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Let 𝐹∗(𝐾) be the set of all fuzzy complex numbers. In this paper some classical andmeasure-theoretical notions are extended to the
case of complex fuzzy sets. They are fuzzy complex number-valued distance on 𝐹

∗

(𝐾), fuzzy complex number-valued measure
on 𝐹
∗

(𝐾), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction,
autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued
measures. Properties of fuzzy complex number-valued measures are studied in detail.

1. Introduction

It is well known that additivity of a classical measure primly
depicted measure problems under error-free condition. But
when measure error was unavoidable, additivity could not
fully depict the measure problems under certain condition.
To overcome such difficulties, fuzzy measure has been devel-
oped. Research on fuzzy measures was very deep in those
aspects: research based on a certain number of subsets of
a classic set and a real value nonaddable measure (such as
Choquet’s content theory [1], Sugeno’s measure theory [2]),
research based on fuzzy sets and a real value measure (e.g.,
Zadeh’s addable measure [3]), and especially the research on
fuzzy valuemeasures which generalizes the set valuemeasure
theory.

Being a newly developing theory developed in the later
1960s, set value measure had been applied in many fields [4–
6]. After the appearance of fuzzy numbers, people naturally
thought of related measure and integral. In 1986 Zhang [7]
defined a kind of fuzzy set measure on 𝑅

𝑛, in 1998 Wu
et al. generalized the codomain of fuzzy measure to fuzzy
real number field and defined the Sugeno integral of fuzzy
number fuzzy measure [8], and Guo et al. also defined the
𝐺 fuzzy value measure integral of fuzzy value function [9]
which generalized the Sugeno integral about fuzzy value

fuzzy measure to fuzzy set [10]. In 1989, Buckley presented
the concept of fuzzy complex number [11] which inspired that
people needed to consider the measure and integral problem
about fuzzy complex number.

At the beginning of the 90s, Guang-Quan [12–21] intro-
duced fuzzy real distance and discussed the fuzzy real
measure based on fuzzy sets and then gave the fuzzy real
value fuzzy integral and established fuzzy real valuedmeasure
theory on fuzzy set space. During 1991-1992, Buckley and Qu
[22, 23] studied the problems of fuzzy complex analysis: fuzzy
complex function differential and fuzzy complex function
integral. During 1996–2001, Qiu et al. studied serially basic
problems of fuzzy complex analysis theory, including the
continuity of fuzzy complex numbers and fuzzy complex
valued series [24], fuzzy complex valued functions and their
differentiability [25], and fuzzy complex valued measure and
fuzzy complex valued integral function [26, 27]. Wang and
Li [28] gave the fuzzy complex valued measure based on the
fuzzy complex number concept of Buckley, studied Lebesgue
integral of fuzzy complex valued function, and obtained some
important results.

As for applications of fuzzy complex number theory,
Ramot et al. [29, 30] studied complex fuzzy sets and complex
fuzzy logic, Dick [31] studied fuzzy complex logic more pro-
foundly, Ha et al. [32] applied fuzzy complex set in statistical
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learning theory and obtained a key theorem of statistical
learning theory, Fu and Shen [33] studiedmodeling problems
of fuzzy complex number, and Fu and Shen [34] applied
fuzzy complex in pattern recognition and classification and
obtained important results. Please see [35–37] for other
applications.

This paper will extend the classical measure to fuzzy
complex number-valued measure, which can better express
the interactions among the attributes (cf. [32, 34–37]) and,
thus, is expected to have extensive applications in informa-
tion fusion technology, classification technology, machine
learning, pattern recognition, and other fields. Section 2 is
some preliminary notions (including fuzzy complex number,
real fuzzy distance between two fuzzy real numbers, and
two fuzzy complex numbers) and some basic operations
and order relation of fuzzy complex. Section 3 is prepared
for the next section. We defined, based on Ha’s work
[38], the concepts of fuzzy complex distance and complex
fuzzy set value complex fuzzy measure (an extension of
fuzzy measure) on fuzzy complex number field. We also
present, based on Zhang’s work [21], the concepts of null-
additivity, pseudo-null-additivity, null-subtraction, pseudo-
null-subtraction, autocontinuous from above, autocontinu-
ous from below, and autocontinuity of fuzzy complex value
fuzzy complex measure on complex fuzzy number set (this
measure has the properties PGP and SA/SB). In Section 4,
we deduced some important properties on complex fuzzy set
value complex fuzzymeasure which are generalizations of the
corresponding results inmeasure theory; we also obtain some
results on related integral theory.

2. Preliminaries

2.1. Fuzzy Complex Numbers. In this paper, 𝑅 is the set of all
real numbers set,𝐾 is the set of all complex numbers,𝑋 is an
ordinary set, 𝐹∗(𝑅) is the set of all real fuzzy numbers on 𝑅,
Δ(𝑅) is the set of all interval numbers, (𝑋,A) is a measurable
space (thusA is a 𝜎-algbra), and 𝐹∗(𝐾) is the set of all fuzzy
complex numbers on 𝐾. Let 𝐹∗

+
(𝑅) = {𝑎 : 𝑎 ≥ 0, 𝑎 ∈ 𝐹

∗

(𝑅)}

and let 𝐹∗
+
(𝐾) = {𝐴 + 𝑖𝐵 | 𝐴, 𝐵 ∈ 𝐹

∗

+
(𝑅), 𝑖 = √−1}.

Definition 1 (see [12]). Let 𝑎, �̃� ∈ 𝐹
∗

(𝑅). Then the mapping
(𝑎, �̃�) : 𝐾 → [0, 1] defined by (𝑎, �̃�)(𝑥 + 𝑖𝑦) = 𝑎(𝑥) ∧ �̃�(𝑦) is
called a fuzzy complex number, where 𝑎 is called the real part
of (𝑎, �̃�) (written as Re(𝑎, �̃�)) and �̃� is called the imaginary
part (written as Im(𝑎, �̃�)), and 𝑖 = √−1. One will identify
(𝑎, 0̃) with 𝑎 and, thus, think fuzzy complex numbers are an
extension of fuzzy real numbers. The set of all fuzzy complex
numbers on𝐾 is denoted by 𝐹∗(𝐾).

