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This paper discusses the stochastic Lotka-Volterra system with time-varying delay. The nonexplosion, the boundedness, and the
polynomial pathwise growth of the solution are determined once and for all by the same criterion. Moreover, this criterion is
constructed by the parameters of the system itself, without any uncertain one. A two-dimensional stochastic delay Lotka-Volterra
model is taken as an example to illustrate the effectiveness of our result.

1. Introduction

Population systems are often subject to environment noise.
In our previous papers [1, 2], we considered the following
stochastic Lotka-Volterra system:

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡

+ [𝑏 + 𝐷𝑥 (𝑡) + 𝐸𝑦 (𝑡)] 𝑑𝑤 (𝑡)}

(1)

and its functional form, where 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)) with 𝛿(𝑡)

representing variable delay and diag(𝑥) = diag(𝑥
1
, . . . , 𝑥

𝑛
)

represents the 𝑛×𝑛matrix with all elements zero except those
on the diagonal which are 𝑥

1
, . . . , 𝑥

𝑛
. 𝑎, 𝑏 ∈ R𝑛 and matrices

𝐴, 𝐵, 𝐷, and 𝐸 ∈ R𝑛×𝑛.
Equation (1) may describe dynamics of 𝑛 species interac-

tion, in which 𝑥
𝑖
(𝑡) (1 ≤ 𝑖 ≤ 𝑛) represents the population

size of 𝑖th species depending both on the current states 𝑥(𝑡)

and on the past state 𝑥(𝑡 − 𝛿(𝑡)) of all population. From the
point of biological view, the following three properties are
very important.

(A) The solution of system (1) is positive and nonexplo-
sive; namely, for any positive initial data 𝜉, (1) has a
unique positive global solution 𝑥(𝑡, 𝜉).

(B) The solution of system (1) is ultimately moment
bounded and time average moment bounded; that is,
this global solution 𝑥(𝑡, 𝜉) of (1) satisfies

lim sup
𝑡→∞

E
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝐾; (2)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)

󵄨󵄨󵄨󵄨
2

𝑑𝑠 ≤ 𝐿, (3)

where 𝐾 and 𝐿 are positive constants independent
of 𝜉. These two properties show that, in the sense of
average, population size is bounded.

(C) The solution of the system (2) grows at most polyno-
mially; namely, this solution 𝑥(𝑡, 𝜉) of (1) satisfies

lim sup
𝑡→∞

log 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)
󵄨󵄨󵄨󵄨

log 𝑡
≤ 1, 𝑎.𝑠. (4)

There is an extensive literature concerned with these prop-
erties of stochastic Lotka-Volterra models. For example,
Mao and his coauthors [3–5] discussed the existence and
uniqueness of the global positive solution, stochastically
ultimate boundedness, and some other asymptotic properties
for the stochastic Lotka-Volterra system. References [6, 7]
discovered that the presence of the environmental noise may
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suppress the potential explosion of the solution in finite time.
In our previous work [2], we showed that the environmental
noise structure determined whether properties (A)–(C) were
affected by the stochastic perturbation parameters or not.
In our previous work [1], these three properties were also
examined. In this paper, our conclusions will be improved in
the following aspects.

(i) In these published works, properties (A)–(C) were
given under different conditions, respectively. In this
paper, we will give these three properties under
the same group of conditions. This is an important
improvement since properties (B) and (C) do not
imply each other in general.

(ii) In this paper, we will present the conditions, which
are easier to be verified, to guarantee properties (A)–
(C). In these conditions, all parameters are from the
models and do not include any uncertain parameters
to be determined.

The rest of the paper is arranged as follows. In the next
section, we provide some necessary notations and lemmas.
Section 3 gives several lemmas to support the main results
of this paper. By using Lemmas established in Section 3,
Section 4 presents the conditions under which the all desired
properties (A)–(C) hold. In Section 5, some simplified cases
of model (1) are investigated. Although these models are
less general than (1), they have wide applications and satisfy
properties (A)–(C) under more simple conditions, which
are provided as corollaries of the main theorems. A two-
dimensional stochastic Lotka-Volterra population model will
be examined as an example in Section 6.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the
following notations. Let (Ω,F,P) be a complete probability
space with a filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions;
that is, it is right continuous and increasingwhileF

0
contains

all P-null sets. 𝑤(𝑡) (𝑡 ≥ 0) is a one-dimensional Brownian
motion defined on (Ω,F,F

𝑡
,P).

For any given 𝑥 ∈ R𝑛 and R𝑛-valued function 𝑓, we
always assume that

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
T
, 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
)
T
;

diag (𝑥) = diag (𝑥
𝑖
) = diag (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) .

(5)

For matrices𝐴, 𝐵,𝐷, and 𝐸 in model (1), we assume that𝐴 =

[𝑎
𝑖𝑗
], 𝐵 = [𝑏

𝑖𝑗
], 𝐷 = [𝑑

𝑖𝑗
], and 𝐸 = [𝑒

𝑖𝑗
] (𝑖, 𝑗 = 1, 2, . . . , 𝑛).

Assume that 𝐴 ≥ 𝐵 ⇔ 𝑎
𝑖𝑗

≥ 𝑏
𝑖𝑗
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑥 ≫ 0 ⇔

𝑥
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛. Let R

+
= [0,∞), R𝑛

+
= (R
+
)
𝑛, and

R𝑛
++

= {𝑥 ∈ R𝑛 : 𝑥 ≫ 0}. Denote by |𝑥| the Euclidean norm
with 𝑥 ∈ R𝑛 and |𝐴| is the trace norm of matrix 𝐴.

Definition 1. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 satisfy condition

𝑎
𝑖𝑖
> 0 ≥ 𝑎

𝑖𝑗
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (6)

If all eigenvalues of 𝐴 have positive real parts, 𝐴 is called an
𝑀-matrix.

Lemma 2. Suppose that the matrix 𝐴 ∈ R𝑛×𝑛 satisfies
condition (6). Then the following conditions are equivalent (see
[8]):

(i) 𝐴 is an 𝑀-matrix;
(ii) there exists 𝑐 ∈ R𝑛

++
such that 𝐴𝑐 ≫ 0;

(iii) all of the leading principal minors of 𝐴 are positive.

