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This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional
calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional
reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model
and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability
and effectiveness of the proposed methodology.

1. Introduction

Fractional calculus dates back to the end of the 17th century.
Over three hundred years, a firm theoretical foundation has
been established due primarily to Liouville, Grünwald, Let-
nikov, Riemann, and Caputo. In the last three decades, many
scientific studies have shown the importance of fractional cal-
culus and its applications in mathematics, physics, chemistry,
material, engineering, finance, and even social science [1–3].
The stability of fractional differential equations and fractional
control has gained rapid development very recently [4–6].

Several pioneering attempts to develop fractional order
control methodologies have been made, such as TID control
[7], CRONE control [8], fractional PID control [9], and frac-
tional lead-lag compensator [10]. Basic ideas and technical
formulations of the above four fractional control schemes
with comparative comments have been addressed in [11]. By
applying fractional calculus to advanced nonlinear control
theory, several fractional nonlinear control schemes have
been proposed very recently, such as fractional sliding mode
control [12–24], fractional adaptive control [25–29], and
fractional optimal control [30–32]. Particularly, in [25], the
authors have presented two ideas to extend the conventional
Model Reference Adaptive Control (MRAC) by using frac-
tional order parameter adjustment rule and fractional refer-
ence model. In [26], a fractional model reference adaptive

control algorithm for SISO plants has been proposed in
frequency domain, which guarantees the stability and ability
to reject disturbances.

Inspired by contributions from [25, 26], this paper aims
at going further by applying an incommensurate fractional
adaptation law to fractional plant and fractional reference
model. Furthermore, the stability and tracking convergence
of the fractional adaptive system are analyzed based on the
continuous frequency distributed model of fractional inte-
grator.

The rest of the paper is organized as follows. Section 2
reviews some basic definitions and theorems about fractional
calculus. Section 3 designs a control law and a fractional
adaptation law for fractional linear MRAC systems along
with numerical simulations. Section 4 extends the proposed
schemes to fractional nonlinear systems. Finally, Section 5
concludes this paper with some remarks on future study.

2. Basic Definitions and Preliminaries

Fractional calculus is a generalization of integration and dif-
ferentiation to noninteger order fundamental operator

𝑎
𝐷
𝛼

𝑡
,

where 𝑎 and 𝑡 are the bounds of the operation and 𝑎 ∈ R.
The three most frequently used definitions for the general
fractional calculus are the Grünwald-Letnikov definition,
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the Riemann-Liouville definition, and the Caputo definition
[1–3].

Definition 1. TheGrünwald-Letnikov derivative definition of
order 𝛼 is described as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) . (1)

Definition 2. The Riemann-Liouville derivative definition of
order 𝛼 is described as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛼−𝑛+1

. (2)

Definition 3. The Caputo definition of fractional derivatives
can be written as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

𝑓
(𝑛)

(𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛼−𝑛+1

, 𝑛 − 1 < 𝛼 < 𝑛.

(3)

In the following, we use the Caputo approach to describe
fractional systems and the Grünwald-Letnikov approach to
perform numerical simulations. To simplify the notation, we
denote the fractional derivative of order 𝛼 as 𝐷𝛼 instead of
0
𝐷
𝛼

𝑡
in this paper.

Lemma 4 (the continuous frequency distributedmodel [33]).
The fractional integrator 𝐷−𝛼, 0 < 𝛼 < 1 is a linear
frequency distributed system, with input V(𝑡) and output 𝑥(𝑡).
Its frequency distributed state 𝑧(𝜔, 𝑡) verifies the differential
equation (for the elementary frequency 𝜔) as follows:

𝜕𝑧 (𝜔, 𝑡)

𝜕𝑡
= −𝜔𝑧 (𝜔, 𝑡) + V (𝑡) , (4)

and the output 𝑥(𝑡) of the fractional integrator is the weighted
integral (with weight 𝜇(𝜔)) of all the contributions 𝑧(𝜔, 𝑡)
ranging from 0 to∞ as follows:

𝑥 (𝑡) = ∫

∞

0

𝜇 (𝜔) 𝑧 (𝜔, 𝑡) 𝑑𝜔, (5)

with 𝜇(𝜔) = (sin(𝛼𝜋)/𝜋)𝜔−𝛼.
The relations (4) and (5) define the frequency distributed

model of the fractional integrator.