For any subsets𝐴, 𝐵 of 𝑅, write (𝐴, 𝐵) ≜ 𝐴+ 𝑖𝐵 = {𝑥+ 𝑖𝑦 |

𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}. The operation ∘ ∈ {+, −, ⋅} is described as
follows:

(1) 𝑐
1
∘ 𝑐


2
= (Re 𝑐

1
∘ Re 𝑐
2
, Im 𝑐


1
∘ Im 𝑐



2
) for any 𝑐

1
, 𝑐


2
∈

𝐹
∗

(𝐾);

(2) 𝑐 ⋅ 𝑐
1
= (𝑎Re 𝑐

1
, 𝑏 Im 𝑐



1
) for any 𝑐

1
∈ 𝐹
∗

(𝐾) and 𝑐 =

(𝑎, 𝑏) ∈ 𝐾 (𝑐 = 𝑎 + 𝑖𝑏, 𝑎, 𝑏 ∈ 𝑅, 𝑖 = √−1).

𝑐


∈ 𝐹
∗

(𝐾) is said to be a fuzzy infinity [21] (written as ∞̃)
if one of the supports of 𝑎 = Re 𝑐 and �̃� = Im 𝑐

 is an
unbound set. For any 𝑐

1
, 𝑐


2
∈ 𝐹
∗

(𝐾), one makes the following
appointments:

𝑐


1
≤ 𝑐


2
if and only if Re 𝑐

1
≤ Re 𝑐

2
and Im 𝑐



1
≤ Im 𝑐



2
;

𝑐


1
= 𝑐


2
if and only if 𝑐

1
≤ 𝑐


2
and 𝑐
2
≤ 𝑐


1
;

𝑐


1
< 𝑐


2
if and only if 𝑐

1
≤ 𝑐


2
and Re 𝑐

1
≤ Re 𝑐

2
or

Im 𝑐


1
< Im 𝑐



2
;

𝑐


≥ 0 if and only if Re 𝑐 ≥ 0, Im 𝑐


≥ 0.

One uses A∗ to denote a family (which is obviously non-
empty) of subsets of 𝐹

∗

(𝐾) that satisfies the following
conditions:

(1) for each 𝐴 ∈ A∗, if 𝐵 = {inf 𝐴
0
| 𝐴
0
⊂ 𝐴} has upper

bound, then sup𝐵 ∈ 𝐹
∗

(𝐾);

(2) for each 𝐴 ∈ A∗, if 𝐶 = {sup𝐴
0
| 𝐴
0
⊂ 𝐴} has lower

bound, then sup𝐵 ∈ 𝐹
∗

(𝐾).

2.2. Fuzzy Distance of Fuzzy Numbers

Definition 2 (see cf. [21]). A mapping 𝜌 : 𝐹
∗

(𝑅) × 𝐹
∗

(𝑅) →

𝐹
∗

(𝑅) satisfying the following conditions is called a fuzzy
metric or a fuzzy distance on 𝐹∗(𝑅):

(1) for any 𝑎, �̃� ∈ 𝐹
∗

(𝑅), 𝜌(𝑎, �̃�) ≥ 0, and 𝜌(𝑎, �̃�) = 0 if
and only if 𝑎 = �̃�;

(2) for any 𝑎, �̃� ∈ 𝐹∗(𝑅), 𝜌(𝑎, �̃�) = 𝜌(�̃�, 𝑎);

(3) for any 𝑎, �̃�, 𝑐 ∈ 𝐹∗(𝑅), 𝜌(𝑎, �̃�) ≤ 𝜌(𝑎, 𝑐) + 𝜌(𝑐, �̃�).

𝜌(𝑎, �̃�) is called the fuzzy distance of fuzzy real numbers 𝑎 and
�̃�.

Example 3. The mapping 𝜌 : 𝐹
∗

(𝑅) × 𝐹
∗

(𝑅) → 𝐹
∗

(𝑅)

defined by

𝜌 (𝑎, �̃�) = ⋃

𝜆∈[0,1]

𝜆[
𝑎
−

1
− 𝑏
−

1

 , sup
𝜆≤𝜂≤1


𝑎
−

𝜂
− 𝑏
−

𝜂


∨

𝑎
+

𝜂
− 𝑏
+

𝜂


]

(1)

is a fuzzy distance on 𝐹∗(𝑅).

Remark 4. Analogously, a mapping 𝜌 : 𝐹
∗

(𝐾) × 𝐹
∗

(𝐾) →

𝐹
∗

(𝑅) satisfying the following conditions is called a fuzzy
metric or a fuzzy distance on 𝐹∗(𝐾):

(1) for any 𝑎, �̃� ∈ 𝐹
∗

(𝐾), 𝜌(𝑎, �̃�) ≥ 0, and 𝜌(𝑎, �̃�) = 0 if
and only if 𝑎 = �̃�;

(2) for any 𝑎, �̃� ∈ 𝐹∗(𝐾), 𝜌(𝑎, �̃�) = 𝜌(�̃�, 𝑎);

(3) for any 𝑎, �̃�, 𝑐 ∈ 𝐹∗(𝐾), 𝜌(𝑎, �̃�) ≤ 𝜌(𝑎, 𝑐) + 𝜌(𝑐, �̃�).

𝜌(𝑎, �̃�) is called the fuzzy distance of fuzzy complex numbers
𝑎 and �̃�.
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Example 5. Let 𝜌 be a fuzzy distance on𝐹∗(𝑅).Then themap-
ping 𝜌 : 𝐹∗(𝐾) × 𝐹

∗

(𝐾) → 𝐹
∗

(𝑅) defined by

𝜌


(𝑐


1
, 𝑐


2
) = 𝜌 (Re 𝑐

1
,Re 𝑐
2
) ∨ 𝜌 (Im 𝑐



1
, Im 𝑐


2
) (2)

is a fuzzy distance on 𝐹∗(𝐾).

Definition 6 (see cf. [12]). Let {𝑐
𝑛
} ⊂ 𝐹

∗

(𝐾) and let 𝑐 ∈

𝐹
∗

(𝐾). {𝑐
𝑛
} is said to converge to 𝑐 according to a fuzzymetric

𝜌
 on 𝐹

∗

(𝐾) (written as lim
𝑛→∞

𝑐


𝑛
= 𝑐
) if, for each 𝜀 > 0,

there exists a positive integer𝑁 such that 𝜌(𝑐
𝑛
, 𝑐


) < 𝜀 for all
𝑛 ≥ 𝑁.

