
(𝑘
𝑛
, 𝑟)

is more efficient in sense of the minimum MSE, whenever
𝜌 < −0.35 but 𝜌 ̸= −1 for all available values of 𝑟.

5. Simulation Study for Finite Sample

Our new estimator 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟) based on the consideration of a

suitable Generalized Jackknife statistic relied both on 𝑘
𝑛
and

𝑟, which causes that it is necessary to explore the impacts of 𝑘
𝑛
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and 𝑟 on the estimator. As well as many other semiparametric
estimators of 𝛾, the new estimator 𝛾

𝐺

𝑛
(𝑘
𝑛
, 𝑟) proposed by

us also has the same type of behavior: consistency for
intermediate ranks, high variance for small value of 𝑘

𝑛
, and

high bias for large value of 𝑘
𝑛
. Consequently, there is an

obvious question that is immediately put forward: will it
be possible to provide stable sample paths of our estimator
as function of 𝑘

𝑛
and a flatter MSE at the optimal sample

fraction? This question will be answered in this section. For
the situation that the data can be divided into several blocks
but only a few of largest observations, even fewer largest
observations within each blocks, are available for analysis,
both 𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟) and 𝛾

𝐺

𝑛
(𝑘
𝑛
, 𝑟) are feasible. Thus, we choose

𝑟 = 1, that is, the two largest random variables within each
block, to infer the heavy tail index for the two estimators.

We have implemented simulation experiments based on
𝑁 = 100 replicas with 𝑛 = 10000 runs to present the finite
sample performances of 𝛾𝑄

𝑛
(𝑘
𝑛
, 1), 𝛾𝐺

𝑛
(𝑘
𝑛
, 1), and 𝛾

𝐻

𝑛
(𝑘) for

Fréchet, generalized Pareto (GP), and Burr underlying mod-
els with different classes of distribution function, respectively:

Fréchet model: 𝐹 (𝑥) = exp (−𝑥−1/𝛾) , 𝑥 ≥ 0;

GP model: 𝐹 (𝑥) = 1 − (1 + 𝛾𝑥)
−1/𝛾

, 𝑥 ≥ 0,

Burr model: 𝐹 (𝑥) = 1 − (1 + 𝑥
−1/2𝛾

)
−2

, 𝑥 ≥ 0.

(46)

In Figures 1–6, we compare the estimation bias and
sample paths with 𝑘

𝑛
-value from 1 to 200 between 𝛾

𝑄

𝑛
(𝑘
𝑛
, 1)

and 𝛾
𝐺

𝑛
(𝑘
𝑛
, 1). In Figure 1, we choose the Fréchet model with

𝛾 = 1 under study. The estimation results of 𝛾𝐺
𝑛
(𝑘
𝑛
, 1) show

that the deviations from the true value 𝛾 = 1 seem to be
smaller than 𝛾

𝑄

𝑛
(𝑘
𝑛
, 𝑟) for wide range of 𝑘

𝑛
-value and vary

in much small span around 𝛾 = 1 as changing the value
of 𝑘
𝑛
. Thus, our new estimator based on the Generalized

Jackknife methodology also provides stable sample paths as
function of 𝑘

𝑛
. In Figure 2, the performances of 𝛾𝑄

𝑛
(𝑘
𝑛
, 1) and

𝛾
𝐺

𝑛
(𝑘
𝑛
, 1) for Fréchet model with 𝛾 = 2 are similar in Figure 1.

In Figures 3 and 4, we present the results of 𝛾𝑄
𝑛
(𝑘
𝑛
, 1) and

𝛾
𝐺

𝑛
(𝑘
𝑛
, 1) for the generalized Pareto (GP) model with 𝛾 = 1

and 𝛾 = 2, respectively. Whether 𝛾 = 1 or 𝛾 = 2, the
performances both in Figures 3 and 4 are similar to the ones
simulated by the Fréchet model, which show that our new
estimator provides stable sample paths as function of 𝑘

𝑛
for

the GP model. In Figures 5 and 6, we also present the results
of 𝛾𝑄
𝑛
(𝑘
𝑛
, 1) and 𝛾

𝐺

𝑛
(𝑘
𝑛
, 1) for the Burr model with 𝛾 = 1 and

𝛾 = 2, respectively. The performances of our new estimator
for the Burr model showmore convincing results on whether
the estimation bias or the sample paths.

In general, if there only exist several largest observations
in practical fields for use, it is not possible to compare our
new estimator to Hill’s estimator since Hill’s estimator cannot
be applicable in case of incomplete data. Our new estimator
responds to the case that the data can be divided into several
blocks but within each block only several largest observations
are available for analysis, while Hill’s estimator is constructed
by the upper order statistics exceeding a certain threshold
from all data. Instead of providing sample paths as function
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Figure 1: Underlying Fréchet parent with 𝛾 = 1.
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Figure 2: Underlying Fréchet parent with 𝛾 = 2.

of the number of dividing data into blocks (the horizontal
ordinate 𝑘

𝑛
in the figures), we can compare our new estimator

to Hill’s estimator in terms of the mean squared errors at
their optimal levels. Thus, we generate 𝑁 = 100 replicas
with 𝑛 = 10000 runs each from Fréchet, GP, and Burr
underlying models and display the simulated mean values
(E[⋅]) and the simulated mean squared errors (MSE[⋅]) for
Hill’s estimator 𝛾𝐻

𝑛
(𝑘), Qi’s estimator 𝛾𝑄

𝑛
(𝑘
𝑛
, 𝑟), and our new

estimator 𝛾𝐺
𝑛
(𝑘
𝑛
, 𝑟) at their optimal levels.