For any given symmetric matrix 𝑄 ∈ R𝑛×𝑛, define

𝜆
+

𝑀
(𝑄) = sup

𝑥∈R𝑛
+
,|𝑥|=1

𝑥
T
𝑄𝑥, (7)

which deduces directly that

𝜆
+

𝑀
(𝑄) ≤ 0 ⇐⇒ 𝑥

T
𝑄𝑥 ≤ 0 for any 𝑥 ∈ R

𝑛

+
. (8)

Let 𝛿(𝑡) be the variable delay of system (1). Write Δ(𝑡) = 𝑡 −

𝛿(𝑡) with 𝛿(𝑡) ∈ 𝐶
1
(R
+
,R
+
) and 𝛿(𝑡) ≤ 𝛿

0
< ∞. Then

𝜂 =: inf
𝑡≥0

Δ
󸀠
(𝑡) > 0 (9)

implies that 𝜂 ≤ 1 andΔ(𝑡) is strictly monotone increasing on
[0,∞). Its inverse function Δ

−1
(𝑠) is defined on [−𝛿(0),∞),

which satisfies

(Δ
−1

(𝑠))
󸀠

=
1

Δ󸀠 (𝑡)
≤ 𝜂
−1

, (𝑠 = Δ (𝑡) , 𝑡 ≥ 0) . (10)

Assume that 𝜏 = 𝛿(0), 𝐶 = 𝐶([−𝜏, 0],R𝑛), and 𝐶
++

=

𝐶([−𝜏, 0],R𝑛
++

). 𝐶 is a Banach space with the supremum
norm. For any given initial data 𝜉 ∈ 𝐶

++
, 𝑥(𝑡, 𝜉) always

represents the solution of (2). When 𝑥(𝑡, 𝜉) ∈ R𝑛
++

for all 𝑡
in the domain, we call it a positive solution; when 𝑥(𝑡, 𝜉) is
defined on −𝜏 ≤ 𝑡 < ∞, it is called a global solution.

Denote that

𝑓 = 𝑎 + 𝐴𝑥 + 𝐵𝑦, 𝑔 = 𝑏 + 𝐷𝑥 + 𝐸𝑦,

𝑓 = diag (𝑥) 𝑓, 𝑔 = diag (𝑥) 𝑔.

(11)

Unless otherwise stated, we assume that 𝑥, 𝑦 ∈ R𝑛
++
. For any

given 𝑉 ∈ 𝐶
2
(R𝑛
++

), define

L𝑉 (𝑥, 𝑦) = 𝑉
𝑥
(𝑥) 𝑓 (𝑥, 𝑦) +

1

2
[𝑔

T
(𝑥, 𝑦)𝑉

𝑥𝑥
(𝑥) 𝑔 (𝑥, 𝑦)] .

(12)

If 𝑥(𝑡) is a positive solution of (1), by the Itô formula and (12),
we have that

𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (0)) + ∫

𝑡

0

𝐿𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑉
𝑥
(𝑥 (𝑠)) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑤 (𝑠) ,

(13)

where 𝐿𝑉(𝑥(𝑡)) = L𝑉(𝑥(𝑡), 𝑦(𝑡)) with 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)).
Let 𝑝 and 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛) be positive constants. Define

𝑉 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
, 𝑈 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
) . (14)
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Substituting (14) into (12), together with notations in (11),
yields that

L𝑉 (𝑥, 𝑦) = 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑓
𝑖
+

𝑝 − 1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

) ;

L𝑈 (𝑥, 𝑦) = L𝑉 (𝑥, 𝑦) + 𝐼,

𝐼 = 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
(−𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

) .

(15)

Particularly, when 𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
and 𝑈 = ∑

𝑛

𝑖=1
(𝑥
𝑖
− log𝑥

𝑖
), we

have

L𝑉 (𝑥, 𝑦) = 𝑥
T
𝑓 = 𝑥

T
(𝑎 + 𝐴𝑥 + 𝐵𝑦) ; (16)

L𝑈(𝑥, 𝑦) = L𝑉 (𝑥, 𝑦) −

𝑛

∑

𝑖=1

𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

. (17)

For the sake of simplicity, let Φ
𝜀
represent the following

function defined on R𝑛
++

× R𝑛
++
:

Φ
𝜀
= Φ
𝜀
(𝑥, 𝑦) =

𝐿

∑

𝑙=1

𝑎
𝑙
[𝑉
𝑙
(𝑦) − 𝜂

−1
𝑒
𝛿
0
𝜀
𝑉
𝑙
(𝑥)] , (18)

where 𝑉
𝑙
∈ 𝐶(R𝑛

+
,R
+
), 𝜀 and 𝑎

𝑙
(1 ≤ 𝑙 ≤ 𝐿) are nonnegative

constants, and 𝜂 is defined in (9). The following lemma plays
a key role in this paper (also see [1, 9, 10]).

Lemma 3. Let Φ
𝜀
be given by (18). Suppose that 𝑥(𝑡) =

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

, −𝜏 ≤ 𝑡 < 𝜎) is a positive solution of (1) with
𝑞 ≤ 𝜀; then

∫

𝑡

0

𝑒
𝑞𝑠
Φ
𝜀
(𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 ≤ const, (0 ≤ 𝑡 < 𝜎) . (19)

In this paper, const always denotes a positive constant
with different values at different places and exact values of
these constants are insignificant.

In this paper, we often use the following inequalities:

𝑎
𝛼
𝑏
𝛽
≤

𝛼𝑎
𝛼+𝛽

+ 𝛽𝑏
𝛼+𝛽

𝛼 + 𝛽
; (𝑎, 𝑏, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 > 0) ,

(20)

(𝑎 + 𝑏)
2
≥

𝑎
2

𝜌
−

𝑏
2

𝜌 − 1
; (𝑎, 𝑏 ∈ R, 𝜌 > 1) , (21)

(

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖
)

2

≤

𝑛

∑

𝑖=1

𝑐
𝑖

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
2

𝑖
(𝑐
𝑖
≥ 0, 𝑥

𝑖
∈ R) . (22)

3. Main Lemmas

In order to get the desired properties (A)–(C), we need the
following three lemmas. Let us first explain that the notation
𝑜(|𝑥|
𝛼
): ℎ(𝑥) = 𝑜(|𝑥|

𝛼
) means that ℎ(𝑥) ∈ 𝐶(R𝑛

+
) with

lim
|𝑥|→∞

|𝑥|
−𝛼

ℎ (𝑥) = 0 (23)

for 𝑥 ∈ R𝑛
++
.