3. Complex Fuzzy Set-Valued Complex
Fuzzy Measures

The notion of complex fuzzy measure on family of classical
sets was given in [26].

Definition 7 (see [26]). Let
∧

𝑅
+

= [0, +∞) and let
∧

𝐶
+

= {𝑥+ 𝑖𝑦 |

𝑥, 𝑦 ∈

∧

𝑅
+

}. A fuzzy measure on a 𝜎-algebra 𝐴 composed of

subsets of 𝑋 is a mapping 𝜇 : 𝐴 →

∧

𝐶
+ which satisfies the

following conditions:

(1) 𝜇(𝜙) = 0;
(2) if 𝐴 ⊂ 𝐵, then |𝜇(𝐴)| ≤ |𝜇(𝐵)|;
(3) if {𝐴

𝑛
}
∞

1
↑, then 𝜇(⋃∞

𝑛=1
𝐴
𝑛
) = lim

𝑛→∞
𝜇(𝐴
𝑛
);

(4) if {𝐴
𝑛
}
∞

1
↓ and |𝜇(𝐴

𝑛0
)| < +∞ for some 𝑛

0
, then

𝜇(⋂
∞

𝑛=1
𝐴
𝑛
) = lim

𝑛→∞
𝜇(𝐴
𝑛
).

In this paper we need an expansion of this notion. First
we defined the concept of fuzzy complex value distance.

Definition 8. A mapping 𝜌 : 𝐹
∗

(𝐾) × 𝐹
∗

(𝐾) → 𝐹
∗

(𝐾)

satisfying the following conditions is called a fuzzy complex
value metric or a fuzzy complex value distance on 𝐹∗(𝐾):

(1) for any 𝑎, �̃� ∈ 𝐹
∗

(𝐾), 𝜌(𝑎, �̃�) ≥ 0, and 𝜌(𝑎, �̃�) = 0 if
and only if 𝑎 = �̃�;

(2) for any 𝑎, �̃� ∈ 𝐹∗(𝐾), 𝜌(𝑎, �̃�) = 𝜌(�̃�, 𝑎);

(3) for any 𝑎, �̃�, 𝑐 ∈ 𝐹∗(𝐾), 𝜌(𝑎, �̃�) ≤ 𝜌(𝑎, 𝑐) + 𝜌(𝑐, �̃�).

𝜌(𝑎, �̃�) is called the fuzzy complex value distance of fuzzy
complex numbers 𝑎 and �̃�.

Remark 9. It can be easily seen that a mapping 𝜌 : 𝐹
∗

(𝐾) ×

𝐹
∗

(𝐾) → 𝐹
∗

(𝐾) is a fuzzy complex value metric on 𝐹
∗

(𝐾)

if and only if 𝜌 = 𝜌
1
+ 𝑖𝜌
2
for some two fuzzy metrics 𝜌

1
and

𝜌
2
on 𝐹∗(𝐾).

Definition 10. Let {𝑍
𝑛
} ⊂ 𝐹
∗

(𝐾),𝑍 ∈ 𝐹
∗

(𝐾), and 𝜌 : 𝐹
∗

(𝐾) ×

𝐹
∗

(𝐾) → 𝐹
∗

(𝐾) be a fuzzy complex value distance, and let
𝜌(𝑍
𝑛
, 𝑍) = 𝜌

1
(𝑍
𝑛
, 𝑍) + 𝑖𝜌

2
(𝑍
𝑛
, 𝑍) (𝑖 = √−1). If for each

𝜀 > 0, there exists a positive integer𝑁 such that 𝜌
1
(𝑍
𝑛
, 𝑍) < 𝜀

and 𝜌
2
(𝑍
𝑛
, 𝑍) < 𝜀 for all 𝑛 ≥ 𝑁 hold, then {𝑍

𝑛
} is said

to be convergent to 𝑍 according to distance 𝜌, denoted by
(𝜌)lim

𝑛→∞
𝑍
𝑛
= 𝑍.

Definition 11. Let 𝑍 be a nonempty complex number set, let
𝐹(𝑍) be the set of all complex fuzzy sets on 𝑍, and let 𝜌 be a
fuzzy complex value metric on 𝐹(𝑍). A complex fuzzy set-
value complex fuzzy measure is a mapping 𝜇 : 𝐹(𝑍) →

𝐹
∗

+
(𝐾) (where 𝐹∗

+
(𝐾) = {𝐴 + 𝑖𝐵 | 𝐴, 𝐵 ∈ 𝐹

∗

+
(𝑅)}, 𝑖 = √−1)

which satisfies the following conditions:

(1) 𝜇(⌀) = 0;

(2) for any 𝐴, 𝐵 ∈ 𝐹(𝑍) satisfying 𝐴 ⊂ 𝐵, 𝜇(𝐴) ≤ 𝜇(𝐵)

(i.e., Re 𝜇(𝐴) ≤ Re 𝜇(𝐵) and Im 𝜇(𝐴) ≤ Im 𝜇(𝐵));

(3) (lower semicontinuous) if {𝐴
𝑛
} ⊂ 𝐹(𝑍) with 𝐴

𝑛
⊂

𝐴
𝑛+1

, (𝑛 = 1, 2, . . .), then (𝜌)lim
𝑛→∞

𝜇(𝐴
𝑛
) =

𝜇(⋃
∞

𝑛=1
𝐴
𝑛
);

(4) (upper semicontinuous) if {𝐴
𝑛
} ⊂ 𝐹(𝑍) with 𝐴

𝑛
⊃

𝐴
𝑛+1

, (𝑛 = 1, 2, . . .) and 𝜇(𝐴
𝑛0
) ̸= ∞̃ for some 𝑛

0
, then

(𝜌)lim
𝑛→∞

𝜇(𝐴
𝑛
) = 𝜇(⋂

∞

𝑛=1
𝐴
𝑛
).

Apparently, a complex fuzzy set-value complex fuzzy
measure is also a kind of special generalized fuzzy measures.