Lemma 5. The quadratic form 𝑊 = 𝑊
1
+ 𝑊
2
is positive

semidefinite if 𝑎
𝑖
≥ 0, where 𝑊

1
= ∑
𝑚

𝑖=1
𝑊
1𝑖
and 𝑊

2
=

∑
𝑚

𝑖=1
𝑎
𝑖
𝑊
2𝑖
with𝑊

1𝑖
= ∫
∞

0

𝜇
𝑖
(𝜔)𝜔𝑧

2

𝑖
𝑑𝜔 and𝑊

2𝑖
= 𝑥
2

𝑖
, 𝑖 = 1, 2,

. . . , 𝑚 [34].

3. Adaptive Control of Fractional
Linear Systems

In this section, we extend the conventional MRAC systems
to fractional ones based on the theory of fractional calculus.
Firstly, a fractional plant and an incommensurate fractional
reference model are described by the fractional differential

equations. Then, a control law and an incommensurate frac-
tional adaptation law which are generalized from the con-
ventional ones [35, 36] are designed. Finally, the stability
and tracking performance of the fractional adaptive system
are analyzed based on the continuous frequency distributed
model of fractional integrator.

3.1. Fractional Adaptive Control Design. Consider the follow-
ing fractional differential equation:

𝐷
𝛼
1𝑦 = −𝑎

𝑝
𝑦 + 𝑏
𝑝
𝑢, (6)

where 𝛼
1
is the fractional order lying between (0, 1), 𝑦 is the

plant output, 𝑢 is the input, and 𝑎
𝑝
and 𝑏
𝑝
are constant plant

parameters that are assumed to be unknown.
The reference model is specified by a fractional differen-

tial equation as follows:

𝐷
𝛼
1𝑦
𝑚
= −𝑎
𝑚
𝑦
𝑚
+ 𝑏
𝑚
𝑟 (𝑡) , (7)

where 𝑎
𝑚

and 𝑏
𝑚

are constant parameters and 𝑟(𝑡) is a
bounded external reference signal.

Our objective of the fractional adaptive control design is
to construct a control law and a fractional adaptation law to
make the fractional plant (6) track the fractional reference
model (7) on the basis of system stability.

Let us assume the sign of the parameter 𝑏
𝑝
to be known

and design the control law to be

𝑢 = 𝑎
𝑟
(𝑡) 𝑟 + 𝑎

𝑦
(𝑡) 𝑦, (8)

where𝑎
𝑟
(𝑡) and𝑎

𝑦
(𝑡) are variable feedback gains to be decided

later.
Define the tracking error

𝑒 = 𝑦 − 𝑦
𝑚
, (9)

and the parameter errors

𝑎
𝑟
= 𝑎
𝑟
− 𝑎
∗

𝑟
,

𝑎
𝑦
= 𝑎
𝑦
− 𝑎
∗

𝑦
,

(10)

where 𝑎∗
𝑟
= 𝑏
𝑚
/𝑏
𝑝
and 𝑎∗
𝑦
= (𝑎
𝑝
− 𝑎
𝑚
)/𝑏
𝑝
are the same as the

conventional case.
Subtracting (7) from (6) derives the dynamics of tracking

error as follows:

𝐷
𝛼
1𝑒 = −𝑎

𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦) . (11)

To adjust the two parameters in the control law (8), an
adaptation law can be chosen in the fractional form as follows

𝐷
𝛼
2𝑎
𝑟
= − sign (𝑏

𝑝
) 𝛾𝑒𝑟,

𝐷
𝛼
3𝑎
𝑦
= − sign (𝑏

𝑝
) 𝛾𝑒𝑦,

(12)

where 0 < 𝛼
2
< 1, 0 < 𝛼

3
< 1.