Lemma 4. Suppose that there exist positive constants 𝑝, 𝜎, 𝜀,
𝑏
𝑖
, and 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that 𝑈 = ∑

𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
)

satisfies condition

L𝑈(𝑥, 𝑦) ≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (𝑥, 𝑦 ∈ R

𝑛

++
) ,

(24)

where Φ
𝜀
is defined by (18). Then (1) is positive and nonexplo-

sive; namely, for any given 𝜉 ∈ R𝑛
++
, (1) has a unique positive

solution 𝑥(𝑡, 𝜉).

Lemma 5. Suppose that there exist positive constants 𝜀, 𝑏
𝑖
, and

𝑐
𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that 𝑉 = ∑

𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
satisfies condition

L𝑉 (𝑥, 𝑦) ≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
2

𝑖
+ 𝑜 (|𝑥|

2
) , (𝑥, 𝑦 ∈ R

𝑛
) , (25)

where Φ
𝜀
is given by (18). Then any positive global solution

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

) of (1) satisfies (2)-(3).

Theproofs of the above two lemmas are omitted since two
similar approaches can be found in [1].

Lemma 6. Suppose that there exist positive constants 𝑝, 𝜎, 𝜀,
and 𝑏
𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that the following condition is satisfied:

𝐽 =:
𝑥
T
𝑓

𝑒T𝑥
+

𝑝 − 1

2
(

𝑥
T
𝑔

𝑒T𝑥
)

2

≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (𝑥, 𝑦 ∈ R

𝑛

++
) ,

(26)

where 𝑒 = (1, 1, . . . , 1)
T, 𝑓 and 𝑔 are defined by (11), and Φ

𝜀

is defined by (18). Then any positive global solution 𝑥(𝑡, 𝜉) (𝜉 ∈

𝐶
++

) of (1) satisfies

lim sup
𝑡→∞

log 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)
󵄨󵄨󵄨󵄨

log 𝑡
≤

1

𝑝
, 𝑎.𝑠. (27)

Proof. Let 𝑉 = log(𝑒T𝑥) (𝑥 ∈ R𝑛
++

). Then,

𝑉
𝑥
=

𝑒
T

𝑒T𝑥
, 𝑉

𝑥𝑥
= −

𝑒𝑒
T

(𝑒T𝑥)
2
. (28)

By (12) and (26), we have

L𝑉 (𝑥, 𝑦) = 𝐽 −
𝑝

2
|𝑍|
2
, 𝑍 = 𝑉

𝑥
𝑔 =

𝑥
T
𝑔

𝑒T𝑥
. (29)

Let ℎ(𝑡) = 𝑒
𝜀𝑡
𝑉(𝑥(𝑡)); then ℎ(𝑡) = ℎ(0) + 𝐼 + 𝑀(𝑡), where

𝑀(𝑡) = ∫

𝑡

0

𝑒
𝜀𝑠
𝑉
𝑥
(𝑥 (𝑠)) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑤 (𝑠)

= ∫

𝑡

0

𝑒
𝜀𝑠
𝑍 (𝑠) 𝑑𝑤 (𝑠) ,

(30)

𝐼 = ∫

𝑡

0

𝑒
𝜀𝑠

[𝐿𝑉 (𝑥 (𝑠)) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

= ∫

𝑡

0

𝑒
𝜀𝑠

[𝐽 −
𝑝

2
|𝑍 (𝑠)|

2
+ 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠.

(31)
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For any given 𝜃 > 1 and 𝑘 ∈ N, by the exponential martingale
inequality, we have that

P{ sup
0≤𝑡≤𝑘+1

[𝑀 (𝑡) −
𝑝

2𝑒𝜀(𝑘+1)
∫

𝑡

0

𝑒
2𝜀𝑠

|𝑍 (𝑠)|
2
𝑑𝑠]

≥
𝑒
𝜀(𝑘+1) log 𝑘

𝜃

𝑝
} ≤

1

𝑘𝜃
.

(32)

Since ∑
∞

𝑘=1
𝑘
−𝜃

< ∞, we can employ the Borel-Cantelli
lemma to derive that, almost surely, when 𝑘 is sufficiently
large and 𝑘 ≤ 𝑡 ≤ 𝑘 + 1, one can get that

𝑀(𝑡) ≤
𝑒
𝜀(𝑘+1) log 𝑘

𝜃

𝑝
+

𝑝

2𝑒𝜀(𝑘+1)
∫

𝑡

0

𝑒
2𝜀𝑠

|𝑍 (𝑠)|
2
𝑑𝑠

≤
𝜃𝑒
𝜀

𝑝
𝑒
𝜀𝑡 log 𝑡 +

𝑝

2
∫

𝑡

0

𝑒
𝜀𝑠
|𝑍 (𝑠)|

2
𝑑𝑠.

(33)

Note that −∑
𝑛

𝑖=1
𝑏
𝑖
𝑥
𝜎

𝑖
+𝑜(|𝑥|

𝜎
)+𝜀𝑉(𝑥) ≤ const.This, together

with (31), (33), and (26), gives that in the sense of almost sure,
when 𝑡 is sufficiently large,

ℎ (𝑡) − 𝑝
−1

𝜃𝑒
𝜀
𝑒
𝜀𝑡 log 𝑡

≤ const + ∫

𝑡

0

𝑒
𝜀𝑠

[𝐽 + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

≤ const

+ ∫

𝑡

0

𝑒
𝜀𝑠

[Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
(𝑠) + 𝑜 (|𝑥 (𝑠)|

𝜎
) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

≤ const + const∫
𝑡

0

𝑒
𝜀𝑠
𝑑𝑠

≤ const (1 + 𝑒
𝜀𝑡
) ,

(34)

where we have used Lemma 3. This implies that in the sense
of almost sure

𝑉 (𝑥 (𝑡)) ≤ 𝑝
−1

𝜃𝑒
𝜀 log 𝑡 + const (1 + 𝑒

−𝜀𝑡
) (35)

when 𝑡 is sufficiently large. Therefore,

lim sup
𝑡→∞

𝑉 (𝑥 (𝑡))

log 𝑡
≤

𝜃𝑒
𝜀

𝑝
, 𝑎.𝑠. (36)

Obviously, Φ
𝜀
is a monotony decrease function of 𝜀, so 𝜀 can

be replaced by any 𝜀
󸀠
∈ (0, 𝜀) in condition (26). Hence wemay

assume that 𝜀 is sufficiently small. Letting 𝜃 → 1 and 𝜀 → 0,
we get that

lim sup
𝑡→∞

𝑉 (𝑥 (𝑡))

log 𝑡
≤

1

𝑝
, 𝑎.𝑠. (37)

Note that 𝑉(𝑥) ≤ log |𝑥| for 𝑥 ∈ R𝑛
++
. Then (27) follows from

(37).