The simulated mean value of 𝛾∙
𝑛
(𝑘) is the the average of

the𝑁 = 100 values 𝛾∙
𝑛,𝑖
(𝑘); that is,

𝐸 (𝛾
∙

𝑛
(𝑘)) =

𝑁

∑

𝑖=1

𝛾
∙

𝑛,𝑖
(𝑘)

𝑁
, (47)
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Figure 3: Underlying GP parent with 𝛾 = 1.
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Figure 4: Underlying GP parent with 𝛾 = 2.

and the simulated MSE is the average of the squares of the
differences 𝛾∙

𝑛,𝑖
(𝑘) − 𝛾; that is,

MSE (𝛾
∙

𝑛
(𝑘)) =

𝑁

∑

𝑖=1

(𝛾
∙

𝑛,𝑖
(𝑘) − 𝛾)

2

𝑁
. (48)

In Table 1, we present the simulated mean values and the
simulated MSEs of 𝛾𝐻

𝑛
(𝑘
𝐻

0
), 𝛾𝑄
𝑛
(𝑘
𝑄

0
, 1), and 𝛾

𝐺

𝑛
(𝑘
𝐺

0
, 1), where

𝑘̂
∙

0
= argmin

𝑘
MSE (𝛾

∙

𝑛
(𝑘)), 1 ≤ 𝑘 ≤ 1000, for Hill’s estimator

𝛾
𝐻

𝑛
(𝑘), and 1 ≤ 𝑘 ≤ 200 both for 𝛾𝑄

𝑛
(𝑘
𝑛
, 1) and 𝛾

𝐺

𝑛
(𝑘
𝑛
, 1). We

can that see there exists a significant difference between the
behaviors of these statistics under study. Our new estimator
𝛾
𝐺

𝑛
(𝑘
𝐺

0
, 1) has much smaller bias at the optimal levels, that

is, the most appropriate numbers of dividing the sample into
blocks than the estimator 𝛾𝑄

𝑛
(𝑘
𝑄

0
, 1), not only for the Fréchet
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Figure 5: Underlying Burr parent with 𝛾 = 1.
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Figure 6: Underlying Burr parent with 𝛾 = 2.

model with 𝛾 = 1 and 𝛾 = 2, respectively, but also for the
GP model and the Burr model. Compared to the estimator
𝛾
𝑄

𝑛
(𝑘
𝑄

0
, 1), theMSEs of our estimator presented in Table 1 also

demonstrate the superiority. Similarly to what we have done
before, we also report the corresponding results for Hill’s
estimator.TheHill’s estimator compares favorably to our new
estimator at the optimal levels for the Fréchet model and the
GP model but inferiorly to our new estimator for the Burr
model.The results listed inTable 1 give great importance from
a practical point of view.

6. Conclusions

In this paper, we propose an estimator of tail index through
the Generalized Jackknife methodology if the data can be
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Table 1: The simulated mean values and MSEs of 𝛾𝐻
𝑛
(𝑘
𝐻

0
), 𝛾𝑄
𝑛
(𝑘
𝑄

0
, 1), and 𝛾

𝐺

𝑛
(𝑘
𝐺

0
, 1).

𝛾
𝐻

𝑛
(𝑘
𝐻

0
) 𝛾

𝑄

𝑛
(𝑘
𝑄

0
, 1) 𝛾

𝐺

𝑛
(𝑘
𝐺

0
, 1)

Fréchet (𝛾 = 1) 𝐸[⋅] 1.0001 0.9997 1.0001
MSE[⋅] 4.8201𝑒 − 09 9.5658𝑒 − 08 7.9836𝑒 − 09

Fréchet (𝛾 = 2) 𝐸[⋅] 2.0001 1.9994 2.0002
MSE[⋅] 1.9280𝑒 − 08 3.8263𝑒 − 07 3.1935𝑒 − 08

GP (𝛾 = 1) 𝐸[⋅] 1.0000 1.0001 1.0001
MSE[⋅] 2.4387𝑒 − 09 1.8012𝑒 − 08 3.1552𝑒 − 09

GP (𝛾 = 2) 𝐸[⋅] 2.0000 2.0000 2.0000
MSE[⋅] 2.6953𝑒 − 13 1.2704𝑒 − 09 7.0502𝑒 − 10

Burr (𝛾 = 1) 𝐸[⋅] 1.0306 0.9889 0.9955
MSE[⋅] 9.3740𝑒 − 04 1.2303𝑒 − 04 2.0283𝑒 − 05

Burr (𝛾 = 2) 𝐸[⋅] 2.0612 1.9778 1.9910
MSE[⋅] 0.0037 4.9212𝑒 − 04 8.1130𝑒 − 05

divided into several blocks but only a few of the largest
observations within each block can be available. In terms of
the criterion of simulated mean values and mean squared
errors, our new estimator with the first and second largest
random variables used for inference within each block com-
pares favorably to Hill estimator. Besides, our new estimator
also behaves better than Qi’s estimator in simulated results
and be robust to the ways of dividing the sample into
blocks for underlying models. However, the new class of
estimators 𝛾𝐺

𝑛,𝜌
(𝑘
𝐺

0
, 𝑟)proposed by us through theGeneralized

Jackknife methodology is dependent on the second order
shape parameter 𝜌, which needs eventually to estimate the
unknown parameter. Due to the high bias and variance of
those existing estimators of 𝜌, we take the value of 𝜌 = −1 for
a reasonable general point. Unsatisfactory but unsurprisingly,
the simple and convenient deal will lead to a nonnull bias
asymptotically and practically. Let us assume next that we
estimate 𝜌 consistently, through an adequate estimator 𝜌.
Moreover, the robustness of our estimation results on the
parameter 𝜌 is our research directions in the future.
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