Note that the control law (8) and the fractional adapta-
tion law (12) are generalized from the conventional MRAC
systems [35, 36].
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3.2. Analysis of Stability and Tracking Convergence. In the
following, we will prove that the fractional plant (6) can be
controlled with the control law (8) and the adaptation law
(12).

The tracking error system (11) and adaptation law (12)
constitute the following closed-loop adaptive system:

𝐷
𝛼
1𝑒 = −𝑎

𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦) ,

𝐷
𝛼
2𝑎
𝑟
= − sign (𝑏

𝑝
) 𝛾𝑒𝑟,

𝐷
𝛼
3𝑎
𝑦
= − sign (𝑏

𝑝
) 𝛾𝑒𝑦.

(13)

Based on the continuous frequency distributed model
of the fractional integrator in Lemma 4, the above adaptive
system is exactly equivalent to the infinite dimensional ODEs
as follows:

𝜕𝑧
1
(𝜔, 𝑡)

𝜕𝑡
= −𝜔𝑧

1
(𝜔, 𝑡) − 𝑎

𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦) ,

𝑒 (𝑡) = ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
(𝜔, 𝑡) 𝑑𝜔,

𝜕𝑧
2
(𝜔, 𝑡)

𝜕𝑡
= −𝜔𝑧

2
(𝜔, 𝑡) − − sign (𝑏

𝑟
) 𝛾𝑒𝑟,

𝑎
𝑟
(𝑡) = ∫

∞

0

𝜇
2
(𝜔) 𝑧
2
(𝜔, 𝑡) 𝑑𝜔,

𝜕𝑧
3
(𝜔, 𝑡)

𝜕𝑡
= −𝜔𝑧

3
(𝜔, 𝑡) − − sign (𝑏

𝑦
) 𝛾𝑒𝑦,

𝑎
𝑦
(𝑡) = ∫

∞

0

𝜇
3
(𝜔) 𝑧
3
(𝜔, 𝑡) 𝑑𝜔,

(14)

with 𝜇
𝑖
(𝜔) = (sin(𝛼

𝑖
𝜋)/𝜋)𝜔

−𝛼
𝑖 , 𝑖 = 1, 2, 3.

In the above continuous frequency distributed model,
𝑧
1
(𝜔, 𝑡), 𝑧

2
(𝜔, 𝑡), and 𝑧

3
(𝜔, 𝑡) are the true state variables, while

𝑒(𝑡), 𝑎
𝑟
(𝑡), and 𝑎

𝑦
(𝑡) are the pseudo state variables.

Let us define two types of Lyapunov functions as follows:
(i) V
𝑖
(𝑤, 𝑡): the monochromatic Lyapunov functions cor-

responding to the elementary frequency;
(ii) 𝑉
𝑖
(𝑡): the Lyapunov functions summing all the mono-

chromatic V
𝑖
(𝑤, 𝑡)with the weighting functions 𝜇

𝑖
(𝜔),

𝑖 = 1, 2, 3.
Namely,

V
1
(𝑤, 𝑡) =

1

2
𝑧
2

1
,

V
2
(𝑤, 𝑡) =

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

2𝛾
𝑧
2

2
,

V
3
(𝑤, 𝑡) =

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

2𝛾
𝑧
2

3
,

𝑉
𝑖
(𝑡) = ∫

∞

0

𝜇
𝑖
(𝜔) V
𝑖
(𝜔, 𝑡) 𝑑𝜔, 𝑖 = 1, 2, 3.