4. The Main Results

In this section, let us apply Lemmas 4–6 to establish the main
results of this paper. We use the denotations 𝑒 = (1, 1, . . . , 1)

T

and 𝑄 = 𝑒𝑒
T.

Theorem 7. Suppose that there exist nonnegative constants 𝑞,
𝑟, 𝛼, and 𝛽, such that the following conditions are satisfied:

𝜆
+

𝑀
(𝐻) ≤ 0, 𝐻 = [

𝐴 + 𝐴
T
+ 2𝑞𝑄 𝐵 − 𝑟𝑄

𝐵
T
− 𝑟𝑄 0

] ; (38)

𝜆
+

𝑀
(𝐹) ≤ 0, 𝐹 = [

𝐷
T
𝐷 − 𝛼𝑄 𝐷

T
𝐸

𝐸
T
𝐷 𝐸

T
𝐸 − 𝛽𝑄

] ; (39)

𝑞 > 𝑟𝜂
−1

⋁
𝑟(1 + 𝜂

−1
) + 𝛼 + 𝛽𝜂

−1

2
. (40)

Then for any given 𝜉 ∈ 𝐶
++
, (1) has a unique positive solution

𝑥(𝑡, 𝜉) and this solution satisfies (2)–(4).

Proof. Let us divide this proof into the following three steps.

Step 1. Let 𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
(𝑥 ∈ R𝑛

++
). Let us test condition (25).

By (8) and condition (38), for any given 𝑥, 𝑦 ∈ R𝑛
++

we have
that

0 ≥ (𝑥
T

𝑦
T
)𝐻(

𝑥

𝑦
)

= 𝑥
T
(𝐴 + 𝐴

T
+ 2𝑞𝑄) + 2𝑥

T
(𝐵 − 𝑟𝑄) 𝑦

= 2𝑥
T
(𝐴𝑥 + 𝐵𝑦) + 2𝑞(𝑒

T
𝑥)
2

− 2𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) ,

(41)

so

𝑥
T
(𝐴𝑥 + 𝐵𝑦) ≤ −𝑞(𝑒

T
𝑥)
2

+ 𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) . (42)

By (16) and (42), we get

L𝑉 (𝑥, 𝑦) = 𝑥
T
(𝑎 + 𝐴𝑥 + 𝐵𝑦)

≤ −𝑞(𝑒
T
𝑥)
2

+ 𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) + 𝑜 (|𝑥|

2
)

(43)

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

(44)

= Φ
𝜀
− 𝑘
1
(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) , (45)

where

Φ
𝜀
=

𝑟

2
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
𝛿
0
𝜀
(𝑒

T
𝑥)
2

] (46)

is a function in the form of (18) with 𝜀 > 0 sufficiently small
and

𝑘
1
= 𝑞 −

𝑟

2
−

𝑟

2
𝜂
−1

𝑒
𝛿
0
𝜀
. (47)

By condition (40),

𝑘
1

󵄨󵄨󵄨󵄨𝜀=0 = 𝑞 −
𝑟

2
(1 + 𝜂

−1
) > 0. (48)
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Since 𝜀 is sufficiently small, we may assume that 𝑘
1

> 0.
Obviously, (𝑒T𝑥)2 ≥ ∑

𝑛

𝑖=1
𝑥
2

𝑖
(𝑥 ∈ R𝑛

++
), so (45) implies (25).

Now, we can apply Lemma 5 to obtain that any global
positive solution 𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶

++
) of (1) satisfies (2)-(3).

Step 2.Let𝑈 = ∑
𝑛

𝑖=1
(𝑥
𝑖
−log𝑥

𝑖
) (𝑥 ∈ R𝑛

++
). In this step, wewill

test condition (24). For any given 𝑥, 𝑦 ∈ R𝑛
++
, using condition

(39) yields

0 ≥ (𝑥
T

𝑦
T
) 𝐹(

𝑥

𝑦
)

= 𝑥
T
(𝐷

T
𝐷 − 𝛼𝑄)𝑥 + 2𝑥

T
𝐷

T
𝐸𝑦 + 𝑦

T
(𝐸

T
𝐸 − 𝛽𝑄)𝑦

= |𝐷𝑥|
2
+ 2(𝐷𝑥)

T
𝐸𝑦 +

󵄨󵄨󵄨󵄨𝐸𝑦
󵄨󵄨󵄨󵄨
2

− 𝛼𝑥
T
𝑄𝑥 − 𝛽𝑦

T
𝑄𝑦

=
󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦

󵄨󵄨󵄨󵄨
2

− 𝛼(𝑒
T
𝑥)
2

− 𝛽(𝑒
T
𝑦)
2

,

(49)

which implies
󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦

󵄨󵄨󵄨󵄨
2

≤ 𝛼(𝑒
T
𝑥)
2

+ 𝛽(𝑒
T
𝑦)
2

. (50)

By (17), (44), and (50),

L𝑈(𝑥, 𝑦)

≤ − (𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

−

𝑛

∑

𝑖=1

𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const 󵄨󵄨󵄨󵄨𝑎 + 𝐴𝑥 + 𝐵𝑦
󵄨󵄨󵄨󵄨 +

1

2

󵄨󵄨󵄨󵄨𝑏 + 𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const 󵄨󵄨󵄨󵄨𝑎 + 𝐴𝑥 + 𝐵𝑦
󵄨󵄨󵄨󵄨 +

1

2
|𝑏|
2
+ 𝑏

T
(𝐷𝑥 + 𝐸𝑦)

+
1

2

󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟 + 𝛼

2
) (𝑒

T
𝑥)
2

+
𝑟 + 𝛽

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const (1 + |𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

= Φ
󸀠

𝜀
− 𝑘
2
(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) ,

(51)

where

Φ
󸀠

𝜀
=

𝑟 + 𝛽

2
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
𝛿
0
𝜀
(𝑒

T
𝑥)
2

]

+ const (󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 − 𝜂
−1

𝑒
𝛿
0
𝜀
|𝑥|)

(52)

is a function in the form of (18):

𝑘
2
= 𝑞 −

𝑟 + 2

2
−

𝑟 + 𝛽

2
𝜂
−1

𝑒
𝛿
0
𝜀
. (53)

Condition (40) implies that 𝑘
2
|
𝜀=0

> 0. Since 𝜀 > 0 can
be sufficiently small, we can get 𝑘

2
> 0. So (51) can imply

condition (24) (choose 𝜎 = 2). Now we can employ Lemma 4
to obtain that, for any given 𝜉 ∈ 𝐶

++
, (1) has a unique positive

global solution 𝑥(𝑡, 𝜉).