Definition 12. A mapping 𝜇 : 𝐹(𝑍) → 𝐹
∗

+
(𝐾) is said to be

(1) 0-add if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) for any 𝐴, 𝐵 ∈ 𝐹(𝑍)

satisfying 𝐴 ∪ 𝐵 ∈ 𝐹(𝑍) and 𝜇(𝐵) = 0;

(2) null-additive (briefly, 0-sub) if 𝜇(𝐴 ∩ 𝐵
𝑐

) = 𝜇(𝐴) for
any 𝐴, 𝐵 ∈ 𝐹(𝑍) satisfying 𝐴 ∩ 𝐵

𝑐

∈ 𝐹(𝑍) and 𝜇(𝐵) =
0;

(3) autocontinuous from above (briefly, autoc. ↓) if
(𝜌)lim

𝑛
𝜇(𝐴
𝑛
∪ 𝐵) = 𝜇(𝐵) for any for all {𝐴

𝑛
} ⊂

𝐹(𝑍) and 𝐵 ∈ 𝐹(𝑍) satisfying 𝐴
𝑛
∪ 𝐵 ∈ 𝐹(𝑍), and

(𝜌)lim
𝑛
𝜇(𝐴
𝑛
) = 0̃;

(4) autocontinuous from below (briefly, autoc. ↑) if
(𝜌)lim

𝑛
𝜇(𝐴
𝑛
∩ 𝐵) = 𝜇(𝐵) for any for all {𝐴

𝑛
} ⊂

𝐹(𝑍) and 𝐵 ∈ 𝐹(𝑍) satisfying 𝐴𝑐
𝑛
∩ 𝐵 ∈ 𝐹(𝑍), and

(𝜌)lim
𝑛
𝜇(𝐴
𝑛
) = 0̃;

(5) autocontinuous if it is both autoc. ↓ and autoc. ↑.

Definition 13. A complex fuzzy set-value complex fuzzy
measure 𝜇 on 𝐹(𝑍) is said to be pseudo-null-additive (briefly,
P.0-add/𝐴, where 𝐴 ∈ 𝐹(𝑍) with 𝜇(𝐴) ̸= ∞̃) if it satisfies
𝜇(𝐵 ∩ 𝐶) = 𝜇(𝐶) for all 𝐵 ∈ 𝐹(𝑍) and all 𝐶 ∈ 𝐴 ∩ 𝐹(𝑍) =

{𝐴 ∩ 𝐷 | 𝐷 ∈ 𝐹(𝑍)} with 𝜇(𝐴 ∩ 𝐵) = 𝜇(𝐴). It is said to be
pseudo-null-subtraction (briefly, P.0-sud/𝐴, where 𝐴 ∈ 𝐹(𝑍)

with 𝜇(𝐴) ̸= ∞̃) if it satisfies 𝜇(𝐵∩𝐶) = 𝜇(𝐶) for all 𝐵 ∈ 𝐹(𝑍)

and all 𝐶 ∈ 𝐴 ∩ 𝐹(𝑍) with 𝜇(𝐴 ∩ 𝐵) = 𝜇(𝐴).

Definition 14. A complex fuzzy set-value complex fuzzy
measure 𝜇 on fuzzy 𝜎-algebra F is said to have property
(PGP) if, for each 𝜀 = 𝜀

1
+𝑖𝜀
2
> 0, there exists a 𝛿 = 𝛿

1
+𝑖𝛿
2
> 0

such that 𝜇(𝐸 ∪ 𝐹) < 𝜀 whenever 𝜇(𝐸) ∨ 𝜇(𝐹) < 𝛿. It
is said to have property (S/A) if, for any {𝐵

𝑛
} ⊂ F with
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(𝜌)lim
𝑛

𝜇(𝐵
𝑛
) = 0, there exists a subsequence {𝐵

𝑛𝑘
} of {𝐵

𝑛
} such

that 𝜇(⋂∞
𝑗=1

⋃
∞

𝑘=𝑗
𝐵
𝑛𝑘
) = 0. It is said to have property (S/B) if

(𝜌)lim
𝑛
𝜇(𝐵
𝑛
) = 0 for any {𝐵

𝑛
} ⊂ F.

4. Main Results

Let 𝑋 be a set and 𝐹(𝑋) the set of all fuzzy sets on 𝑋. Then a
subfamily F ⊂ 𝐹(𝑋) is addable if and only if it satisfies the
following conditions (see [21]):

(1) 𝑋 ∈ F;

(2) if 𝐴, 𝐵 ∈ F, then 𝐴 ⊕ 𝐵, 𝐴 ⊝ 𝐵 ∈ F,

where (𝐴 ⊕ 𝐵)(𝑥) = min(1, 𝐴(𝑥) + 𝐵(𝑥)) and (𝐴 ⊝ 𝐵)(𝑥) =

max(0, 𝐴(𝑥) − 𝐵(𝑥)) (for all 𝑥 ∈ 𝑋).
We first have the following result.

Theorem 15. Every fuzzy complex measure 𝜇 on a addable
class F ⊂ 𝐹(𝑍) is a complex fuzzy value fuzzy complex
measure onF.

Proof. We only prove the upper continuity and lower conti-
nuity of 𝜇. Suppose {𝐴

𝑛
} ⊂ F ⊂ 𝐹(𝑍), 𝐴

𝑛
↘ ⋂
∞

𝑛=1
𝐴
𝑛
∈ F,

and 𝜇(𝐴
𝑛0
) ̸= ∞̃ for some 𝑛

0
. By monotonicity of 𝜇, we have

0 ≤ Re 𝜇(𝐴
𝑛
) ≤ Re 𝜇(𝐴

𝑛0
) and 0 ≤ Im 𝜇(𝐴

𝑛
) ≤ Im 𝜇(𝐴

𝑛0
)

for any 𝑛 ≥ 𝑛
0
. Since 𝐴

𝑛0
⊝ 𝐴
𝑛
↗ 𝐴
𝑛0
⊝ (⋂
∞

𝑛=1
𝐴
𝑛
), we have

Re 𝜇 (𝐴
𝑛0
) = (𝜌) lim

𝑛

Re 𝜇 ((𝐴
𝑛0
⊝ 𝐴
𝑛
) ⊕ 𝐴

𝑛
)

= (𝜌) lim
𝑛

Re 𝜇 (𝐴
𝑛0
⊝ 𝐴
𝑛
) + (𝜌) lim

𝑛

Re 𝜇 (𝐴
𝑛
)

= Re 𝜇(𝐴
𝑛0
⊝ (

∞

⋂

𝑛=1

𝐴
𝑛
)) + (𝜌) lim

𝑛

Re 𝜇 (𝐴
𝑛
) .