(15)

Then,
𝑑𝑉
1

𝑑𝑡
= ∫

∞

0

𝜇
1
(𝜔)

𝜕V
1
(𝜔, 𝑡)

𝜕𝑡
𝑑𝜔. (16)

Substituting the first equation of (14) into (16) gives

𝑑𝑉
1

𝑑𝑡
= ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
[ − 𝜔𝑧

1
(𝜔, 𝑡)

−𝑎
𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦)] 𝑑𝜔

= − ∫

∞

0

𝜇
1
(𝜔) 𝜔𝑧

2

1
𝑑𝜔

+ ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
[−𝑎
𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦)] 𝑑𝜔

= − ∫

∞

0

𝜇
1
(𝜔) 𝜔𝑧

2

1
𝑑𝜔 + [−𝑎

𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦)]

× ∫

∞

0

𝜇
1
(𝜔) 𝑧
1
𝑑𝜔.

(17)

Substituting the second equation of (14) into the integral
term of (17) yields

𝑑𝑉
1

𝑑𝑡
= −∫

∞

0

𝜇
1
(𝜔) 𝜔𝑧

2

1
𝑑𝜔 − 𝑎

𝑚
𝑒
2

+ 𝑒𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦) .

(18)

Similarly, one derives

𝑑𝑉
2

𝑑𝑡
= −

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
2
(𝜔) 𝜔𝑧

2

2
𝑑𝜔 − 𝑒𝑏

𝑝
𝑎
𝑟
𝑟,

𝑑𝑉
3

𝑑𝑡
= −

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
3
(𝜔) 𝜔𝑧

2

3
𝑑𝜔 − 𝑒𝑏

𝑝
𝑎
𝑦
𝑦.

(19)

Finally, lets define

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) . (20)

Then, one derives

𝑑𝑉

𝑑𝑡
= − ∫

∞

0

𝜇
1
(𝜔) 𝜔𝑧

2

1
𝑑𝜔 −

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
2
(𝜔) 𝜔𝑧

2

2
𝑑𝜔

−

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
3
(𝜔) 𝜔𝑧

2

3
𝑑𝜔 − 𝑎

𝑚
𝑒
2

.

(21)

Owing to Lemma 5, 𝑑𝑉/𝑑𝑡 is negative semidefinite,
implying the stability of the fractional adaptive system (13).

This proves that the fractional MRAC problem (6)-(7)
can be solved by using the control law (8) and the fractional
adaptation law (12).

3.3. Numerical Simulations. Consider the control of the
fractional plant with known fractional order 𝛼

1
= 0.9 and

unknown parameters 𝑎
𝑝
and 𝑏
𝑝
. The sign of 𝑏

𝑝
is assumed to

be positive. The fractional reference model is chosen to be

𝐷
0.9

𝑦
𝑚
= −4𝑦

𝑚
+ 4 sin (3𝑡) , (22)

that is, 𝛼
1
= 0.9, 𝑎

𝑚
= 4, 𝑏
𝑚
= 4, 𝑟(𝑡) = sin(3𝑡).
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Figure 1: Fractional adaptive control of the fractional linear system (6). (a) Tracking performance (red line represents the state of the fractional
plant, while the blue line represents the state of the fractional reference model); (b) control parameter 𝑎

𝑟
(𝑡); (c) control parameter 𝑎

𝑦
(𝑡); (d)

control input 𝑢(𝑡); (e) estimation of parameter 𝑎
𝑝
(𝑡); (f) estimation of parameter 𝑎

𝑦
(𝑡).