Step 3. Choose 𝑝 = 1. By (26) we have 𝐽 = 𝑥
T
𝑓/𝑒

T
𝑥. Now we

test condition (26). Note that 𝑥T
𝑓 = L𝑉(𝑥, 𝑦), so by (43) we

have

𝐽 ≤ −𝑞𝑒
T
𝑥 + 𝑟𝑒

T
𝑦 + 𝑜 (|𝑥|)

= Φ
󸀠󸀠

𝜀
− 𝑘
3
𝑒
T
𝑥 + 𝑜 (|𝑥|) ,

(54)

where

Φ
󸀠󸀠

𝜀
= 𝑟 (𝑒

T
𝑦 − 𝜂
−1

𝑒
𝛿
0
𝜀
𝑒
T
𝑥) . (55)

is a function in the form of (18),

𝑘
3
= 𝑞 − 𝑟𝜂

−1
𝑒
𝛿
0
𝜀
. (56)

By condition (40) we have 𝑘
3
|
𝜀=0

= 𝑞 − 𝑟𝜂
−1

> 0, so we may
assume that 𝑘

3
> 0. Then (54) shows that condition (26) is

satisfied (choose 𝜎 = 1).
Applying Lemma 6 yields that any positive solution

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

) of (1) satisfies (4). This completes the
proof.

Theorem 8. Suppose that there exist nonnegative constants 𝑞

and 𝑟, such that condition (38) and the following condition are
satisfied:

𝑟𝑄 ≥ ±𝐸; (57)

𝜆
+

𝑀
(𝑅) ≤ 0, 𝑅 = 2𝑞𝑄 − 𝐷 − 𝐷

T
; (58)

2𝑞 > 𝑟 (1 + 𝜂
−1

) . (59)

Assume that 𝐷 ≥ 0,

𝐺 =: diag (𝜂𝑑
2

𝑖𝑖
) − 𝑆 is an 𝑀-matrix, (60)

where 𝑆 = [𝑠
𝑖𝑗
], 𝑠
𝑖𝑗

= 𝑒
𝑖∙
𝑒
𝑖𝑗
, 𝑒
𝑖𝑗

= |𝑒
𝑖𝑗
|, and 𝑒

𝑖∙
= ∑
𝑛

𝑗=1
𝑒
𝑖𝑗
. Then

the conclusion of Theorem 7 holds.

Proof.

Step 1. By Lemma 2, condition (60) can imply that 𝐺T is an
𝑀-matrix. Thus, there exists 𝑐 ∈ R𝑛

++
such that 𝐺T

𝑐 ≫ 0. Let
𝑈 = ∑

𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
) (𝑥 ∈ R𝑛

++
), 𝜎 = 2 + 𝑝, where 𝑝 > 0

is sufficiently small. Now we test condition (24). By (15) we
have that

L𝑈 (𝑥, 𝑦)

= 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑓
𝑖
+

𝑝 − 1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

)

+ 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
(−𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

)
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≤ const|𝑥|𝑝 󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 −

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

+ const (󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

)

≤ −
𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

+ const (|𝑥|𝑝 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
2

)

+ 𝑜 (|𝑥|
𝜎
)

≤ −
𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

+ const (󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑝+1

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2

)

+ 𝑜 (|𝑥|
𝜎
)

= Φ
𝜀
−

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

+ 𝑜 (|𝑥|
𝜎
) ,

(61)

where

Φ
𝜀
= const [󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝑝+1

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2

− 𝜂
−1

𝑒
𝛿
0
𝜀
(|𝑥|
𝑝+1

+ |𝑥| + |𝑥|
2
)]

(62)

is a function in the form of (18). Choose 𝜌 sufficiently large;
then

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

=

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
𝑗
+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
𝑗
)

2

−
1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

≥
1

𝜌

𝑛

∑

𝑖=1

c
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

−
1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
2

𝑖
+ 2𝑏
𝑖

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑠
𝑖𝑗
𝑥
𝑝

𝑖
𝑦
2

𝑗

− const
𝑛

∑

𝑖,𝑗=1

𝑥
𝑝

𝑖
𝑦
𝑗
− 𝑜 (|𝑥|

𝜎
)

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑠
𝑖𝑗

2𝑦
𝜎

𝑗
+ 𝑝𝑥
𝜎

𝑖

2 + 𝑝

− const
𝑛

∑

𝑖,𝑗=1

𝑝𝑥
𝑝+1

𝑖
+ 𝑦
𝑝+1

𝑗

𝑝 + 1
− 𝑜 (|𝑥|

𝜎
)

=

𝑛

∑

𝑖=1

𝑐
𝑖
[
𝑑
2

𝑖𝑖

𝜌
−

𝑝𝑠
𝑖∙

(𝜌 − 1) (2 + 𝑝)
] 𝑥
𝜎

𝑖

−
2

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑖,𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖
𝑦
𝜎

𝑖
− const

𝑛

∑

𝑖=1

𝑦
𝑝+1

𝑖
− 𝑜 (|𝑥|

𝜎
)

= −Φ
󸀠

𝜀
+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) ,

(63)

where we have used inequalities (20)–(22), 𝑠
𝑖𝑗

= 𝑒
𝑖∙
𝑒
𝑖𝑗
, 𝑠
𝑖∙

=

∑
𝑛

𝑗=1
𝑠
𝑖𝑗
; consider

Φ
󸀠

𝜀
=

2

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑖,𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖
(𝑦
𝜎

𝑖
− 𝜂
−1

𝑒
𝛿
0
𝜀
𝑥
𝜎

𝑖
)

+ const
𝑛

∑

𝑖=1

(𝑦
𝑝+1

𝑖
− 𝜂
−1

𝑒
𝛿
0
𝜀
𝑥
𝑝+1

𝑖
)

(64)

is a function in the form of (18):

𝑘
𝑖
= 𝑐
𝑖
(

𝑑
2

𝑖𝑖

𝜌
−

𝑝𝑠
𝑖∙

(𝜌 − 1) (2 + 𝑝)
) −

2𝜂
−1

𝑒
𝛿
0
𝜀

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖

(65)

when 𝜀 → 0, 𝑝 → 0, and 𝜌 → ∞,

𝜌𝑘
𝑖
󳨀→ 𝑐
𝑖
𝑑
2

𝑖𝑖
− 𝜂
−1

𝑛

∑

𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖

> 0. (66)

The last inequality is based on the condition 𝐺
T
𝑐 ≫ 0. Thus

we may assume that 𝜀 and 𝑝 are sufficiently small, while 𝜌 is
sufficiently large; then 𝑘

𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛). Substituting (63)

into (61) yields that

L𝑈 (𝑥, 𝑦) ≤ Φ
󸀠󸀠

𝜀
−

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (67)

where

Φ
󸀠󸀠

𝜀
= Φ
𝜀
+

𝑝 (1 − 𝑝)

2
Φ
󸀠

𝜀
(68)

is a function in the form of (18). Clearly, (67) shows that
condition (24) is satisfied.