(3)

Thereby

Re 𝜇 (𝐴
𝑛0
) + Re 𝜇(

∞

⋂

𝑛=1

𝐴
𝑛
)

= Re 𝜇(𝐴
𝑛0
⊝ (

∞

⋂

𝑛=1

𝐴
𝑛
)) + (𝜌)Re 𝜇 (𝐴

𝑛
)

+ 𝜇(

∞

⋂

𝑛=1

𝐴
𝑛
)

= Re 𝜇 (𝐴
𝑛0
) + (𝜌) lim

𝑛

Re 𝜇 (𝐴
𝑛
) .

(4)

It follows that (𝜌)lim
𝑛
Re 𝜇(𝐴

𝑛
) = Re 𝜇(⋂∞

𝑛=1
𝐴
𝑛
). Similarly,

we can prove (𝜌)lim
𝑛
Im 𝜇(𝐴

𝑛
) = Im 𝜇(⋂

∞

𝑛=1
𝐴
𝑛
), which

means that 𝜇 is upper continuous.

Assume {𝐵
𝑛
} ⊂ F ⊂ 𝐹(𝑍) and 𝐵

𝑛
↗ ⋃
∞

𝑛=1
𝐵
𝑛
∈ F.

Then (⋃
∞

𝑛=1
𝐵
𝑛
) ⊝ 𝐵
𝑛
is a monotonic decrease sequence and

(⋃
∞

𝑛=1
𝐵
𝑛
) ⊝ 𝐵
𝑛
↘ ⌀, so

Re 𝜇(
∞

⋃

𝑛=1

𝐵
𝑛
)

= Re 𝜇(((
∞

⋃

𝑛=1

𝐵
𝑛
) ⊝ 𝐵

𝑛
) ⊕ 𝐵

𝑛
)

= (𝜌) lim
𝑛

Re 𝜇((
∞

⋃

𝑛=1

𝐵
𝑛
) ⊝ 𝐵

𝑛
) + (𝜌) lim

𝑛

Re 𝜇 (𝐵
𝑛
)

= 0 + (𝜌) lim
𝑛

Re 𝜇 (𝐵
𝑛
)

= (𝜌) lim
𝑛

Re 𝜇 (𝐵
𝑛
) .

(5)

Similarly we can prove Im 𝜇(⋃
∞

𝑛=1
𝐵
𝑛
) = (𝜌)lim

𝑛
Im 𝜇(𝐵

𝑛
);

thus 𝜇 is also lower continuous. In summary, 𝜇 is a complex
fuzzy set-value complex fuzzy measure.

Theorem 16. Every complex fuzzy set-value complex fuzzy
measure 𝜇 on a fuzzy 𝜎-algebraF ⊂ 𝐹(𝑍) is exhaustive.

Proof. Suppose {𝐴
𝑛
} ⊂ F is a disjoin sequence; then

∞

⋃

𝑘=𝑛

𝐴
𝑘
↘

∞

⋂

𝑛=1

∞

⋃

𝑘=𝑛

𝐴
𝑘
= ⌀. (6)

Assume⋂∞
𝑛=1

⋃
∞

𝑘=𝑛
𝐴
𝑘

̸= ⌀; then Re(∧∞
𝑛=1

∨
∞

𝑘=𝑛
𝐴
𝑘
(𝑧
0
)) > 0 for

some 𝑧
0
∈ 𝑍 or Im(∧

∞

𝑛=1
∨
∞

𝑘=𝑛
𝐴
𝑘
(𝑧
0
)) > 0 for some 𝑧

0
∈ 𝑍;

that is, Re(∨∞
𝑘=𝑛

𝐴
𝑘
(𝑧
0
)) > 0 for all 𝑛 ≥ 1 or Im(∨

∞

𝑘=𝑛
𝐴
𝑘
(𝑧
0
)) >

0 for all 𝑛 ≥ 1. Without loss of generality, we assume the
first.Then there are two distinct indexes 𝑘

𝑛1
and 𝑘
𝑛2
such that

Re𝐴
𝑘𝑛1

(𝑧
0
) > 0 andRe𝐴

𝑘𝑛2

(𝑧
0
) > 0 (and, thus, Re(𝐴

𝑘𝑛1

(𝑧
0
)∧

𝐴
𝑘𝑛2

(𝑧
0
)) > 0), which conflicts with the fact that {𝐴

𝑛
} is a

disjoin sequence. Therefore ⋃∞
𝑘=𝑛

𝐴
𝑘
↘ ⋂
∞

𝑛=1
⋃
∞

𝑘=𝑛
𝐴
𝑘
= ⌀

holds. Thus

(𝜌) lim
𝑛

Re 𝜇 (𝐴
𝑛
) ≤ (𝜌) lim

𝑛

Re 𝜇(
∞

⋃

𝑘=𝑛

𝐴
𝑘
)

= Re (⌀) = 0,

(𝜌) lim
𝑛

Im 𝜇 (𝐴
𝑛
) ≤ (𝜌) lim

𝑛

Im 𝜇(

∞

⋃

𝑘=𝑛

𝐴
𝑘
)

= Im (⌀) = 0.

(7)

Then we get (𝜌)lim
𝑛
𝜇(𝐴
𝑛
) ≤ 0.

On the other hand, since 𝜇 is complex fuzzy set-
value complex fuzzy measure on the fuzzy 𝜎-algebra F,
(𝜌)lim

𝑛
𝜇(𝐴
𝑛
) ≥ 0, so (𝜌)lim

𝑛
𝜇(𝐴
𝑛
) = 0.
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Theorem 17. If 𝜇(F) = {𝜇(𝐴) | 𝐴 ∈ F} ∈ 𝐴
∗, then

Re 𝜇( lim
𝑛→∞

𝐴
𝑛
) ≤ (𝜌) lim

𝑛→∞

Re 𝜇 (𝐴
𝑛
)

≤ (𝜌) lim
𝑛→∞

Re 𝜇 (𝐴
𝑛
)

≤ Re 𝜇 ( lim
𝑛→∞

𝐴
𝑛
) ,

Im 𝜇( lim
𝑛→∞

𝐴
𝑛
) ≤ (𝜌) lim

𝑛→∞

Im 𝜇 (𝐴
𝑛
)

≤ (𝜌) lim
𝑛→∞

Im 𝜇 (𝐴
𝑛
) ≤ Im 𝜇 ( lim

𝑛→∞

𝐴
𝑛
) .