The adaptation gain is chosen to be 𝛾 = 1, while the
fractional orders of the adaptation law are chosen as 𝛼

2
= 0.4,

𝛼
3
= 0.4.
As for the initialization issue, we refer to the method pro-

posed by Lorenzo and Hartley in [37], where it is addressed
that the initial conditions for fractional differential equations
with order between 0 and 1 are a constant function of
time. Therefore, the initial conditions of the fractional plant,
the fractional model, and the fractional adaptation law are
chosen, respectively, as 𝑦(𝑡) = 𝑦(0+) = 10, 𝑦

𝑚
(𝑡) = 𝑦

𝑚
(0
+

) =

10, 𝑎
𝑟
(𝑡) = 𝑎

𝑟
(0
+

) = 1, 𝑎
𝑦
(𝑡) = 𝑎

𝑦
(0
+

) = 1, for −∞ ≤ 𝑡 ≤ 0.
The numerical simulations of the behavior of the frac-

tional linear adaptive system are illustrated in Figure 1. For
interpretations of the references to the color in the upper left
figure, the reader is referred to the web version of this paper.

Remark 6. In [25], the authors have designed a commen-
surate fractional adaptation law for the integer order SISO

systems. Benefits from the use of fractional calculus are
also illustrated mainly via numerical simulations. However,
detailed theoretical analysis is left out in their work. In the
following, we give the theoretical analysis of the fractional
control for the integer order plant.

With the first order error dynamics (i.e., 𝛼
1
= 1 in system

(13)) and the fractional adaptation law (12), the closed-loop
adaptive system is described by

𝑑𝑒

𝑑𝑡
= −𝑎
𝑚
𝑒 + 𝑏
𝑝
(𝑎
𝑟
𝑟 + 𝑎
𝑦
𝑦) ,

𝐷
𝛼
2𝑎
𝑟
= − sign (𝑏

𝑝
) 𝛾𝑒𝑟,

𝐷
𝛼
3𝑎
𝑦
= − sign (𝑏

𝑝
) 𝛾𝑒𝑦.

(23)
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Figure 2: Fractional adaptive control of the fractional nonlinear system (26). (a) Tracking performance (red line represents the state of the
fractional nonlinear plant, while, blue line represents the state of the fractional reference model); (b) control parameter 𝑎

𝑟
(𝑡); (c) control

parameter 𝑎
𝑦
(𝑡); (d) control parameter 𝑎

𝑓
(𝑡).

By converting the last two FDEs into infinite-dimensional
ODEs as (14) and introducing Lyapunov function as

𝑉 (𝑡) =
1

2
𝑒
2

+

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

2𝛾
∫

∞

0

𝜇
2
(𝜔) 𝑧
2

2
𝑑𝜔 +

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

2𝛾
∫

∞

0

𝜇
3
(𝜔) 𝑧
2

3
𝑑𝜔,

(24)

one derives

𝑑𝑉

𝑑𝑡
(𝑡) = −

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
2
(𝜔) 𝜔𝑧

2

2
𝑑𝜔

−

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑝

󵄨󵄨󵄨󵄨󵄨

𝛾
∫

∞

0

𝜇
3
(𝜔) 𝜔𝑧

2

3
𝑑𝜔 − 𝑎

𝑚
𝑒
2

.

(25)

By Lemma 5, 𝑑𝑉/𝑑𝑡 is negative semidefinite, which
implies the stability of the fractional adaptive system (23).
This proves that the integer order plant (𝛼

1
= 1 in system (6))

can be controlled with the control law (8) and the fractional
adaptation law (12).

Remark 7. From the analysis in Remark 6, it is evident that
the values of the fractional orders 𝛼

1
, 𝛼
2
, and 𝛼

3
can be

extended to the following values: 0 < 𝛼
1
≤ 1, 0 < 𝛼

2
≤ 1,

and 0 < 𝛼
3
≤ 1.