Now, we can use Lemma 4 to obtain that, for any given
𝜉 ∈ 𝐶
++
, (1) has a unique global positive solution 𝑥(𝑡, 𝜉).
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Step 2. Let𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
. In this step we test condition (25); for

that, we only need to show that conditions (38) and (59) hold.
The method is similar to the proof of Theorem 7, Step 1.

Step 3. Taking any 𝑝 ∈ (0, 1), now we test condition (26). We
can replace 𝐽 by (2/(1 − 𝑝))𝐽:

2

1 − 𝑝
𝐽 =

2

1 − 𝑝

𝑥
T
𝑓

𝑒T𝑥
− (

𝑥
T
𝑔

𝑒T𝑥
)

2

=: 𝐽
1
+ 𝐽
2
,

𝐽
1
=

2

1 − 𝑝

𝑥
T
(𝑎 + 𝐴𝑥 + 𝐵𝑦)

𝑒T𝑥

≤ const (1 + |𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

= const 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + 𝑜 (|𝑥|

2
) ,

𝐽
2
= −[

𝑥
T
𝑏 + 𝑥

T
(𝐷𝑥 + 𝐸𝑦)

𝑒T𝑥
]

2

= −
(𝑥

T
𝑏)
2

+ 2 (𝑥
T
𝑏) 𝑥

T
(𝐷𝑥 + 𝐸𝑦)

(𝑒T𝑥)
2

− (
𝑥
T
𝐷𝑥 + 𝑥

T
𝐸𝑦

𝑒T𝑥
)

2

≤ const 󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨 − (

𝑥
T
𝐷𝑥 + 𝑥

T
𝐸𝑦

𝑒T𝑥
)

2

=: 𝐽
3
+ 𝐽
4
.

(69)

Obviously,

𝐽
3
≤ const 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + 𝑜 (|𝑥|
2
) . (70)

Letting 𝜌 be sufficiently large, then inequality (21) gives that

𝐽
4
≤ −

1

𝜌
(

𝑥
T
𝐷𝑥

𝑒T𝑥
)

2

+
1

𝜌 − 1
(

𝑥
T
𝐸𝑦

𝑒T𝑥
)

2

. (71)

By condition (58) we have

𝑥
T
𝑅𝑥 = 2𝑞(𝑒

T
𝑥)
2

− 2𝑥
T
𝐷𝑥 ≤ 0; (72)

thus 𝑥T
𝐷𝑥 ≥ 𝑞(𝑒

T
𝑥)
2, which implies

(
𝑥
T
𝐷𝑥

𝑒T𝑥
)

2

≥ 𝑞
2
(𝑒

T
𝑥)
2

, (𝑥 ∈ R
𝑛

++
) . (73)

Condition (57) derives that

𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) = 𝑟𝑥

T
𝑄𝑦 ≥

󵄨󵄨󵄨󵄨󵄨
𝑥
T
𝐸y󵄨󵄨󵄨󵄨󵄨 , (𝑥, 𝑦 ∈ R

𝑛

++
) ; (74)

hence,

(
𝑥
T
𝐸𝑦

𝑒T𝑥
)

2

≤ 𝑟
2
(𝑒

T
𝑦)
2

. (75)

So

𝐽
4
≤ −

𝑞
2

𝜌
(𝑒

T
𝑥)
2

−
𝑟
2

𝜌 − 1
(𝑒

T
𝑦)
2

. (76)

Combining (69)–(76) yields

2

1 − 𝑝
𝐽 ≤ const 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 −
𝑞
2

𝜌
(𝑒

T
𝑥)
2

+
𝑟
2

𝜌 − 1
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

= Φ
󸀠󸀠󸀠

𝜀
− 𝑘(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) ,

(77)

where

Φ
󸀠󸀠󸀠

𝜀
= const (󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 − 𝜂
−1

𝑒
𝛿
0
𝜀
|𝑥|)

+
𝑟
2

𝜌 − 1
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
−𝛿
0
𝜀
(𝑒

T
𝑥)
2

]

(78)

is a function in the form of (18),

𝑘 =
𝑞
2

𝜌
−

𝑟
2

𝜌 − 1
𝜂
−1

𝑒
𝛿
0
𝜀
. (79)

When 𝜀 → 0 and 𝜌 → ∞,

𝜌𝑘 󳨀→ 𝑞
2
− 𝑟
2
𝜂
−1

. (80)

By condition (59), we have 𝑞 > 𝑟(1 + 𝜂
−1

)/(2) ≥ 𝑟/√𝜂;
therefore, 𝑞

2
> 𝑟
2
𝜂
−1. Since we may assume that 𝜀 is

sufficiently small and 𝜌 is sufficiently large, there must be
𝑘 > 0. Thus, condition (77) deduces that condition (26) is
satisfied.

Now, we can apply Lemma 6 to obtain that any positive
solution𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶

++
)of (1) satisfies (27). And thenwe can

get that 𝑥(𝑡, 𝜉) satisfies (4) by letting 𝑝 → 1. This completes
the proof.

Remark 9. Observing and comparing the conditions of The-
orems 7 and 8, the condition they have in common is (38),
which only involves parameters from the drift coefficient
𝑓. Condition (39) in Theorem 7 corresponds to conditions
(57), (58), and (60) inTheorem 8 which depend on stochastic
disturbances of system (1). Both of them can guarantee the
existence and uniqueness of the solution. But it seems that
the three conditions of Theorem 8 are more precise than
condition (39). Hence, we may expect that Theorem 8 can
give more accurate results. However, it needs condition 𝐷 ≥

0, which is not requested in Theorem 7. So Theorems 7 and
4.2 have their own strengths and weaknesses.