(8)

Proof. Since ⋂
∞

𝑛=𝑘
𝐴
𝑛

↗ about 𝑘, Re 𝜇(⋃∞
𝑘=1

⋂
∞

𝑛=𝑘
𝐴
𝑛
) =

(𝜌)lim
𝑛
Re 𝜇(⋂∞

𝑛=𝑘
𝐴
𝑛
) and Im 𝜇(⋃

∞

𝑘=1
⋂
∞

𝑛=𝑘
𝐴
𝑛
) =

(𝜌)lim
𝑛
Im 𝜇(⋂

∞

𝑛=𝑘
𝐴
𝑛
).

As Re 𝜇(⋂∞
𝑛=𝑘

𝐴
𝑛
) ≤ Re 𝜇(𝐴

𝑛
) and Im 𝜇(⋂

∞

𝑛=𝑘
𝐴
𝑛
) ≤

Im 𝜇(𝐴
𝑛
) for all 𝑛 ≥ 𝑘, Re 𝜇(⋂∞

𝑛=𝑘
𝐴
𝑛
) ≤ inf

𝑛≥𝑘
Re 𝜇(𝐴

𝑛
) and

Im 𝜇(⋂
∞

𝑛=𝑘
𝐴
𝑛
) ≤ inf

𝑛≥𝑘
Im 𝜇(𝐴

𝑛
). Therefore

Re 𝜇( lim
𝑛→∞

𝐴
𝑛
) = Re 𝜇(

∞

⋃

𝑘=1

∞

⋂

𝑛=𝑘

𝐴
𝑛
)

≤ (𝜌) lim
𝑘→∞

inf
𝑛≥𝑘

Re 𝜇 (𝐴
𝑛
)

= (𝜌) lim
𝑛→∞

Re 𝜇 (𝐴
𝑛
) ,

Im 𝜇( lim
𝑛→∞

𝐴
𝑛
) = Im 𝜇(

∞

⋃

𝑘=1

∞

⋂

𝑛=𝑘

𝐴
𝑛
)

≤ (𝜌) lim
𝑘→∞

inf
𝑛≥𝑘

Im 𝜇 (𝐴
𝑛
)

= (𝜌) lim
𝑛→∞

Im 𝜇 (𝐴
𝑛
) ,

(9)

which means Re 𝜇(lim
𝑛→∞

𝐴
𝑛
) ≤ (𝜌)lim

𝑛→∞
Re 𝜇(𝐴

𝑛
).

Similarly, Im 𝜇(lim
𝑛→∞

𝐴
𝑛
) ≤ (𝜌)lim

𝑛→∞
Im 𝜇(𝐴

𝑛
).

From properties of upper limits and lower limits we can
see the following theorem holds.

Theorem 18. Let 𝜇 : 𝐹(𝑍) → 𝐹
∗

+
(𝐾) = {𝐴 + 𝑖𝐵 : 𝐴, 𝐵 ∈

𝐹
∗

+
(𝑅), 𝑖 = √−1} and 𝐸 ∈ 𝐹(𝑍). If 𝜇 is 0-addable and upper

continuous on𝐹(𝑍), then, for any {𝐴
𝑛
} ⊂ 𝐹(𝑍) satisfying𝐴

𝑛
⊃

𝐴
𝑛+1

(𝑛 = 1, 2, . . .), (𝜌)lim
𝑛
𝜇(𝐴
𝑛
) = 0̃ and 𝜇(𝐸 ∪ 𝐴

𝑛0
) ̸= ∞̃,

(𝜌)lim
𝑛
𝜇(𝐸 ∪ 𝐴

𝑛
) = 𝜇(𝐸).

Proof. Let 𝐴 = ⋂
∞

𝑛=1
𝐴
𝑛
. Since 𝜇 is upper continuous,

Re 𝜇 (𝐴) = Re 𝜇(
∞

⋂

𝑛=1

𝐴
𝑛
) = (𝜌) lim

𝑛

Re 𝜇 (𝐴
𝑛
) = 0̃,

Im 𝜇 (𝐴) = Im 𝜇(

∞

⋂

𝑛=1

𝐴
𝑛
) = (𝜌) lim

𝑛

Im 𝜇 (𝐴
𝑛
) = 0̃.

(10)

As 𝐸∪𝐴
𝑛
↘ 𝐸∪𝐴 and 𝜇 is upper continuous and 0-addable,

we have

(𝜌) lim
𝑛

Re 𝜇 (𝐸 ∪ 𝐴
𝑛
) = Re 𝜇 (𝐸 ∪ 𝐴) = Re 𝜇 (𝐸) ,

(𝜌) lim
𝑛

Im 𝜇 (𝐸 ∪ 𝐴
𝑛
) = Im 𝜇 (𝐸 ∪ 𝐴) = Im 𝜇 (𝐸) .

(11)

So (𝜌)lim
𝑛
𝜇(𝐸 ∪ 𝐴

𝑛
) = 𝜇(𝐸) holds.

Similar to Theorem 18, we have the following.

Theorem 19. Let 𝜇 : 𝐹(𝑍) → 𝐹
∗

+
(𝐾) = {𝐴 + 𝑖𝐵 : 𝐴, 𝐵 ∈

𝐹
∗

+
(𝑅), 𝑖 = √−1} and 𝐸 ∈ 𝐹(𝑍). If 𝜇 is 0-subtractable and

continuous on 𝐹(𝑍), then, for any {𝐸
𝑛
} ⊂ 𝐹(𝑍) satisfying 𝐸

𝑛
⊃

𝐸
𝑛+1

(𝑛 = 1, 2, . . .) and (𝜌)lim
𝑛
𝜇(𝐸
𝑛
) = 0̃, (𝜌)lim

𝑛
𝜇(𝐸∩𝐸

𝑐

𝑛
) =

𝜇(𝐸).