4. Extension to Fractional Nonlinear Systems

In this section, we extend the fractional control method pre-
viously proposed to fractional nonlinear systems. The frac-
tional nonlinear plant is described by the fractional differen-
tial equation as follows:

𝐷
𝛼
1𝑦 = −𝑎

𝑝
𝑦 − 𝑐
𝑝
𝑓 (𝑦) + 𝑏

𝑝
𝑢, (26)

where 𝑓 is a known nonlinear function. The fractional refer-
ence model is chosen as (7). Instead of using control law (8)
and adaptation law (12), we nowuse the following control law:

𝑢 = 𝑎
𝑟
(𝑡) 𝑟 + 𝑎

𝑦
(𝑡) 𝑦 + 𝑎

𝑓
(𝑡) 𝑓 (𝑦) , (27)
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Figure 3: Fractional adaptive control of the fractional nonlinear system (26). (a) Estimation of parameter 𝑎
𝑝
(𝑡); (b) parameter 𝑏

𝑝
(𝑡); (c)

estimation of parameter 𝑐
𝑝
(𝑡); (d) control input 𝑢(𝑡).

and the adaptation law

𝐷
𝛼
2𝑎
𝑟
= − sign (𝑏

𝑝
) 𝛾𝑒𝑟,

𝐷
𝛼
3𝑎
𝑦
= − sign (𝑏

𝑝
) 𝛾𝑒𝑦,

𝐷
𝛼
4𝑎
𝑓
= − sign (𝑏

𝑝
) 𝛾𝑒𝑓 (𝑦) ,

(28)

with 𝑎
𝑓
= 𝑎
𝑓
− 𝑐
𝑝
/𝑏
𝑝
.

Similarly, one can easily analyze the stability and tracking
convergence of the above fractional nonlinear adaptive sys-
tem based on the continuous frequency distributed model of
fractional integrator.

The following example demonstrates the behavior of the
fractional nonlinear adaptive system.

Consider the fractional nonlinear plant with known frac-
tional order 𝛼

1
= 0.9 and unknown parameters 𝑎

𝑝
, 𝑏
𝑝
, and 𝑐

𝑝
.

The sign of 𝑏
𝑝
is assumed to be positive. 𝑓(𝑦) is chosen to be

𝑦
2. The fractional reference model is chosen to be the same

as (22).

The initial conditions of the fractional plant, the frac-
tional model, and the fractional adaptation law are chosen,
respectively, as 𝑦(𝑡) = 𝑦(0+) = 10, 𝑦

𝑚
(𝑡) = 𝑦

𝑚
(0
+

) = 10,
𝑎
𝑟
(𝑡) = 𝑎

𝑟
(0
+

) = 1, 𝑎
𝑦
(𝑡) = 𝑎

𝑦
(0
+

) = 1, 𝑎
𝑓
(𝑡) = 𝑎

𝑓
(0
+

) = 1,
for −∞ ≤ 𝑡 ≤ 0.

The adaptation gain is chosen to be 𝛾 = 1, while the
fractional orders of the adaptation law are chosen as 𝛼

2
= 0.9,

𝛼
3
= 0.6, 𝛼

4
= 0.6.

Figures 2 and 3 illustrate the numerical simulations of
the behavior of the fractional nonlinear adaptive system. For
interpretations of the references to the color in the upper left
figure of Figure 2, the reader is referred to the web version of
this paper.

5. Concluding Remarks

Based on the theory of fractional calculus, this paper has
extended the conventional MRAC systems to fractional ones
by designing a control law and a fractional adaptation law
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for the fractional plant and fractional reference model. The
stability and tracking convergence have been analyzed using
the frequency distributed fractional integrator model and
Lyapunov theory. Moreover, numerical simulations of both
linear and nonlinear systems have been performed to exhibit
the viability and effectiveness of the proposed methodology.

As for the future perspectives, our research efforts will be
focused on the following.

(i) How the fractional orders of the adaptation law affect
the performance of the control system.

(ii) The optimal design of the fractional orders of the
adaptation law.

(iii) Superiority of fractional MRAC systems compared to
the conventional ones.

(iv) Design of fractional MRAC for general integer order
or fractional order linear system, namely,𝐷𝛼𝑥 = 𝐴𝑥+
𝐵𝑢, 0 < 𝛼 ≤ 1.
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