Remark 10. Theorems 7 and 8 give two classes of conditions
under which the desired properties (A)–(C) hold. This is
an improvement for our previous results ([1, 2]), since we
only established these three results in different conditions,
respectively. Moreover, conditions of the two theorems are
directly dependent on the parameters of system, except 𝑞 and
𝑟. This implies that these conditions are easier to be verified.
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5. Some Corollaries

In (1), letting 𝐸 = 0, 𝐷 = 𝐸 = 0, and 𝐵 = 𝐸 = 0, one can get
the following “defective” LV systems:

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡

+ [𝑏 + 𝐷𝑥 (𝑡)] 𝑑𝑤 (𝑡)} ;

(81)

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡 + 𝑏𝑑𝑤 (𝑡)} ;

(82)

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡)] 𝑑𝑡 + [𝑏 + 𝐷𝑥 (𝑡)] 𝑑𝑤 (𝑡)} ,

(83)

where (83) is equivalent to taking 𝛿(𝑡) ≡ 0 in (1). For (81)–
(83), we can simplify the conditions ofTheorems 7-8 and then
obtain corollaries as follows.

Corollary 11. Suppose that there exist nonnegative constants 𝑞,
𝑟, and 𝛼, such that condition (38) and the following conditions
are satisfied:

𝜆
+

𝑀
(𝐷

T
𝐷 − 𝛼𝑄) ≤ 0;

𝑞 > 𝑟𝜂
−1

⋁
𝑟(1 + 𝜂

−1
) + 𝛼

2
.

(84)

Then for any given 𝜉 ∈ 𝐶
++
, (81) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

Taking 𝛽 = 0 in Theorem 7, (84) deduces (39)-(40)
directly. The following corollary can be found in [3, 4].

Corollary 12. Let 𝐷 ≥ 0, 𝑑
𝑖𝑖

> 0 (1 ≤ 𝑖 ≤ 𝑛). Then for (81),
the conclusion of Corollary 11 holds.

This corollary can be deduced from Theorem 8. First, let
𝑟 = 0 such that condition (57) is satisfied. Second, when 𝑞 > 0

is sufficiently small, conditions (58)-(59) are satisfied.
Clearly, Theorem 8 cannot be applied on system (82), but

employingTheorem 7 we have the following.

Corollary 13. Suppose that there exist nonnegative constants
𝑞 and 𝑟, such that (38) and the following condition are satisfied:

𝑞 > (𝑟𝜂
−1

)⋁
𝑟 (1 + 𝜂

−1
)

2
. (85)

Then for any given 𝜉 ∈ 𝐶
++
, (82) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

Note that when 𝐷 = 𝐸 = 0, we should take 𝛼 = 𝛽 = 0

such that condition (39) is satisfied.
ApplyingTheorem 7 on (83) yields the following.

Corollary 14. Suppose that there exist nonnegative constants
𝑞, 𝑟, and𝛼 such that conditions (84) and the following condition
are satisfied:

𝜆
+

𝑀
(𝐴 + 𝐴

T
+ 2𝑞𝑄) ≤ 0. (86)

Then for any given 𝜉 ∈ 𝐶
++
, (83) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

6. Examples

Consider the following 2-dimensional LV system:

𝑑𝑥
1
(𝑡)

𝑥
1
(𝑡)

= [−8𝑥
1
(𝑡) + 𝑥

2
(𝑡) − 𝑦

1
(𝑡) + 𝑦

2
(𝑡)] 𝑑𝑡

+ [𝜆𝑥
1
(𝑡) + 𝜆𝑥

2
(𝑡) + 𝜇𝑦

1
(𝑡) − 𝜇𝑦

2
(𝑡)] 𝑑𝑤 (𝑡) ,

𝑑𝑥
2
(𝑡)

𝑥
2
(𝑡)

= [𝑥
1
(𝑡) − 7𝑥

2
(𝑡) + 𝑦

1
(𝑡) − 𝑦

2
(𝑡)] 𝑑𝑡

+ [𝜆𝑥
2
(𝑡) − 𝜇𝑦

2
(𝑡)] 𝑑𝑤 (𝑡) ,

(87)

where 𝜆 and 𝜇 are nonnegative constants,𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡−𝜏) (𝑖 =

1, 2), and 𝜏 > 0. Let

𝐴 = (
−8 1

1 −7
) , 𝐵 = (

−1 1

1 −1
) ,

𝐶 = 𝜆(
1 1

0 1
) , 𝐸 = 𝜇(

1 −1

0 −1
) .

(88)

By (88), we can compute

𝐴 + 𝐴
T
= (

−16 2

2 −14
) , 𝐷

T
𝐷 = 𝜆

2
(
1 1

1 2
) ,

𝐷
T
𝐸 = 𝜆𝜇(

1 −1

1 −2
) , 𝐸

T
𝐸 = 𝜇

2
(

1 −1

−1 2
) ,

𝐷 + 𝐷
T
= 𝜆(

2 1

1 2
) , 𝑆 = 𝜇

2
(
2 2

0 1
) .

(89)

Then, by (38) and (39) we have

𝐻 = (

2𝑞 − 16 2𝑞 + 2 −1 − 𝑟 1 − 𝑟

2𝑞 + 2 2𝑞 − 14 1 − 𝑟 −1 − 𝑟

−1 − 𝑟 1 − 𝑟 0 0

1 − 𝑟 −1 − 𝑟 0 0

) ;

𝐹 = (

𝜆
2
− 𝛼 𝜆

2
− 𝛼 𝜆𝜇 −𝜆𝜇

𝜆
2
− 𝛼 2𝜆

2
− 𝛼 𝜆𝜇 −2𝜆𝜇

𝜆𝜇 𝜆𝜇 𝜇
2
− 𝛽 −𝜇

2
− 𝛽

−𝜆𝜇 −2𝜆𝜇 −𝜇
2
− 𝛽 2𝜇

2
− 𝛽

) ;

𝐺 = (
𝜆
2
− 2𝜇
2

−2𝜇
2

0 𝜆
2
− 𝜇
2) ,

𝑅 = (
2𝑞 − 2𝜆 2𝑞 − 𝜆

2𝑞 − 𝜆 2𝑞 − 2𝜆
) .