Theorem 20. Assume that 𝐴 ∈ F ⊂ 𝐹(𝑍), 𝜇 is a complex
fuzzy set-value complex fuzzy measure on 𝐹(𝑍) which is
pseudo-zero addable about 𝐴, and 𝜇(𝐴) ̸= ∞̃. If (𝜌)lim

𝑛
𝜇(𝐴 ∩

𝐵
𝑛
) = 𝜇(𝐴) for any {𝐵

𝑛
} ⊂ F satisfying 𝐵

𝑛
↑, then

(𝜌)lim
𝑛
𝜇(𝐶 ∪ (𝐴 ∩ 𝐵

𝑐

𝑛
)) = 𝜇(𝐶) for any 𝐶 ∈ 𝐴 ∩F.

Proof. Let 𝐵 = ⋃
∞

𝑛=1
𝐵
𝑛
. As 𝜇 is lower continuous, we have

Re 𝜇 (𝐴 ∩ 𝐵) = Re 𝜇(𝐴 ∩

∞

⋃

𝑛=1

𝐵
𝑛
)

= Re 𝜇(
∞

⋃

𝑛=1

(𝐴 ∩ 𝐵
𝑛
)) = (𝜌) lim

𝑛

Re (𝐴 ∩ 𝐵
𝑛
) ,

Im 𝜇 (𝐴 ∩ 𝐵) = Im 𝜇(𝐴 ∩

∞

⋃

𝑛=1

𝐵
𝑛
)

= Im 𝜇(

∞

⋃

𝑛=1

(𝐴 ∩ 𝐵
𝑛
))

= (𝜌) lim
𝑛

Im (𝐴 ∩ 𝐵
𝑛
) .

(12)

Therefore 𝜇(𝐴∩𝐵) = 𝜇(𝐴). As𝐴∩𝐵𝑐
𝑛
↘ 𝐴∩𝐵

𝑐,𝐶∪(𝐴∩𝐵𝑐
𝑛
) ↘

𝐶∪ (𝐴∩𝐵
𝑐

) for any 𝐶 ∈ 𝐴∩F. By upper continuity and P.0-
add/𝐴 of 𝜇, we have

(𝜌) lim
𝑛

Re 𝜇 (𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

𝑛
))

= Re 𝜇(
∞

⋂

𝑛=1

(𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

𝑛
)))

= Re 𝜇 (𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

)) = Re 𝜇 (𝐶) ,

(𝜌) lim
𝑛

Im 𝜇 (𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

𝑛
))

= Im 𝜇(

∞

⋂

𝑛=1

(𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

𝑛
)))

= Im 𝜇 (𝐶 ∪ (𝐴 ∩ 𝐵
𝑐

)) = Im 𝜇 (𝐶) .

(13)

Hence (𝜌)lim
𝑛
𝜇(𝐶 ∪ (𝐴 ∩ 𝐵

𝑐

𝑛
)) = 𝜇(𝐶).
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Similarly, we have the following.

Theorem 21. Suppose that 𝐴 ∈ F ⊂ 𝐹(𝑍), 𝜇 is a
complex fuzzy set-value complex fuzzy measure on 𝐹(𝑍)

which is pseudo-zero subtractable about 𝐴, and 𝜇(𝐴) ̸= ∞̃. If
(𝜌)lim

𝑛
𝜇(𝐴 ∩ 𝐵

𝑛
) = 𝜇(𝐴) for any {𝐵

𝑛
} ⊂ F satisfying 𝐵

𝑛
↑,

then (𝜌)lim
𝑛
𝜇(𝐶 ∩ 𝐵

𝑛
) = 𝜇(𝐶) for any 𝐶 ∈ 𝐴 ∩F.

Theorem22. Let𝜇 be a complex fuzzy set-value complex fuzzy
measure on a fuzzy 𝜎-algebraF ⊂ 𝐹(𝑍) and 𝜇(F) = {𝜇(𝐴) :

𝐴 ∈ F} ∈ 𝐴
∗. If 𝜇 is 𝑎𝑢𝑡𝑜𝑐. ↓, then 𝜇 possesses (PGP) property.

Proof. Suppose that 𝜇 does not possess (P.G.P) property; then
there exists an 𝜀

0
= 𝜀


0
+ 𝑖𝜀


0
(where 𝜀

0
, 𝜀


0
are positive real

numbers) such that, for any natural numbers 𝑛,𝑚, there exist
{𝐸
𝑛
}, {𝐹
𝑛
} ⊂ F such that

Re 𝜇 (𝐸
𝑛
) ∨ Re 𝜇 (𝐹

𝑛
) <

1

𝑛
,

Im 𝜇 (𝐸
𝑛
) ∨ Im 𝜇 (𝐹

𝑛
) <

1

𝑚
,

Re 𝜇 (𝐸
𝑛
∪ 𝐹
𝑛
) ̸< 𝜀


0
, Im 𝜇 (𝐸

𝑛
∪ 𝐹
𝑛
) ̸< 𝜀


0
.

(14)

Thus 𝜇(𝐸
𝑛
∪ 𝐹
𝑛
) ̸< 𝜀

0
and, thus, (𝜌)lim

𝑛
Re 𝜇(𝐸

𝑛
) =

(𝜌)lim
𝑛
Re 𝜇(𝐹

𝑛
) = 0 and (𝜌)lim

𝑛
Im 𝜇(𝐸

𝑛
) =

(𝜌)lim
𝑛
Im 𝜇(𝐹

𝑛
) = 0. From upper autocontinuity of 𝜇,

we have

(𝜌) lim
𝑛

Re 𝜇 (𝐸
𝑛
∪ 𝐹
𝑛
) = 0, (𝜌) lim

𝑛

Im 𝜇 (𝐸
𝑛
∪ 𝐹
𝑛
) = 0.

(15)

Therefore 𝜇(𝐸
𝑛
∪𝐹
𝑛
) < 𝜀
0
for some 𝑛

0
≥ 1. This conflicts with

the hypothesis.