(90)
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(1
∘
) Apply Theorem 7. For any given 𝑥 ∈ R4

+
, we have

𝑥
T
𝐻𝑥 = (2𝑞 − 16) 𝑥

2

1
+ 2 (2𝑞 + 2) 𝑥

1
𝑥
2
− 2 (1 + 𝑟) 𝑥

1
𝑥
3

+ 2 (1 − 𝑟) 𝑥
2
𝑥
4
+ (2𝑞 − 14) 𝑥

2

2
+ 2 (1 − 𝑟) 𝑥

2
𝑥
3

− 2 (1 + 𝑟) 𝑥
2
𝑥
4

≤ (2𝑞 − 16) 𝑥
2

1
+ (2𝑞 + 2) (𝑥

2

1
+ 𝑥
2

2
)

+ (1 − 𝑟)
+
(𝑥
2

1
+ 𝑥
2

4
)

+ (2𝑞 − 14) 𝑥
2

2
+ (1 − 𝑟)

+
(𝑥
2

2
+ 𝑥
2

3
)

= 𝑥
2

1
[4𝑞 − 14 + (1 − 𝑟)

+
] + 𝑥
2

2
[4𝑞 − 12 + (1 − 𝑟)

+
]

+ (1 − 𝑟)
+
(𝑥
2

3
+ 𝑥
2

4
) .

(91)

It can be seen that, taking 𝑟 ≥ 1 and 𝑞 ≤ 3, we have 𝑥T
𝐻𝑥 ≤ 0,

and then 𝜆
+

𝑀
(𝐻) ≤ 0. Next,

𝑥
T
𝐹𝑥 = (𝜆

2
− 𝛼) 𝑥

2

1
+ 2 (𝜆

2
− 𝛼) 𝑥

1
𝑥
2
+ 2𝜆𝜇𝑥

1
𝑥
3
− 2𝜆𝜇𝑥

1
𝑥
4

+ (2𝜆
2
− 𝛼) 𝑥

2

2
+ 2𝜆𝜇𝑥

2
𝑥
3
− 4𝜆𝜇𝑥

2
𝑥
4

+ (𝜇
2
− 𝛽) 𝑥

2

3
− 2 (𝜇

2
+ 𝛽) 𝑥

3
𝑥
4
+ (2𝜇

2
− 𝛽) 𝑥

2

4

≤ (𝜆
2
− 𝛼) 𝑥

2

1
+ (𝜆
2
− 𝛼)
+

(𝑥
2

1
+ 𝑥
2

2
) + 𝜆𝜇 (𝑥

2

1
+ 𝑥
2

3
)

+ (2𝜆
2
− 𝛼) 𝑥

2

2
+ 𝜆𝜇 (𝑥

2

2
+ 𝑥
2

3
) + (𝜇

2
− 𝛽) 𝑥

2

3

+ (2𝜇
2
− 𝛽) 𝑥

2

4

= 𝑥
2

1
[𝜆
2
− 𝛼 + (𝜆

2
− 𝛼)
+

+ 𝜆𝜇]

+ 𝑥
2

2
[(𝜆
2
− 𝛼)
+

+ 2𝜆
2
− 𝛼 + 𝜆𝜇]

+ 𝑥
2

3
(2𝜆𝜇 + 𝜇

2
− 𝛽) + (2𝜇

2
− 𝛽) 𝑥

2

4
.

(92)

Clearly, when 𝛼 ≥ 2𝜆
2
+ 𝜆𝜇 and 𝛽 ≥ (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇),

𝜆
+

𝑀
(𝐹) ≤ 0. Condition (40) is equivalent to 2𝑞 > 2𝑟 + 𝛼 + 𝛽.

Combining the above equalities yields

6 ≥ 2𝑞 > 2𝑟 + 𝛼 + 𝛽

≥ 2 + 2𝜆
2
+ 𝜆𝜇 + (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇) ;

(93)

namely, 𝜆 ≥ 0 and 𝜇 ≥ 0 satisfy

2𝜆
2
+ 𝜆𝜇 + (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇) < 4. (94)

Thenwe can choose nonnegative constants 𝑞, 𝑟,𝛼, and𝛽, such
that conditions (38)–(40) are satisfied; therefore, Theorem 7

D1

D2

0 √2

√2

1

√3

2

√3

𝜆 = √2𝜇

4𝜆 = √32 + 𝜇2 − 3𝜇

4𝜆 = √32 − 15𝜇2 − 𝜇

Figure 1: Regions 𝐷
1
and 𝐷

2
.

can apply to (87). Through elementary calculation, condition
(94) can be expressed as

𝜆 <

{{{{{{

{{{{{{

{

√32 + 𝜇2 − 3𝜇

4
, 0 ≤ 𝜇 ≤

2

√3

√32 − 15𝜇2 − 𝜇

4
,

2

√3
< 𝜇 < √2.

(95)

(2
∘
) Apply Theorem 8. Obviously 𝐷 ≥ 0. By Lemma 2, 𝐺

is an 𝑀-matrix if and only if 𝜆2 > 2𝜇
2; that is,

𝜆 > √2𝜇. (96)

Condition (57) holds ⇔ 𝜇 ≤ 𝑟, so we may assume 𝑟 = 𝜇. For
any given 𝑥 ∈ R2

+
,

𝑥
T
𝑅𝑥 = (2𝑞 − 2𝜆) 𝑥

2

1
+ 2 (2𝑞 − 𝜆) 𝑥

1
𝑥
2
+ (2𝑞 − 2𝜆) 𝑥

2

2

≤ [2𝑞 − 2𝜆 + (2𝑞 − 𝜆)
+

] (𝑥
2

1
+ 𝑥
2

2
) .

(97)

Obviously, when 𝑞 ≤ (3/4)𝜆, 𝜆+
𝑀
(𝑅) ≤ 0. Let 𝑞 = (3/4)𝜆. By

condition (96) we have

𝑞 =
3

4
𝜆 >

3√2

4
𝜇 ≥ 𝜇 = 𝑟, (98)

which shows that condition (40) is satisfied. Thus, when
condition (96) holds,Theorem 8 can apply to (87). In Figure 1,
regions 𝐷

1
and 𝐷

2
are, respectively, decided by conditions

(94) and (96) on the 𝜆𝜇 plane. It is easy to see that 𝐷
1

and 𝐷
2
are partially overlapping. Roughly speaking, 𝐷

2
is

much larger than𝐷
1
.This means that applyingTheorem 8 on

model (87) can get more precise results in some sense. This
conclusion is consistent with our expectation in Remark 9.
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