Theorem 23. Suppose that 𝜇 possesses (P.G.P) property. If
{𝐸
𝑛
} ⊂ F and (𝜌)lim

𝑛
𝜇(𝐸
𝑛
) = 0, then there exists a sequence

{𝛿
𝑛
} of real numbers satisfying 𝛿

𝑛
> 0 (for all n) and 𝛿

𝑛
↘ 0

and a subsequence {𝐸
𝑛𝑘
} of {𝐸

𝑛
} such that 𝜇(⋃∞

𝑖=𝑘+1
𝐸
𝑛𝑖
) < 𝛿
𝑘

(for all 𝑘 ≥ 1). Furthermore, 𝜇 possesses (SA) property.

Proof. For any real numbers 𝜀, 𝜀, 𝛿
1
, 𝛿


1
> 0, let 𝜀 = 𝜀



+

𝑖𝜀


, 𝛿
1
= 𝛿


1
+ 𝑖𝛿


1
, 𝛿
1
∈ (0, 𝜀



), and 𝛿


1
∈ (0, 𝜀



). Since 𝜇
possesses (P.G.P) property, there exists a 𝛿

1
∈ (0, 𝜀) such that

Re 𝜇(𝐸 ∪ 𝐹) < 𝜀
 and Im 𝜇(𝐸 ∪ 𝐹) < 𝜀

 whenever Re 𝜇(𝐸) ∨
𝜇(𝐹) < 𝛿



1
and Im 𝜇(𝐸) ∨ 𝜇(𝐹) < 𝛿



1
. Since (𝜌)lim

𝑛
𝜇(𝐸
𝑛
) = 0,

there exists an 𝑛
1
such that Re 𝜇(𝐸

𝑛1
∪𝐹) < 𝜀

, Im 𝜇(𝐸
𝑛1
∪𝐹) <

𝜀
 whenever Re 𝜇(𝐸

𝑛1
) < 𝛿


1
and Im 𝜇(𝐸

𝑛1
) < 𝛿


1
. Therefore

𝜇(𝐸
𝑛1
∪𝐹) < 𝜀. Since 𝜇 possesses (P.G.P) property, there exists

a 𝛿
2
= 𝛿


2
+ 𝑖𝛿


2
such that 𝛿

2
∈ (0, 𝛿



1
∧ 𝜀


/2), 𝛿
2
∈ (0, 𝛿



1
∧

𝜀


/2), Re 𝜇(𝐸 ∪ 𝐹) < 𝛿


1
, and Im 𝜇(𝐸 ∪ 𝐹) < 𝛿



2
whenever

Re(𝜇(𝐸)∨𝜇(𝐹)) < 𝛿


2
and Im(𝜇(𝐸)∨𝜇(𝐹)) < 𝛿



2
. As 𝛿
2
= 𝛿


2
+

𝑖𝛿


2
> 0, there exists an 𝑛

2
> 𝑛
1
such that Re 𝜇(𝐸

𝑛2
) < 𝛿


2
and

Im 𝜇(𝐸
𝑛2
) < 𝛿


2
. HenceRe 𝜇(𝐸

𝑛2
∪𝐹) < 𝛿



1
, Im 𝜇(𝐸

𝑛2
∪𝐹) < 𝛿



2
,

and, thus, Re 𝜇(𝐸
𝑛1
∪𝐸
𝑛2
∪𝐹) < 𝜀

 and Im 𝜇(𝐸
𝑛1
∪𝐸
𝑛2
∪𝐹) < 𝜀

.

For 𝛿
2
= 𝛿


2
+ 𝑖𝛿


2
> 0 and there exists 𝛿

3
= 𝛿


3
+ 𝑖𝛿


3
> 0,

𝛿


3
∈ (0, 𝛿



2
∧𝜀/2
2

), and 𝛿
3
∈ (0, 𝛿



2
∧𝜀/2
2

) such that Re(𝜇(𝐸)∨
𝜇(𝐹)) < 𝛿



3
, Im(𝜇(𝐸) ∨ 𝜇(𝐹)) < 𝛿



3
⇒

Re 𝜇 (𝐸 ∪ 𝐹) < 𝛿


2
, Im 𝜇 (𝐸 ∪ 𝐹) < 𝛿



2
. (16)

For 𝛿
3
= 𝛿


3
+ 𝑖𝛿


3
> 0, 𝛿

3
∈ (0, 𝛿



2
∧ 𝜀/2
2

), 𝛿
3
∈ (0, 𝛿



2
∧

𝜀/2
2

) since (𝜌)lim
𝑛
𝜇(𝐸
𝑛
) = 0, there exists 𝑛

3
> 𝑛
2
, such that

Re 𝜇(𝐸
𝑛3
) < 𝛿


3
and Im 𝜇(𝐸

𝑛3
) < 𝛿


3
.Therefore𝜇(𝐸

𝑛3
∪𝐹) < 𝛿

2
,

𝜇(𝐸
𝑛3
∪ 𝐸
𝑛2
∪ 𝐹) < 𝛿

1
, and 𝜇(𝐸

𝑛3
∪ 𝐸
𝑛2
∪ 𝐸
𝑛1
∪ 𝐹) < 𝜀.

Generally we can get 𝑛
𝑘+1

> 𝑛
𝑘
> 𝑛
𝑘−1

> ⋅ ⋅ ⋅ > 𝑛
1
,

and 𝛿
𝑘
< 𝛿
𝑘−1

∧ 𝜀/2
𝑘−1, such that 𝜇(⋃𝑟+1

𝑖=𝑘
𝐸
𝑛𝑖
) < 𝛿

𝑘−1
, (𝑘 =

1, 2, 3, . . . , 𝑟 + 1, 𝑟 ≥ 1).
Let 𝐵
𝑘
= ⋃
∞

𝑖=𝑘
𝐸
𝑛𝑖
and 𝐸 = ⋂

∞

𝑘=2
⋃
∞

𝑖=𝑘
𝐸
𝑛𝑖
= ⋂
∞

𝑘=1
𝐵
𝑘
; then

𝐵
𝑘
↘ 𝐸, 𝜇(𝐵

𝑘
) = 𝜇(⋃

∞

𝑖=𝑘
𝐸
𝑛𝑖
) ≤ 𝛿
𝑘−1

, (𝑘 ≥ 1).
Hence 𝜇(𝐸) = 0; that is, 𝜇 possesses (SA) property.
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